

Searching and measuring the beauty and the charm of the Higgs boson with ATLAS detector

Yanhui Ma

Higgs Potential 2024 @Hefei 2024.12.20

The Higgs boson in the Standard Model (SM)

- The SM is the most thoroughly tested theory of particle physics that has had a great success to explain experimental observations of particle physics.
- > In the SM, the Higgs mechanism provides masses to bosons and fermions

2

Higgs boson decays

- Many decay modes accessible at the LHC
- bb largest BR ~ 58%
 - Measurement of the Yukawa coupling to down type quarks.
 - Constrain the Higgs boson decay width.
 - If BSM particles allowed in loops and decays: Measuring H→bb limits BSM branching fraction allowed
- ➤ cc BR ~3%
 - Probe of Higgs coupling to 2nd generation of quarks

- One of the largest contribution to Higgs width that we have no evidence for
- Small charm Yukawa coupling
 susceptible to significant modifications in various
 new physics scenarios
 3

Higgs boson branching ratios

Higgs boson production at hadron colliders

VH: golden channel to study the Hbb and Hcc decay

Very large multi-b/c-jets production cross > Inclusive Higgs boson production (2 b/c-jets) section at the LHC in final state) overwhelmed by bkgs by many

Where did ATLAS stand in 2022

- Three standalone VHbb/cc results with *full Run 2 dataset*: \geq
 - **Resolved VHbb**
 - Reconstructing the Higgs candidate with two small R (resolved) jet
 - Observation of VHbb well established with more than > 5 sigma, focused more on the crosssection measurement
 - **Boosted VHbb**
 - reconstructing the Higgs candidate with one large R (boosted) jet
 - First attempt for studying the Hbb decay in the ٠ extreme high pTV regime (pTV > 250 GeV)

160

180 200

m_[GeV]

- VHcc
 - Considered only the resolved regime

Resolved VHbb

6

The legacy VHbb/cc analysis

A combined measurement for resolved VH(bb), Flavou

boosted VH(bb) and VH(cc) analysis

- Takig advantage of the similarities in the experimental signatures of $H \rightarrow bb$ and $H \rightarrow cc$ decays
- VHbb resolved and boosted regiem separation at pTV = 400 GeV
- VHcc consider only the reloved regiem
- \blacktriangleright Leptonic decays (electron or muon) of W/Z for background rejection and trigger \rightarrow 3 channels: 0,1,2 leptons.

arXiv:2410.19611

At a glance --- The much-improved results

First full run 2 results

VHbb: ~10-20% improvement on the VH cross section measurements. Most precise measurement to date

VHcc: ~ a factor of 3 improvement on the upper limit setting. Strongest observed limit to date
⁸

The legacy analysis results

The key ingredients for the improvements – flavor-tagging

- Moved from the BDT based MV2 tag to the deep neural network based DL1r tag, with a lot of improved/ newly introduced algorithms
 - more than 20% better c/light-jet rejection
- Dedicated optimization for the definition of the B/C-tag working point
 - making sure the orthogonality of the b and c jet regions
- Dedicated calibrations performed in these WP.
 - precision ~10% for c-jet and ~3% for b-jets

9

The key ingredients for the improvements – background estimation

- Achieve a good control of the very diverse backgrounds across the different lepton channels and tag regions is the key challenge of the analysis
- Main background: V+jets
 - Z+jets dominant in 0- and 2-lepton
 - W+jets dominate in 0 and 1-lepton
- Main background: Top quark processes (ttbar + single top Wt)
 - Top (bb and bqqq) dominant in 0- and 1-lepton and VHbb 2-lepton
- Other small backgrounds: single top t and s channel; diboson; multijet (1L)

The key ingredients for the improvements – background estimation

More than 50 SRs considered:

- VHbb: request two b-tagged jets (BB tagged)
- VHcc: two c-tagged jets (C_TC) and 1 c-tagged jet (C_TN)
- Split in different pTV and nJets regiems

More than 100 dedicated high purity CRs defined to

better constant the normalization and shape of the

main backgrounds

- BC_T -> Top (bc) CR
- C_LN -> V+light jet CR
- Use jet-angular separation ΔR(b,b) defining CR enriched in: V+bb (Low dR CR); Top(bb) (high dR CR)

The key ingredients for the improvements – background estimation

- Main bkgs normalization are well constrained by the CRs and are floating in the fit
 - The tends of the NFs are in good agreements with the dedicated measurements (V+jets; ttbar)

$p_{\rm T}^V$ region	num. jet	W+hf	W+mf	W+lf
$[75,150] { m ~GeV}$	$\begin{array}{c} 2\\ \geq 3 \end{array}$	$\begin{vmatrix} 1.09 \pm 0.06 \\ 1.30 \pm 0.07 \end{vmatrix}$	$ \begin{array}{c} 1.20 \pm 0.03 \\ 1.16 \pm 0.04 \end{array} $	$1.03 \pm 0.04 \\ 1.07 \pm 0.05$
$[150,250] { m ~GeV}$	$\begin{array}{c} - \\ 2 \\ \geq 3 \end{array}$	$\begin{array}{c} 1.00 \pm 0.05 \\ 1.28 \pm 0.07 \end{array}$	$\begin{array}{c} 1.31 \pm 0.03 \\ 1.31 \pm 0.04 \end{array}$	$1.08 \pm 0.03 \\ 1.07 \pm 0.04$
$[250,400] { m GeV}$	$2 \ge 3$	$\begin{array}{c} 0.97 \pm 0.08 \\ 1.46 \pm 0.12 \end{array}$	$\begin{array}{c} 1.35 \pm 0.07 \\ 1.32 \pm 0.07 \end{array}$	$\begin{array}{c} 1.05 \pm 0.03 \\ 1.10 \pm 0.04 \end{array}$
[400,600] GeV	-	1.49 =	± 0.25	_
$>600 { m GeV}$	-	2.03 =	± 0.25	—

$p_{\rm T}^V$ region	num. jet	Top(bb)	Top(bq,qq)	Top $2L$
[75 150] CoV	2	1.02 ± 0.04	0.98 ± 0.05	1.05 ± 0.05
[75,150] Gev	3	0.97 ± 0.03	0.98 ± 0.03	0.98 ± 0.05
	2	0.89 ± 0.05	0.83 ± 0.04	1.07 ± 0.16
[150, 250] GeV	3	0.91 ± 0.03	0.86 ± 0.03	0.05 ± 0.14
[100,200] 001	4	0.97 ± 0.02	0.95 ± 0.03	0.95 ± 0.14
[250,400] CoV	2	0.78 ± 0.08	0.82 ± 0.05	
[250,400] Gev	3	0.83 ± 0.04	0.80 ± 0.03	1.10 ± 0.50
	4	0.93 ± 0.05	0.86 ± 0.04	
[400,600] GeV	-	0.83 =	± 0.05	—
>600 GeV	-	0.69 =	± 0.07	_

- Improving the signal and background separation
 - simple and robust Boosted Decision Tree (BDT) is used achieve the maximum separation of signal and background
 - Input variables and training parameters tuned to yield best sensitivity, various checks performed to make sure the training works well.
 - For the first time BDT also applied to VHcc and boosted VHbb, yields >80% sensitivity improvements
 - The other "more fancy" methods (DNN, etc) also tested and resulted very similar performance with BDT

	Resolv	edVH, H -	$\rightarrow b\bar{b}, c\bar{c}$	Boos	sted VH, H	$\rightarrow b\bar{b}$
Variable	0-lepton	1-lepton	2-lepton	0-lepton	1-lepton	2-lepton
m_H	~	~	\checkmark	~	\checkmark	~
$m_{j_1 j_2 j_3}$	√	\checkmark	\checkmark			
$p_{\mathrm{T}}^{j_1}$	√	\checkmark	\checkmark	√	\checkmark	√
$p_{\mathrm{T}}^{j_2}$	√	\checkmark	\checkmark	√	\checkmark	√
$p_{\mathrm{T}}^{\mathrm{j}_3}$				~	\checkmark	√
$\sum p_{\mathrm{T}}^{j_i}, i > 2$	~	\checkmark	\checkmark			
$\overline{\operatorname{bin}}_{D_{\mathrm{DL1r}}}(j_1)$	√	\checkmark	\checkmark	~	\checkmark	~
$\operatorname{bin}_{D_{\mathrm{DLir}}}(j_2)$	~	\checkmark	\checkmark	√	\checkmark	\checkmark
p_{T}^{V}	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	\checkmark	\checkmark	$\equiv E_{\rm T}^{\rm miss}$	\checkmark	√
$E_{\mathrm{T}}^{\mathrm{miss}}$	√	\checkmark		√	\checkmark	
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			\checkmark			
$ \Delta \phi(\vec{V}, \vec{\vec{H}}) $	~	\checkmark	√	~	\checkmark	\checkmark
$ \Delta y(ec v,ec H) $		\checkmark	\checkmark		\checkmark	\checkmark
$\Delta R(\vec{j_1}, \vec{j_2})$	✓	\checkmark	\checkmark	√	\checkmark	\checkmark
$\min[\Delta R(\vec{j_i}, \vec{j_1} \text{ or } \vec{j_2})], i > 2$	√	\checkmark				
N(track-jets in J)				√	\checkmark	√
N(add. small R-jets)				√	\checkmark	√
colour ring				√	\checkmark	\checkmark
$ \Delta\eta(\vec{j_1},\vec{j_2}) $	✓					
$H_{\rm T} + E_{\rm T}^{\rm miss}$	✓					
m_{T}^W		\checkmark				
$m_{\rm top}$		\checkmark				
$\min[\Delta \phi(\vec{\ell}, \vec{j_1} \text{ or } \vec{j_2})]$		\checkmark				
p_{T}^{ℓ}					\checkmark	
$(p_{\mathrm{T}}^{\ell} - E_{\mathrm{T}}^{\mathrm{miss}})/p_{\mathrm{T}}^{V}$					√	
$m_{\ell\ell}$			√			
$\cos heta^*(ec{\ell^-},ec{V})$			~			\checkmark

- Improving the signal and background separation \succ
- Kinematic variables, some specific to 3-jet regions.
- m_{bb} , $\triangle R_{bb}$, p_T^V most important ones.

m_T(W) [GeV]

-- Data

Diboson

VH, $H \rightarrow b\overline{b}$ (µ=1.02)

1.2 1.4

 $\Delta R(b_1, b_2)$

ATLAS

vs = 13 TeV, 139 fb⁻¹

c 300

ŝ

- Access the uncertainties in the modelling of the shape of backgrounds: compare the *nominal* and *alternative* MC generators
 - alternative samples: low statistics, causing issues with fit stability
 - Re-weight nominal distribution to minic the alternative samples -> take advantage of the larger statistics of the nominal sample
 - use the deep neural networks based re-weighting technique, CARL
 - Simultaneously reweight multiple features, taking into account the correlations between them
 - Particular important with fitting MVA discriminant in SR

The results: the VZ diboson standard candle

- Use the VZ(bb/cc) diboson as a standard candle before checking the VH results
 - Train the BDT with VZ(bb/cc) as signal, using the exactly same set up (training parameters, inputs variables) as the VH results
 - VZ(bb) and VZ(cc) are extracted simultaneously in the fit
- Sensitivities:
- WZ(bb): 6.4 (6.5) obs. (exp.) σ -> *First observation!* ; ZZ(bb) > 10 σ
- WZ(cc): 3.9 (2.7); ZZ(cc): 3.1 (4.2) -> First observation of VZ(cc) at 5 σ with ATLAS

Results in very good agreement with the SM predication

The results: VH inclusive measurement

- VH(bb) and VH(cc) are extracted simultaneously in the fit
 - VHbb precison around 15%;
 - First time WH(bb) observation at 5.3 (5.5) obs. (exp.) sensitivity
 - VHcc limit at 95% CL 11.2 (10.4) obs. (exp.).

Strongest observed limit to date

$$\begin{split} \mu_{VH}^{bb} &= 0.91^{+0.16}_{-0.14} = 0.91 \pm 0.10 \; (\text{stat.})^{+0.12}_{-0.11} \; (\text{syst.}) \\ \mu_{VH}^{cc} &= 1.0^{+5.4}_{-5.2} = 1.0^{+4.0}_{-3.9} \; (\text{stat.})^{+3.6}_{-3.5} \; (\text{syst.}). \end{split}$$

Results in very good agreement with the SM predication

The results: Differential XSec (STXS) measurement

- For the first time:
 - Extended the measurement to the new physics more sensitivity pTV > 600 GeV bin
 - Extended the ZH into different nJet bins
 - Precision in different bins vary from 35% to 100%

Results in very good agreement with the SM predication, SM compatibility 90%¹⁸

The results: Kappa interpretation

- Reparameterising the mu_VHbb and mu_VHcc in terms of the Higgs-bottom and Higgs-charm multiplicative coupling modifiers, κb and κc, others set to SM
- 1D scan for кс, fixing кb at 1
 - | κc | < 4.2 (was < 8.5 in the previous results)</p>
 - An equivalent approach for κb yields an observed 95% CL interval of 0.67 < | κb | < 1.38

$$\begin{split} \mu_{VH}^{bb} &= \frac{\kappa_b^2}{1 + B_{hbb}^{SM}(\kappa_b^2 - 1) + B_{hcc}^{SM}(\kappa_c^2 - 1)} \\ \mu_{VH}^{cc} &= \frac{\kappa_c^2}{1 + B_{hbb}^{SM}(\kappa_b^2 - 1) + B_{hcc}^{SM}(\kappa_c^2 - 1)} \end{split}$$

The results: Kappa interpretation

- Alternative parameterisation is performed targeting the ratio κc / κb
 - The green vertical lines \rightarrow values of | $\kappa c / \kappa b$ | for which the Higgs-charm and Higgs-bottom couplings are equal. i.e. $\kappa c / \kappa b = mb / mc = 4.578 + 0.008$
 - The coupling of the Higgs boson to charm quarks is weaker than the coupling of the Higgs boson to bottom quarks is confirmed at 3σ.

In the near future

- Better object performance, better physics!
 - New "all in one" b/c-tagger GN available now
 - 2-4 times better performance expected
- More data more fun
 - Run 3 data taking is on-going smoothly, expected another more than 300 fb⁻¹ data to come
 - Hbb: precision measurements paving the way to new physics
 - Hcc: Run 3 hot topic, further pushing the limit to new record
 - including the other production mode in the game (ggF, VBF and ttH)

Back Up

A long way to reach the Hbb discovery

First H->bb searches started at LEP

Physics Letters B 565 (2003) 61-75

Search for the Standard Model Higgs boson at LEP

ALEPH Collaboration¹ DELPHI Collaboration² L3 Collaboration³ OPAL Collaboration⁴

The LEP Working Group for Higgs Boson Searches⁵

PHYSICS LETTERS B

т_н > 114.4 GeV @ 95%CL

A long way to reach the Hbb discovery

...and continued at Tevatron by focusing on the VH production...

A long way to reach the Hbb discovery

...and continued at LHC by focusing on the VH production...

	Signal strength	Significance (exp)	Significance (obs)	
ATLAS Run 1	0.52+-0.38	2.6	1.4	
CMS Run 1	0.89+-0.45	2.5	2.1	
LHC Run 1 combination	0.79+-0.28	3.7	2.6	
ATLAS Run2 2015- 2016 (36fb-1)	1.20+-0.39	3.0	3.5	First evidence
CMS Run2 2015- 2016 (36fb-1)	1.19+-0.39	2.8	3.3	First evidence
ATLAS Run2 2015- 2017 (80fb-1)	1.16+-0.26	4.3	4.9	Observation at 5.4 (5.5) when combining with all the other Hbb searches (VHbb Run 1,ttH,VBF)
CMS Run2 2015- 2017 (77fb-1)	1.01+-0.23	4.8	4.9	Observation at 5.6 (5.5) when combining with all the other Hbb searches (VHbb Run 1,ttH,VBF)

The LHC collider

- The largest and highest-energy particle collider in the world.
- Housed in a circular tunnel with 27 km in circumference and 45-175 m in depth underground.

- Four main experiments: ATLAS, CMS, LHCb, ALICE.
- Designed proton-proton collision energy: 14 TeV (13 TeV at Run 2).

LHC performance

- Stunning performance of the LHC: lumi up to 2 *10³⁴ cm⁻² s⁻¹
- Excellent operation of the ATLAS detector
- High rates and large pile-up: Challenges for triggers, jets reconstruction, btagging...

The ATLAS detector

- > World's largest particle detector with a diameter of 25 m and length of 44 m.
- General-purpose detector, designed mainly to search for the Higgs boson and new physics.
- Sub-detectors:
 - Inner detector:
 - Measure the trajectories and momenta of charged particles 25m
 - EM and Hadronic calorimeter
 - Measure the energy of electrons, photons and hadrons
 - Muon spectrometer
 - Measure the trajectories and momenta of muon

The ATLAS detector---ID and IBL

 Improvement of 10% for the b-tagging algorithm performance in Run 2

More detailed look for all the fit regions

75 (GeV		150	GeV		250	GeV		400	GeV 600) GeV	p _T v
	High ΔR CR	SR High ΔR CR	SR High ΔR CR	SR High ΔR CR	SR High ∆R CR	SR High ΔR CR	SR High ΔR CR	SR High ∆R CR	SR High ∆R CR	R SR	SR	
(DD tag)	High ΔR CR	SR High ΔR CR		SR High ∆R CR	SR High ∆R CR		SR High ∆R CR	SR High ∆R CR		Top CR	Top CR	
2 b-tag (BB tag)	Low AR CR	Low AR CR		Low AR CR	Low AR CR		Low AR CR	Low AR CR		SR	SR	
	OL			SR High ΔR CR	SR High ΔR CR	SR High ΔR CR	SR High ΔR CR	SR High ΔR CR	SR High ΔR CR	Top CR	SR Top CR	
	2 jet	ĭ 3 jet	4(+) jet ²	2 jet	3 jet	4(+) jet 2	2 jet	3 jet	4(+) jet 2			
	Resolved VH(k	ob)		A Second Second						Boosted VH(bb)		
(Top(bc) CR	Top(bc) CR		Top(bc) CR	Top(bc) CR		Top(bc) CR	Top(bc) CR				
1 b-tag (BC⊤ tag)	0		1	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR	Top(bc) CR			
1 tight c-tag	2 jet	3 jet	4 jet	2 jet	3 jet	4 jet	2 jet	3 jet	4 jet			
	Common top	CR										
2 tight c-tag (C⊤C⊤ tag)	High ΔR CR 1	S High ∆		SR High ΔR CR 1	S High ∆	R R CR 1	SR High ΔR CR 1	S High ∆	R R CR 1	$24 \pm iets$ in 2-lepton =4 iets everywhere else		
(CFCL tag) +	High ΔR CR 1	SR High ΔR CR 1		SR High ∆R CR 1	SR High ΔR CR 1		SR High ∆R CR 1	SR High ΔR CR 1		¹ Note: CRHigh split into 1 c-tag and 2 tight c-tag regi	loose c-tag + 1 tight ons	
1 tight c-tag	OL			SR High ΔR CR 1	SR High ∆R CR 1		SR High ΔR CR 1	SR High ΔR CR 1				
1 loose c-tag	2 jet	3 jet	4+ jet	2 jet	3 jet	4+ jet	2 jet	3 jet	4+ jet			
	High ΔR CR	High 2	AR CR	High ΔR CR	High /	AR CR	High ΔR CR	High Z	AR CR			
(C⊤N tag)	High ΔR CR	High AR CR	P.	High AR CR	High AR CR	· P	High AR CR	High AR CR	P			
1 no c-tag	O SR	SB		High ΔR CR	High ∆R CR		High AR CR	High AR CR				
	2 jet] 3 jet	4+ jet	2 jet SR	3 jet	4+ jet	2 jet SR	3 jet	4+ jet			
				Ch		ж	Ch	0	n .			
(C _L N tag)		CR			GR			UR				
1 no tag 1 loose c-tag		0.5		00	01		00	00				
	2 jet	3 jet	4+ jet	2 jet	CB	4+ jet	CB	CB	4+ jet			
Lepton flavour eµ			eµ CR	юреµСн	lop e	eμ CR			eµ CR			
> 1 tight c-tag	2 jet	3 jet	4+ jet	2 jet	3 jet	Y 4+ jet	2 jet	3 jet	4+ jet			
i lavour tagging	VH(cc)											
Flavour tagging	†											

The "high pT" regime

- Requiring high pT(V) (or pT(H)) suppresses background significantly more than signal, improving S/B ratio
 - Used for event classification
 - Added as input variable in MVA analysis
- H→bb a simple 2-body decay, can requie low dR(bb) at high pT(H), with almost no loss in signal efficiency

Ttbar background

• Backgrounds (esp. ttbar) significantly suppressed by these requirements

The key ingredients for the improvements – mass resolution

- Sharpening signal mass peak directly improves sensitivity
- Two most important correction
- μ-in-jet correction: if available, add muon to jet momentum (+13%)
- For 2-lepton channel (≤3 jets), use full kinematic likelihood fit

- Final state fully reconstructed
- High resolution on leptons
- Mass resolution improvement: 40%
- Final state radiation (FSR) recovery further minimising the effect of hard QCD radiation of heavy quarks in the Higgs boson reconstruction.

Process	ME generator	ME PDF	PS and Hadronisation	UE tune	Cross-section order
Signal, mass set to 12	$5{ m GeV}$ and $bar{b}$ branching fractional fraction of the second state of the s	action to 58%			
$qq \rightarrow VH$	Роwнед Вох v2 [53] + GoSam [54]+ MiNLO [65,66]	NNPDF3.0NLO ^(*) [55]	Рутніа 8.245 [56]	AZNLO [57]	NNLO(QCD) ^(\dagger) + NLO(EW) [58,59,60,61,62,63,64]
$gg \rightarrow ZH$	Powheg Box v2	NNPDF3.0NLO $^{(\star)}$	Рутніа 8.245	AZNLO	NLO+ NLL [67,68,69,70,71]
Top quark, mass set to	$ m p \ 172.5 GeV$				
$t\bar{t}$ s-chan. single top t-chan. single top Wt	Powheg Box v2 [72] Powheg Box v2 [75] Powheg Box v2 [75] Powheg Box v2 [78]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [73] A14 A14 A14 A14	NNLO+NNLL [74] NLO [76] NNLO [77] Approx. NNLO+NNLL [79]
Vector boson $+$ jets					
V + jets	Sherpa 2.2.11 [81,82,83]	NNPDF3.0NNLO	Sherpa 2.2.11 [84,85]	Default	NNLO [80]
Diboson					
$\begin{array}{c} qq \rightarrow VV \\ gg \rightarrow VV \end{array}$	Sherpa 2.2.11 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.11 Sherpa 2.2.2	Default Default	NLO ^(‡) NLO ^(‡)

Signal and Backgrounds Samples

Signal

 Both qqVH and ggZH using latest Powheg+MiNLO + Pythia8 samples

Background

- V (W/Z)+jets : Sherpa 2.2.1 with jet flavor filter
- Dibson : Sherpa 2.2.1 for quark induced samples (qqVV). After EPS, include also gluon induced (ggVV) samples with Sherpa 2.2.2
- ttbar : Powheg+Pythia8, 2-lepton also incorporates dilepton filtered sample. Dedicated MET filter ttbar samples also used in 0 lepton
- Single-top : updated to Powheg+Pythia8 samples since E
- Multijet

Negligible in 0 and 2 lepton (confirmed by lots of detailed studies), data-driven in 1 lepton channel (fraction: ~2-3%)

Background Modelling

Background Modelling

Systematic breakdown

Source of up	cortainty	σ_{μ}							
Source of un	certainty	$VH, H o b\bar{b}$	$WH, H \rightarrow b\bar{b}$	$ZH, H o b\bar{b}$	$VH, H \to c\bar{c}$				
Total		0.151	0.200	0.220	5.29				
Statistical		0.097	0.139	0.151	3.94				
Systematic		0.116	0.144	0.160	3.53				
Statistical u	ncertainties								
Data statisti	cal	0.089	0.129	0.137	3.70				
$t\bar{t} \ e\mu \ control$	region	0.009	0.004	0.020	0.06				
Background	floating normalisations	0.034	0.049	0.040	1.23				
Other VH fl	oating normalisation	0.007	0.013	0.007	0.24				
Simulation s	amples size	0.023	0.034	0.030	1.61				
Experimenta	l uncertainties								
Jets		0.028	0.035	0.030	1.00				
$E_{ au}^{ ext{miss}}$		0.009	0.004	0.018	0.24				
Leptons		0.004	0.002	0.008	0.23				
	b-jets	0.020	0.018	0.026	0.30				
b-tagging	<i>c</i> -jets	0.013	0.017	0.012	0.73				
	light-flavour jets	0.006	0.009	0.008	0.67				
Pile-up		0.009	0.017	0.003	0.24				
Luminosity		0.006	0.007	0.006	0.08				
Theoretical a	and modelling uncertaint	ties							
Signal		0.073	0.066	0.112	0.56				
Z + jets		0.039	0.017	0.079	1.76				
W + jets		0.055	0.087	0.027	1.41				
$t\bar{t}$ and Wt		0.018	0.032	0.018	1.03				
Single top qu	uark $(s-, t-ch.)$	0.010	0.018	0.003	0.15				
Diboson		0.032	0.040	0.048	0.51				
Multi-jet		0.006	0.010	0.005	0.57				

SI	TXS region		SM prediction			Meas	suren	nent	Stat. unc.	Syst. unc. [fb]		
Process	$p_{\mathrm{T}}^{V, \mathrm{t}}$ interval	$N_{ m jet}^{ m t}$		[fb]			[fb]		[fb]	Th. sig.	Th. bkg.	Exp.
	75–150 GeV	≥ 0	79.2	\pm	2.8	3	\pm	100	41	13	88	35
	$150250~\mathrm{GeV}$	≥ 0	24.3	\pm	1.0	23	\pm	10	7	2	7	3
$W(\ell u)H$	$250400~\mathrm{GeV}$	≥ 0	5.90	\pm	0.25	7.9	\pm	2.0	1.8	0.5	0.8	0.3
	$400600~\mathrm{GeV}$	≥ 0	1.03	\pm	0.05	-0.11	\pm	0.54	0.46	0.05	0.24	0.09
	$> 600 { m ~GeV}$	≥ 0	0.20	\pm	0.01	0.26	\pm	0.21	0.20	0.02	0.04	0.03
		≥ 0	50.7	\pm	3.9	51	\pm	32	24	8	19	11
	$75150~\mathrm{GeV}$	=0	29.9	\pm	2.5	38	\pm	22	17	4	12	6
		≥ 1	20.7	\pm	2.6	6	\pm	25	25	6	9	8
		≥ 0	18.7	\pm	2.3	18	\pm	6.0	4.5	2.5	3.0	1.0
$\mathbf{Z}(\rho\rho/\tau, \tau)\mathbf{I}$	$150250~\mathrm{GeV}$	=0	9.0.	\pm	1.3	8.0	\pm	3.2	2.7	0.9	1.4	0.5
$Z(\ell\ell/\nu\nu)H$		≥ 1	9.7	\pm	1.9	11	\pm	7.3	6.0	2.1	3.4	1.5
-		≥ 0	4.15	\pm	0.45	3.5	\pm	1.5	1.3	0.5	0.5	0.2
	$250400~\mathrm{GeV}$	=0	1.70	\pm	0.22	1.31	\pm	0.72	0.65	0.16	0.25	0.10
		≥ 1	2.45	\pm	0.45	2.6	\pm	2.1	1.9	0.4	0.7	0.3
	$400–600~{\rm GeV}$	≥ 0	0.62	±	0.05	0.60	±	0.40	0.37	0.07	0.12	0.08
	$> 600 { m ~GeV}$	≥ 0	0.11	±	0.01	-0.10	±	0.12	0.12	0.01	0.03	0.01

c-jet 1 tagged bin

- Improving the Monte Carlo (MC) statistical uncertainties
 - Instead of rejecting the events failed the tagging requirement, calculate the probabilities for each jet to fall into a given tagging category
 - Previous iteration, use the 2D efficiency map, considered only pt and eta
 - Now, <u>dedicated training with GNN</u> with multiple paremeters
 - (much) improved closure with direct tagging
 - no need to consider the additional uncertainties to cover the unclosure

The results: Differential XSec (STXS) measurement

- Differential measurements of the VHbb cross-section in kinematic fiducial volumes defined in the simplified template cross-section (STXS) framework
- Reco pTV and nJet bin defined inline with the STXS binining
 - Good correspondence between truth and reco. bins (signal fraction in corresponding bins: 70-97%)
 - Strong reduction in correlations between STXS signal strengths
 - harmonized truth and recro level pT cuts
 - migrating the W(taunu)H event from 0L to 1L

