Higgs Potential 2024, Hefei, 12 Dec

4D Composite Higgs Models with partially composite leptons

Wei Su

2101.00428 (E. Carragher, W. Handley, D. Murnane,
P. Stangl, <u>WS</u>, M. White, A G.Williams)
2312.06027(E. Carragher, K. Goh, WS, M. White, A.Williams)

Outline

*Naturalness and M4DCHM

Study strategies

Results about naturalness

*Conclusion

Naturalness

Hierarchy: 100 GeV 10^16 -10^19 GeV. (SUSY?)

Naturalness

Hierarchy: 100 GeV 10^16 -10^19 GeV. (SUSY?)

No explicit BSM signal

Little Hierarchy : 100 GeV

5,000-10,000 GeV (Mirror Twin Higgs, Composite ...

Naturalness of the Higgs mass

$$m_H^2 = m_0^2 + \Delta m^2$$

$$\Delta m^2 = -\frac{3y_t^2}{8\pi^2} \underline{\Lambda_{UV}^2} + \mathcal{O}(m_t^2 \log \frac{\Lambda_{UV}}{m_t})$$

Naturalness of the Higgs r

$$m_H^2 = m_0^2 + \Delta m^2$$

$$\Delta m^2 = -\frac{3y_t^2}{8\pi^2} \underline{\Lambda_{UV}^2} + \mathcal{O}(m_t^2 \log \frac{\Lambda_{UV}}{m_t})$$

$$10^{32} + (125^2) - 10^{32}$$

7

CHM: Composite Higgs models

- Consider some strongly interacting dynamics at scale, f (~ TeV)
- Higgs appears as spin-0 bound state of said dynamics (finite size)
- Loop integrals are cut off at scale *f*

CHM: Composite Higgs models

- Higgs is a pseudo Nambu-Goldstone boson (as pions in QCD)
- SM particles get masses by mixing with their partners in the composite sector
- TeV-scale composite resonances

M4DCHM: Minimal 4D CHM

- SM has global $SU(2)_L \times SU(2)_R$ symmetry
- $SO(5) \rightarrow SO(4)$ gives exactly 4 Higgs doublet fields

 $SO(4) \cong SU(2)_L \times SU(2)_R$ 0 $\circ \dim(SO(N)) = \frac{N(N-1)}{2}$

M4DCHM: Minimal 4D CHM with

• Quarks are embedded in (5 - 5 - 5); Leptons in (14 - 10) and (5 - 5)

$$\left(q_L = b_L^{t_L}, t_R, b_R\right)$$

$$\left(l_L = \overset{v_L}{\tau_L}, \tau_R\right)$$

partially

leptons

composite

- Constraints
- SM masses, EW precision observables, Z boson decay ratios, Higgs signal strengths
- LHC fermion partner bounds

- Prior $\pi(p)$: Initial guess of some parameter (Distribution of points p)
- Likelihood L(p): How well data fits a point
- Posterior P(p): Updating guess based on the likelihood(p)

$$P(p) = \frac{L(p)\pi(p)}{Z}$$

• Kullback-Leibler (KL) Divergence:

$$D_{\rm KL} = \int dp P(p) \ln(P(p)/\pi(p))$$

• Evidence:

$$Z = \int dp \, L(p) \pi(p) \quad \rightarrow \ln(Z) = \langle \ln(L) \rangle_P - D_{\text{KL}}$$

MTH: study method

- Nested sampling (PolyChord) allows efficient exploration of param space
 - Log-spaced priors (Flash subset of table of
 - Likelihood is taken to be Gaussian in observables
 - Lots of parameters to scan over

$$L \subset -\frac{m_{\Psi}}{\Psi}\overline{\Psi}\Psi - \frac{\widetilde{m}_{\Psi}}{\widetilde{\Psi}}\overline{\widetilde{\Psi}}\Psi + \Delta_{L}\psi_{L}\Psi_{R} + \Delta_{R}\psi_{R}\widetilde{\Psi}_{L} + \frac{m_{Y}}{\Psi}\overline{\Psi}_{L}\Psi_{R} + \cdots$$

• Only 3rd generation fermions couple to composite sector

MTH: study method

LM4DCHM	5 - 5	${\bf 14-10}$
Decay constants	f,f_1,f_X,f_G	f, f_1, f_X, f_G
Gauge couplings	$g_ ho,g_X,g_G$	$g_ ho,g_X,g_G$
Quark link couplings	$\Delta_{t_L},\Delta_{t_R},\Delta_{b_L},\Delta_{b_R}$	$\Delta_{t_L},\Delta_{t_R},\Delta_{b_L},\Delta_{b_R}$
Quark on-diagonal masses	$m_t,m_{ ilde{t}},m_b,m_{ ilde{b}}$	$m_t,m_{ ilde{t}},m_b,m_{ ilde{b}}$
Quark off-diagonal masses	m_{Y_t},m_{Y_b}	m_{Y_t},m_{Y_b}
Quark proto-Yukawa couplings	Y_t, Y_b	Y_t, Y_b
Lepton link couplings	$\Delta_{ au_L},\Delta_{ au_R}$	$\Delta_{ au_L},\Delta_{ au_R}$
Lepton on-diagonal masses	$m_{ au},m_{ ilde{ au}}$	$m_{ au},m_{ ilde{ au}}$
Lepton off-diagonal masses	$m_{Y_{ au}}$	
Lepton proto-Yukawa couplings	$Y_{ au}$	$Y_{ au}$
Dimensionality	25	24

 Table 1. Parameters present in each model.

Model	Parameters	Scan Range	Prior	
	$m_ ho/f,\ m_a/f$	$[1/\sqrt{2}, 4\pi]$		
	$f_X/f, \; f_G/f$	$[0.5, 2\sqrt{3}]$	Uniform	
	$g_ ho,~g_X,~g_G$	$[1.0, 4\pi]$		
	Δ_{t_L}/f	$[e^{-0.25}, e^{1.5}]$		
	Δ_{t_R}/f	$[e^{-0.75}, 4\pi]$		
Both	Δ_{b_L}/f	$[e^{-5.0},e^{-3.0}]$		
	Δ_{b_R}/f	$[e^{-0.5},4\pi]$		
	$m_t/f,\;m_{ ilde{b}}/f$	$[e^{-0.5},e^{1.5}]$	Logarithmic	
	$m_{ ilde{t}}/f$	$[e^{-1.0},4\pi]$	20500100000	
	m_b/f	$[e^{-1.0},e^{1.5}]$		
	m_{Y_t}/f	$[e^{-8.5},4\pi]$		
	m_{Y_b}/f	$[e^{-0.25}, 4\pi]$		
	$(m_{Y_t} + Y_t)/f$	$[e^{-0.5},8\pi]$		
	$(m_{Y_b}+Y_b)/f$	$[e^{-8.5},e^{-0.5}]$		
	$m_{ au}/f$	$[e^{1.25},4\pi]$		
	$m_{ ilde{ au}}/f$	$[e^{1.5},4\pi]$		
LM4DCHM 5^{-5-5}	$m_{Y au}/f$	$[e^{-8.5},e^{-1.5}]$	Logarithmic	
LINHD 011115-5	$(m_{Y au} + Y_ au)/f$	$[e^{1.35},8\pi]$	Logaritinne	
	$\Delta_{ au L}/f$	$[e^{-2.1},e^{-0.5}]$		
	$\Delta_{ au R}/f$	$[e^{-1.8},e^{-0.2}]$		
	$m_{ au}/f$	$[e^{-0.5}, 4\pi]$		
	$m_{ ilde{ au}}/f$	$[e^{-0.5},4\pi]$	Logarithmic	
$LM4DCHM_{14-10}^{5-5-5}$	$m_{Y au}/f$	$[e^{-1.5},4\pi]$		
	$\Delta_{ au L}/f$	$[e^{-1.5},4\pi]$		
	$\Delta_{ au B}/f$	$[e^{-4.0}, e^{-1.5}]$		

Results

Results

Model	$\ln(\mathcal{Z})$	$\langle \ln(\mathcal{L}) angle_P$	$\max \ln(\mathcal{L})$	D_{KL}
LM4DCHM $_{5-5}^{5-5-5}$	-45.60 ± 0.06	-17.27	-10.79	28.33
$LM4DCHM_{14-10}^{5-5-5}$	-36.30 ± 0.05	-14.63	-9.13	21.67

- Both scans are convergent
- Model with leptons in 14 10 is a better fit from a Bayesian perspective

Results : Direct detection

- As a product of these scans, we can then look at their phenomenological signatures
- Each model has a number of heavy quark and lepton partners
- We can try and look for these at the LHC
 - $LM4DCHM_{14-10}^{5-5-5}$
 - $LM4DCHM_{5-5}^{5-5-5}$
- : Producable range at HL–LHC
- :13 TeV search bounds

Results : Indirect detection

- Another avenue is Higgs signal strengths (gluon fusion)
- Sensitive to modifications of Higgs couplings to SM
- gauge bosons and fermions, loop contributions from composite resonances

$$\mu_{jj}^{gg} = \frac{[\sigma(gg \to H)BR(H \to jj)]_{measured}}{[\sigma(gg \to H)BR(H \to jj)]_{SM}}$$

Conclusion

Scans of lepton-inclusive MCHMs are convergent
 Both models satisfy all imposed experimental constraints
 But 14 – 10 is a better Bayesian fit than 5 – 5

SM partners are generally too heavy to be seen, even at HL-LHC
 Best shot is indirect tests via Higgs signal strengths

2025 新物理冬季学校

2025 新物理冬季学校 - 2025 Winter Institute of new physics in Elementary Particle Physics (WINP2025)

3-13 January 2025

Asia/Sh	anghai	timezone

Overview	
Timetable	
Registration	
Participant List	

自2012年大型强子对撞机LHC成功探测到希格斯玻色子以来,粒子物理学领域便开启了一个崭新的纪 元,即自洽的标准模型和多种新物理现象共存。相关问题,诸如中微子质量起源、暗物质本质等根本性问 题,正引领着我们深入探索未知的奥秘。同时,粒子物理学与粒子天体物理学、宇宙学的交叉融合,也催 生了一系列前沿且富有挑战性的研究课题。在此背景下,超越标准模型的新物理研究已成为粒子物理学界 的热门焦点,亦是国内众多科研机构竞相发展的重点方向。

鉴于此, 拟举办粒子物理"新物理冬季学校", 旨在促进培养新时代的新物理方向学者与后备人才。

第一期粒子物理"新物理冬季学校"于2025年1月3日至1月13日,由中山大学理学院主办,由北京大 学、东南大学、中国科学院高能物理研究所、南京师范大学、河南师范大学、中山大学物理学院、上海交 通大学合办,共同资助。地点位于广东省深圳市光明区公常路66号中山大学深圳校区。

新物理冬季学校委员会(姓氏排序)

顾问指导委员会:毕效军,曹俊杰,曹庆宏,何红建,李田军,李志兵,廖益,刘纯,刘韬,罗民兴(院 士),吕才典,乔从丰,舒菁,司宗国,王贻芳(院士),王青,肖振军,邢志忠,杨金民,周宇峰,(**更新** 中...)

https://indico.itp.ac.cn/event/288/

此次新物理冬季学校包含以下课程

基础课程: EW+QCD, BSM (CHM, SSM/2HDM, SUSY, EFT)

第一天:电弱相互作用3课时、CHM 2课时(张宏浩),强相互作用3课时(刘晓辉),

第二天:SSM+2HDM 2课时(苏伟),SUSY 2课时(曹俊杰), EFT4课时(顾嘉荫)

核心课程: 36课时, 包含

暗物质(宋宁强、安海鹏)、中微子(李玉峰,丁桂军)、AI(吴永成,刘炳萱) 拓展课程: 16课时, 包含 对撞机物理 (岩斌, 张昊), 相变 (边立功, 张阳)

	3(周五)	4	5	6(周一)	7	8	9	10(周五)	11	12	13
上午12		<u>EW</u>	CHM	<u>EFT</u>	<u>暗物质</u>	<u>中微子</u>	<u>暗物质</u>	<u>中微子</u>	AI	AI	<u>.</u>
上午3-4	也法	<u>QCD</u>	<u>EFT</u>	<u>对撞机</u>	<u>对撞机</u>	<u>暗物质</u>	<u>中微子</u>	相变	相变	AI	以化
下午5-6	加胆	EW+QCD	<u>SUSY</u>	<u>暗物质</u>	<u>暗物质</u>	<u>中微子</u>	AI	计公	AI	相变	家人
下午7-8	往劢	<u>2HDM</u>	<u>对撞机</u>	<u>对撞机</u>	<u>中微子</u>	<u>暗物质</u>	<u>中微子</u>	闪龙	AI	相变	南云
晚上	讨论班										
备注 下划线表示时间已经和任课老师确定											

组织委员会:安海鹏,边立功,葛韶锋,顾嘉荫,黄永盛,李数,刘佳,刘佐伟,马小东,任婧,宋宁 强,苏伟,唐健,王少江,王雯宇,王小平,武雷,鲜干中之,许勋杰,岩斌,干江浩,袁强,张昊,张

Thanks for your attention

BACKUP

					Parameters	Scan Range	Prior
			$m_{ ho}/f, \ m_a/f$	$[1/\sqrt{2}, 4\pi]$			
	All Models	$f_X/f, \; f_G/f$	$[0.5, 2\sqrt{3}]$	Uniform			
ΝΛΤΗ・α	study me		$g_ ho,\ g_X,\ g_G$	$[1.0, 4\pi]$			
	Sluuy me				Δ_{t_L}/f	$[e^{-0.25}, e^{1.5}]$	
	-				Δ_{t_R}/f	$[e^{-0.75}, 4\pi]$	
					Δ_{b_L}/f	$[e^{-5.0}, e^{-3.0}]$	
					Δ_{b_R}/f	$[e^{-0.5}, 4\pi]$	
					$m_t/f, \; m_{ ilde{b}}/f$	$[e^{-0.5}, e^{1.5}]$	_
				M4DCHM ³⁻³⁻³	$m_{ ilde{t}}/f$	$[e^{-1.0}, 4\pi]$	Logarithmic
					m_b/f	$[e^{-1.0}, e^{1.5}]$	
M4DCHM	5 - 5 - 5	14 - 14 - 10	14 - 1 - 10		m_{Y_t}/f	$[e^{-8.5}, 4\pi]$	
Decay constants	$f_1 f_1 f_2 f_2$	$f f_1 f_Y f_C$	$f_1 f_1 f_y f_c$		m_{Y_b}/f	$[e^{-0.25}, 4\pi]$	
	J, JI, JA, JG	J, JI, JA, JG			$(m_{Y_t} + Y_t)/f$	$[e^{-0.5}, 8\pi]$	
Gauge couplings	$g_ ho,g_X,g_G$	$g_ ho,g_X,g_G$	$g_ ho,g_X,g_G$		$\frac{(m_{Y_b} + Y_b)/f}{2}$	$[e^{-0.0}, e^{-0.0}]$	
Link couplings	$\Delta_{t_L},\Delta_{t_R},\Delta_{b_L},\Delta_{b_R}$	$\Delta_q,\Delta_t,\Delta_b$	$\Delta_q,\Delta_t,\Delta_b$		Δ_q/f Δ_t/f	$[e^{-1.0}, e^{2.0}]$ $[e^{-2.5}, e^{2.0}]$	
On-diagonal masses	$\mid m_t,m_{ ilde{t}},m_b,m_{ ilde{b}}$	m_q,m_t,m_b	m_q, m_t, m_b		Δ_b/f	$[e^{-4.0}, e^{2.0}]$	
Off-diagonal masses	$\mid m_{Y_t}, m_{Y_b}$	m_{Y_t}			m_q/f	$[e^{-1.0}, 4\pi]$	
Proto-Yukawa couplings	Y_t, Y_b	Y_t, Y_b, \tilde{Y}_t	Y_t, Y_b	M4DCHM ¹⁴⁻¹⁴⁻¹⁰	m_t/f	$[e^{-2.5}, 4\pi]$ $[e^{-2.0}, 4\pi]$	Logarithmic
Dimensionality	19	17	15		$m_{b/J}$ m_{Y_t}/f	$[e^{-8.5}, 4\pi]$	
					$(m_{Y_t} + \frac{1}{2}Y_t)/f$	$[e^{-8.5}, 1.0]$	
Table	2. Parameters present in	a each model.			$(m_{Y_t}+rac{4}{5}(Y_t+ ilde Y_t))/f$	$[e^{-3.0},2.6\times 4\pi]$	
	_				Y_b/f	$[e^{-4.0},4\pi]$	
					$\Delta_q/f, \; \Delta_t/f, \; Y_t/f$	$[e^{-5.0}, 4\pi]$	
					Δ_b/f	$[e^{-7.0}, 4\pi]$	
				M4DCHM $^{14-1-10}$	$m_q/f,\;m_b/f$	$[e^{-3.0}, 4\pi]$	Logarithmic
					m_t/f	$[e^{-9.0},4\pi]$	
					Y_b/f	$[e^{-6.0}, 4\pi]$	