

Doubly-charged Higgs production at lepton colliders within type-II seesaw model

Higgs Potential - Hefei

Shu-Xiang Li

Department of Modern Physics, USTC

December 22, 2024

- 1. Type-II seesaw model
- 2. Parameter space and production cross section
- 3. Background analysis
- 4. Summary

1. Type-II seesaw model

- 2. Parameter space and production cross section
- 3. Background analysis

4. Summary

1.1 Beyond the SM

✤ The Standard Model (SM) is successful

Standard Model of Elementary Particles

- ✤ The SM needs to be extended:
 - neutrino oscillation
 - dark matter
 - ♦ CP violation
 - ÷ ...

Candidate Higgs events in ATLAS and CMS

1.2 Seesaw mechanism

Seesaw mechanism is introduced to explain the small masses of neutrinos.

✤ Type-I seesaw:

$$-\mathcal{L}_{\nu}=Y_{D}\overline{L_{L}}\tilde{\Phi}N_{R}+\frac{1}{2}M_{R}\overline{N_{R}^{c}}N_{R}+h.c.$$

 N_R is a right-handed fermion singlet. Neutrino mass (with $M_R \gg m_D$):

$$m_\nu = -m_D^T M_R^{-1} m_D$$

Type-III seesaw:
 Introduce a fermion triplet...

+ Type-II seesaw:

$$-\mathcal{L}_{\nu}=Y_{L}\overline{L_{L}^{c}}i\sigma_{2}\Delta L_{L}+h.c.$$

 Δ is a left-handed scalar triplet with vev $v_{\Delta}.$ Neutrino mass:

$$m_{\nu} = \sqrt{2} Y_L v_{\Delta}$$

The simplest implementation of the type-II seesaw mechanism.

Adding a $\mathrm{SU}(2)$ triplet scalar with hypercharge Y=2 to the SM

$$\Delta = \begin{pmatrix} \frac{\delta^+}{\sqrt{2}} & \delta^{++} \\ \frac{1}{\sqrt{2}} (\delta^0 + i\xi_\Delta + v_\Delta) & -\frac{\delta^+}{\sqrt{2}} \end{pmatrix}$$

The full Lagrangian of the type-II seesaw model:

$$\mathcal{L}_{\mathrm{Type-II}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\nu} + \mathrm{Tr} \Big[\big(D_{\mu} \Delta \big)^2 \Big] - V_{\Delta, \Phi}$$

The complete **Higgs potential**:

$$\begin{split} V_{\Phi} + V_{\Delta,\Phi} &= -\mu_{\Phi}^2 \left(\Phi^{\dagger} \Phi \right) + \frac{\lambda}{4} \left(\Phi^{\dagger} \Phi \right)^2 - \mu_{\Delta}^2 \operatorname{Tr} \left(\Delta^{\dagger} \Delta \right) + \lambda_1 \left(\Phi^{\dagger} \Phi \right) \operatorname{Tr} \left(\Delta^{\dagger} \Delta \right) \\ &+ \lambda_2 \left[\operatorname{Tr} \left(\Delta^{\dagger} \Delta \right) \right]^2 + \lambda_3 \operatorname{Tr} \left[\left(\Delta^{\dagger} \Delta \right)^2 \right] + \lambda_4 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi \\ &+ \left[\mu \Phi^T i \sigma_2 \Delta^{\dagger} \Phi + \text{h.c.} \right] \end{split}$$

The simplest implementation of the type-II seesaw mechanism.

Adding a $\mathrm{SU}(2)$ triplet scalar with hypercharge Y=2 to the SM

$$\Delta = \begin{pmatrix} \frac{\delta^+}{\sqrt{2}} & \delta^{++} \\ \frac{1}{\sqrt{2}} (\delta^0 + i\xi_\Delta + v_\Delta) & -\frac{\delta^+}{\sqrt{2}} \end{pmatrix}$$

The full Lagrangian of the type-II seesaw model:

$$\mathcal{L}_{\mathrm{Type-II}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\nu} + \mathrm{Tr} \Big[\big(D_{\mu} \Delta \big)^2 \Big] - V_{\Delta, \Phi}$$

The complete **Higgs potential**:

$$\begin{split} V_{\Phi} + V_{\Delta,\Phi} &= -\mu_{\Phi}^2 \big(\Phi^{\dagger} \Phi \big) + \frac{\lambda}{4} \big(\Phi^{\dagger} \Phi \big)^2 - \mu_{\Delta}^2 \operatorname{Tr} \big(\Delta^{\dagger} \Delta \big) + \lambda_1 \big(\Phi^{\dagger} \Phi \big) \operatorname{Tr} \big(\Delta^{\dagger} \Delta \big) \\ &+ \lambda_2 \big[\operatorname{Tr} \big(\Delta^{\dagger} \Delta \big) \big]^2 + \lambda_3 \operatorname{Tr} \Big[\big(\Delta^{\dagger} \Delta \big)^2 \Big] + \lambda_4 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi \\ &+ \big[\mu \Phi^T i \sigma_2 \Delta^{\dagger} \Phi + \text{h.c.} \big] \end{split}$$

Mass spectrum of the scalar sector (in the limit $v_{\Delta} \ll v_{\Phi}$, see later slide)

 $v_{\Delta}, M_{H^{\pm\pm}}, \lambda_{1-4}, Y_L$ as model inputs.

Features of the Type-II seesaw model

- neutrino masses
- doubly-charged Higgs
- lepton number violation

Mass spectrum of the scalar sector (in the limit $v_{\Delta} \ll v_{\Phi}$, see later slide)

 $v_{\Delta}, M_{H^{\pm\pm}}, \lambda_{1-4}, Y_L$ as model inputs.

Features of the Type-II seesaw model

- neutrino masses
- doubly-charged Higgs
- lepton number violation

1. Type-II seesaw model

2. Parameter space and production cross section

3. Background analysis

4. Summary

2.1 Experimental constraints

ρ-parameter: [PDG, 2024]

$$\begin{split} \rho &\equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{1 + 2v_\Delta^2 / v_\Phi^2}{1 + 4v_\Delta^2 / v_\Phi^2} = 1.0001 \pm 0.0009 \\ & \downarrow \sqrt{v_\Phi^2 + v_\Delta^2} = 246 \text{ GeV} \\ v_\Delta &< 4.9 \text{ GeV} \ll v_\Phi \end{split}$$

Direct search

 $M_{H^{\pm\pm}}$ [ATLAS, 2023] [ATLAS, 2021]

$$\begin{split} M_{H^{\pm\pm}} &> 1065 \ {\rm GeV}, \qquad {\rm assuming} \ {\rm Br}(H^{\pm\pm} \to l^\pm l^\pm) = 100\% \\ M_{H^{\pm\pm}} &> 350 \ {\rm GeV}, \qquad {\rm assuming} \ {\rm Br}(H^{\pm\pm} \to W^\pm W^\pm) = 100\% \end{split}$$

 m_{ν} [Planck, 2018]

$$\sum_i m_{\nu_i} < 0.12~{\rm eV}$$

2.1 Experimental constraints

Constraints on Y_L (M_{H^{±±}} = 1 TeV) [Bhupal, 2018]
 e⁺e⁻ → l⁺l⁻

$$|Y_{ee}|^2 < 0.12, \qquad |Y_{e\mu}|^2 < 0.064, \qquad |Y_{e\tau}|^2 < 0.054$$

muonium oscillation

$$\left|Y_{ee}^{\dagger}Y_{\mu\mu}\right| < 0.12$$

lepton flavor violation (LFV)

LFV process	Constraint
$\mu^- \to e^- e^+ e^-$	$\left Y_{ee}^{\dagger}Y_{e\mu}\right <2.3\times10^{-5}$
$\tau^- \to e^- e^+ e^-$	$\left Y_{ee}^{\dagger}Y_{e\tau}\right < 6.5 \times 10^{-3}$
$ au^- ightarrow \mu^- \mu^+ \mu^-$	$\left Y_{\mu\mu}^{\dagger}Y_{\mu\tau}\right < 6.1 \times 10^{-3}$
•••	•••

Digonal Y_L are expected to be larger, off-diagonal Y_L are highly suppressed. Allowed off diagonal Yukawa couplings Dev, 2019

2.2 Parameter setting and benchmark points

$$\lambda_1=1, \lambda_2=\lambda_3=0, \lambda_4=0.2, Y_{ij}=\underline{Y_{ee}}\delta_{ie}\delta_{je}$$

Two benchmark points feature a stronger Yukawa coupling and a stronger gauge coupling, respectively.

 $\begin{array}{lll} {\rm BP1:} & M_{H^{\pm\pm}} = 1.1 \ {\rm TeV}, & v_{\Delta} = 2 \times 10^{-10} \ {\rm GeV}, & Y_{ee} = 0.35 \\ {\rm BP2:} & M_{H^{\pm\pm}} = 0.4 \ {\rm TeV}, & v_{\Delta} = 4.5 \ {\rm GeV}, & Y_{ee} = 1.5 \times 10^{-11} \\ \end{array}$

 $m_{\nu_e}\approx 0.1~{\rm eV}$

The branching ratios at different BPs

$$\begin{array}{ll} \mathrm{BP1}: & \mathrm{Br}(H^{\pm\pm} \to e^{\pm}e^{\pm}) = 100\% \\ \mathrm{BP2}: & \mathrm{Br}(H^{\pm\pm} \to W^{\pm}W^{\pm}) = 100\% \end{array}$$

2.3 Production at lepton colliders

Lepton colliders with energy above our benchmark $M_{H^{\pm\pm}}$

	ILC	CLIC phase II	CLIC phase III
$\sqrt{s}~({ m TeV})$	1.0	1.5	3.0
$\boldsymbol{\mathscr{S}}\ (\mathrm{ab})^{-1}$	2.0	2.5	5.0

Consider 4 collision modes:

$$e^+e^ e^-e^ e^-\gamma$$
 $\gamma\gamma$

Higgs Potential - Hefei

Photon beam from Compton scattering

Photon energy spectrum at x = 4.5

 $y_{\rm max} = 0.83$

2.4 Pair production cross section

Pair production at lepton and pp colliers.

- *e⁺e[−]* mode The *t*-channel exchange of H^{±±} contributes significantly at large Yukawa coupling (BP1).
- + $\gamma\gamma$ mode threshold effect: $y_{\rm max} \times \sqrt{s}/2 \approx 1200$ GeV.
- + *pp* collider smaller compared lepton colliders.

2.5 Single production cross section

The dominant single production processes at BP1 (left) and BP2 (right)

- + lepton collider dominates with larger Yukawa coupling
- + *pp* collider benefits from stronger gauge coupling
- + e^-e^- mode largest cross section, increase due to $\frac{1}{s-M_{H^{++}}^2}$

1. Type-II seesaw model

2. Parameter space and production cross section

3. Background analysis

4. Summary

3.1 Pair production background - *pp*

Take pair production at pp collider as a demonstration of our background analysis.

Cross sections of $H^{++}H^{--}$ and dominant background processes ($\sqrt{s} = 14$ TeV).

Process	σ (pb)	Decay channel	σ' (fb)
$H^{++}H^{}$	$2.50 imes 10^{-5}$	$e^{+}e^{+} + e^{-}e^{-}$	0.0219
$e^+e^+e^-e^-$	0.00648		6.48
$t\bar{t}Z$	0.693	$e^+\nu_e b + e^-\bar\nu_e\bar b + e^+e^-$	0.181
Zjjj	$2.33 imes 10^3$	e^+e^-	0.167

 σ' is obtained by multipling the branching ratio and applying the baseline cut (selection):

 $p_T(e) > 10 ~{\rm GeV}, ~~ |\eta(e)| < 2.5, ~~ \Delta R(e,e) > 0.4$

3.1 Pair production background - *pp*

Normalized distribution for $p_{T,e}^{ m leading}, M_{e^+e^-}$ and $M_{e^+e^+}$

3.1 Pair production background - *pp*

Number of events after cut ($\mathscr{L} = 300 \text{ fb}^{-1}$)

Process	Baseline cut	$p_{T,e}^{\mathrm{leading}}$	$M_{e^+e^-}$	$M_{e^\pm e^\pm}$
$H^{++}H^{}$	6.58	6.44	6.42	6.42
$e^-e^-e^+e^-$	1.94×10^3	0.27	0.0311	0
$t\bar{t}Z$	54.4	0.0673	7.05×10^{-4}	0
Zjjj	50.2	0.109	0.00115	0

Cuts flow:

1. $p_{T,e}^{\text{leading}}$

Signal significance:

$$p_{T,e}^{\rm leading} > M_{H^{\pm\pm}}/2 \qquad \qquad \mathcal{S} = 2.54$$

2. $M_{e^+e^-}$

$$\forall (e^+,e^-) \qquad |M_{e^+e^-}-M_Z| > 10 \ {\rm GeV}$$

3. $M_{e^{\pm}e^{\pm}}$

$$|M_{e^\pm e^\pm} - M_{H^{\pm\pm}}| < 0.1 \times M_{H^{\pm\pm}}$$

3.2 Single production background - e^-e^-

Cross sections of $H^{--}\gamma$ and dominant background processes ($\sqrt{s} = 3.0$ TeV).

Process	σ (fb)	Decay channel	σ' (fb)
$H^{}\gamma$	138	e^-e^-	138
$e^-e^-\gamma$	199		199
$e^- u_eW^-\gamma$	89.9	$e^- ar{ u}_e$	9.63
$e^-e^-\gamma\gamma$	5.25		0.525
$\nu_e \nu_e W^- W^- \gamma$	5.66	$e^-\bar\nu_e+e^-\bar\nu_e$	0.0649

Number of events after cut ($\mathscr{L} = 300 \,\mathrm{fb}^{-1}$). $\mathscr{S} = 173.7$

Process	Baseline cut	$p_{T,e}^{\mathrm{leading}}$	$M_{e^-e^-}$
$H^{}\gamma$	$3.88 imes 10^4$	3.02×10^4	$3.02 imes 10^4$
$e^-e^-\gamma$	$5.96 imes10^3$	2.42×10^3	38.7
$e^- u_e W^- \gamma$	224	40.3	4.68
$e^-e^-\gamma\gamma$	15.7	8.64	0.304
$\left[\nu_e \nu_e W^- W^- \gamma ight]$	1.67	0.0672	0.00759

3.3 Significance

Signal significance for pair production in different modes at BP1

$M_{H^{\pm\pm}}$	1100	1250	1400
e^+e^-	97	64	29
$\gamma\gamma$	31	/	/

The 5σ sensitivity reach of Y_{ee} for single production at BP1.

$M_{H^{\pm\pm}}$	1100	1500	1900	2300	2700
e^e^	0.022	0.022	0.021	0.020	0.020
$e^-\gamma$	0.019	0.023	0.029	0.040	1.5
e^+e^-	0.068	0.12	0.22	0.43	1.1
$\gamma\gamma$	0.21	0.43	1.1	12	/

- 1. Type-II seesaw model
- 2. Parameter space and production cross section
- 3. Background analysis
- 4. Summary

4.1 Summary

- ✤ Consider four collision modes at 3 TeV CLIC
- + Compare the pair and single production $H^{\pm\pm}$ with 14 TeV LHC
- ✤ Pair production signals are much more significant at CLIC
- Yukawa coupling at two hundredths level ⇒ doubly charged Higgs discovery

4.1 Summary

- Consider four collision modes at 3 TeV CLIC
- Compare the pair and single production $H^{\pm\pm}$ with 14 TeV LHC
- ✤ Pair production signals are much more significant at CLIC
- Yukawa coupling at two hundredths level ⇒ doubly charged Higgs discovery

Thanks!