CEPC highlights Zhijun Liang

(On behalf of the CEPC physics and detector group)

Institute of High energy physics, CAS

Higgs potential, Hefei, Dec 20, 2024

CEPC physics program

An extremely versatile machine with a broad spectrum of physics opportunities

→ Far beyond a Higgs factory

Operation mode			ZH	Z	W+M-	tī
\sqrt{s} [GeV]		~240	~91.2	~160	~360	
	Run	time [years]	10	2	1	5
CDR (30 MW) $L / IP [\times 10^{34} cm^{-2}s^{-1}]$ $\int L dt [ab^{-1}, 2 IPs]$ Event yields [2 IPs]		3	32	10	-	
		$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
Run Time [years]		10	2	1	~5	
	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
Latest	50 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	• 0.8
		$\int L dt$ [ab ⁻¹ , 2 IPs]	20	96	7	1
		Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

 Huge measurement potential for precision tests of SM: Higgs, electroweak physics, flavor physics, QCD/Top

CEPC CDR: <u>arXiv:1811.10545</u> White Paper: <u>arXiv:1810.09037</u>

CEPC Snowmass 2021:

arXiv:2205.08553

CEPC Accelerator TDR:

arXiv:2312.14363

Both 50 MW and $t\bar{t}$ modes are currently considered as CEPC upgrades.

Higgs Precision measurements @ ZH runs

Translated the latest accelerator performance into Higgs measurements

Higgs			
Observable	HL-LHC projections	CEPC precision	
M_H	20 MeV	3 MeV	
Γ_H	20%	1.7%	
$\sigma(ZH)$	4.2%	0.26%	
$B(H \rightarrow bb)$	4.4%	0.14%	
$B(H \to cc)$	-	2.0%	
B(H ightarrow gg)	4	0.81%	
$B(H \to WW^*)$	2.8%	0.53%	
$B(H\to ZZ^*)$	2.9%	4.2%	
$B(H\to\tau^+\tau^-)$	2.9%	0.42%	
$B(H o \gamma \gamma)$	2.6%	3.0%	
$B(H\to \mu^+\mu^-)$	8.2%	6.4%	
$B(H \to Z\gamma)$	20%	8.5%	
$Bupper(H \rightarrow inv.)$	2.5%	0.07%	

Higgs width measurement benefits enormously from 360-GeV run

Exploring the full potential of the CEPC with the latest TDR design for Higgs measurements by combining 240-GeV and 360-GeV runs.

Outperforming HL-LHC significantly

CEPC Accelerator International TDR Review and Cost Review

CEPC Accelerator TDR

CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong

Domestic Civil Engineering Cost Review, June 26, 2023, IHEP

CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong

9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP

Total

Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan)

364

100%

https://doi.org/10.1007/s41605-024-00463-y

DOI: 10.1007/s41605-024-00463-y

More details in Jie Gao's talk in CEPC workshop https://indico.ihep.ac.cn/event/22089/contributions/167861

CEPC accelerator : key technology

 CEPC TDR 加速器关键技术预研覆盖了CDR中列出的所有关键部件
 约90%的部件性能已经达到CEPC指标要求,另外约10%的部件在 研制或测试中,例如 RF功率源、加速器集成和控制系统、检测与准 直系统、超导磁铁关键技术等需要进一步研究,预期2026年完成。

✓ Specification Met

Prototype Manufactured

Accelerator	Fraction
✓ Magnets	27.3%
✓ Vacuum	18.3%
RF power source	9.1%
✓ Mechanics	7.6%
✓ Magnet power supplies	7.0%
✓ SC RF	7.1%
✓ Cryogenics	6.5%
✓ Linac and sources	5.5%
✓ Instrumentation	5.3%
✓ Control	2.4%
Survey and alignment	2.4%
✓ Radiation protection	1.0%
✓ SC magnets	0.4%
✓ Damping ring	0.2%

Reference Detector Technical Design Report (ref-TDR)

Technology study for Reference Detector TDR

Radius

System	Technologies		
System	Baseline	Backup / Comparison	
Beam pipe	Φ 20 mm		
LumiCal	SiTrk + Crystal		
Vertex	CMOS + Stitching	CMOS Si Pixel	
	CMOS Si Pixel ITK	SSD + RO Chip, CMOS SSD	
Tracker	Pixelated TPC	PID Drift Chamber	
Hacker	AC-LGAD OTK	SSD / SPD OTK	
		LGAD ToF	
ECAL 4D Crystal Bar		Stereo Crystal Bar, GS+SiPM, PS+SiPM+W, SiDet+W	
HCAL	GS+SiPM+Fe	PS+SiPM+Fe, RPC+Fe	
Magnet	LTS	HTS	
Muon	PS bar+SiPM	RPC	
TDAQ	Conventional	Software Trigger	
BE electr.	Common	Independent	

- The CEPC study group started to compare different technologies in January, 2024
- By the end of June, 2024 the baseline technologies were chosen.
- Multiple factors were considered in the process: performance, cost, R&D efforts, technology maturity, ...

We will continue pursuing better technologies for the two final detectors at CEPC

Reference Detector optimization

	CDR	Ref-TDR			
	Inner radius of 16 mm	Inner radius of 11 mm			
VTX	Material Budget: 0.15%*6+0.14%(beampipe)= 1.05% X0	Material Budget: 0.06%*4(inner)+0.165%*2(outer)+0.2%(beampipe)= 0.77% X0			
Gaseous Tracker	TPC with 1 mm* 6 mm readout	TPC with 0.5 mm* 0.5 mm readout To have dE/dx or dN/dx resolution 3% (Drift Chamber with the capability of dN/dx as alternative)			
ToF	-	AC-LGAD, with <mark>50 ps</mark> per MIP			
ECAL	Si-W-ECAL: 17%/ √E ⊕ 1%	Crystal Bar-ECAL: 1.3%/√ E ⊕ 0.7%			
HCAL	RPC-Iron: 60%/ √E ⊕ 2%	Glass-Iron: 30%/ √E ⊕ 6.5%			

Delphes Card with Ref-TDR geometry information can be found in <u>https://code.ihep.ac.cn/zhangkl/delphes_cepc</u> (working in progress).

• VTX

- Inner radius: $40\% (16 \text{ mm} \rightarrow 11 \text{ mm})$
- Material 30% (1.05% → 0.77% X0)
- Better TPC, with dE/dx, dN/dx 3%;
- TOF readout;
- ECAL: to Cyber: to 1.3%.
- HCAL: to Glass-Iron, to 30%.

Vertex detector

356×498 pixels of 20×29 μm² $\sigma_{x/y}$ ~ 3-4 μm, σ_t ~1 μs, ~0.1 W/cm² JadePix4

Goal: $\sigma(IP) \sim 5 \mu m$ for high P

Key specifications:

- Single point resolution ~ 3 μm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

1024×512 array of 25×25 μm²

TaichuPix3

TowerJazz 180nm CIS process

Look into stitching + curved MAPS for less material and easier cooling

A TaichuPix-based prototype detector was tested at DESY in 2023. SP resolution ~4.9 μ m. Thermal and material properties need further improvement.

AC-LGAD based outter tracker + time of flight detector

- The outer silicon tracker ~ 85 m², the Z precision is not crucial
 - \Rightarrow Cost-effective SSD
- An AC-LGAD Time Tracker combines the two needs in one detector. We

expect σ_t ~30 ps, $\sigma_{R\Phi}$ ~10 μm

Need to validate with full size sensors

Testbeam of Prototype Crystal ECAL

- Successful testbeam @ DESY, CERN, 2023-2024 with small prototype
 - EM resolution (preliminary): $1.3\%/\sqrt{E} \oplus 0.7\%$
- To address critical issues at system level, validate design of crystal-SiPM, light-weight mechanical structure
- ✤ A full size prototype will be constructed
- Module development
 - BGO crystal bars from SIC-CAS
 - SiPM: 3×3 mm² sensitve area, 10µm pixel pitch

Timeline for CEPC ref-TDR

Date	Actions and/or Expectations		
Jan 1, 2024 Start the ref-TDR process by comparing different technologies			
Jul 1, 2024 Baseline technologies are chosen; start to write TDR and address key			
Aug 7, 2024	Report to the IDRC chair Prof Daniela Bortoletto		
Oct 21-23, 2024 Review of the Ref-TDR plan by the IDRC			
Oct 23-27, 2024 Report at the CEPC workshop			
Oct 29-30, 2024 Report progresses to the CEPC IAC			
~ January 2025	The first draft of the ref-TDR is ready for internal reviews		
~ April 2025	Finish international reviews		
Jun 30, 2025	The ref-TDR is ready to release		

We welcome more international and domestic teams to join the quest.

Higgs Precision measurements @ ZH runs

Translated the latest accelerator performance into Higgs measurements

Higgs			
Observable	HL-LHC projections	CEPC precision	
M_H	20 MeV	3 MeV	
Γ_H	20%	1.7%	
$\sigma(ZH)$	4.2%	0.26%	
B(H o bb)	4.4%	0.14%	
$B(H \to cc)$	-	2.0%	
B(H ightarrow gg)	4	0.81%	
$B(H \to WW^*)$	2.8%	0.53%	
$B(H\to ZZ^*)$	2.9%	4.2%	
$B(H\to\tau^+\tau^-)$	2.9%	0.42%	
$B(H o \gamma \gamma)$	2.6%	3.0%	
$B(H\to\mu^+\mu^-)$	8.2%	6.4%	
$B(H \to Z\gamma)$	20%	8.5%	
$Bupper(H \rightarrow inv.)$	2.5%	0.07%	

Higgs width measurement benefits enormously from 360-GeV run

Exploring the full potential of the CEPC with the latest TDR design for Higgs measurements by combining 240-GeV and 360-GeV runs.

Outperforming HL-LHC significantly

Higgs coupling to quarks : Jet origin identification

* Higgs coupling to quarks can be measured to unpreceded precisions

Especially for light quarks (strange quarks) ...

✤ Jet origin identification: 11 categories (5 quarks + 5 anti quarks + gluon)

- ► Jet Flavor Tagging + Jet Charge measurements + s-tagging + gluon tagging...
- PFA algorithm Arbor + ParticleNet (Deep Learning Tech.)

PRL 132, 221802 (2024)

Higgs coupling to quarks : Jet origin identification

* Higgs coupling to quarks can be measured to unpreceded precisions

PRL 132, 221802 (2024)

- ***** From Jet Flavor Tagging to Jet Origin ID:
 - ▶ $\nu \nu H$, H→cc: 3% → 1.7%; Vcb: 0.75% → 0.45%

$H \rightarrow \gamma \gamma$

 $\mathrm{H}\to\gamma\gamma$

arXiv:2205.13269 by Fangyi Guo; Previous studied by Feng Wang, Yitian Sun;

- Ecal performance dominated.
- CDR 17% -> Ref-TDR Cyber-PFA: 1.3%.

Channel	μ @ 5.6 ab^{-1}	μ @ 20 ab^{-1}
$q\bar{q}\gamma\gamma$	1.00 ± 0.0879	1.00 ± 0.0465
$\mu^+\mu^-\gamma\gamma$	1.00 ± 0.3571	1.00 ± 0.1920
ννγγ	1.00 ± 0.1142	1.00 ± 0.0605
Combined	1.00 ± 0.0688	1.00 ± 0.0364

More details in Kaili's talk in CEPC workshop https://indico.ihep.ac.cn/event/22089/contributions/168545

DSCB fit give resolution 0.46%. low mass tail can be further controlled with Ecal PFA algorithm.

Higgs width @ CEPC

Standalone 240GeV 20ab⁻¹ run gives ~1.5%

✤ Standalone 360GeV 1ab⁻¹ alone gives 3.3%.

• By combination of 240 and 360GeV run, potential to reach $\Delta \Gamma_H < 1.0\%$

1) tagging Higgs final states

$$\sigma(ee \to ZH) \cdot BR(H \to ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$$

2) measurements of vector boson fusion production at 350-365 GeV

$$\frac{\sigma(\text{ee} \rightarrow \text{ZH}) \cdot \text{BR}(\text{H} \rightarrow \text{WW}) \cdot \sigma(\text{ee} \rightarrow \text{ZH}) \cdot \text{BR}(\text{H} \rightarrow \text{bb})}{\sigma(\text{ee} \rightarrow \nu\nu\text{H}) \cdot \text{BR}(\text{H} \rightarrow \text{bb})}$$
$$\propto \frac{g_{\text{HZ}}^2 \cdot g_{\text{HW}}^2}{\Gamma} \cdot \frac{g_{\text{HZ}}^2 \cdot g_{\text{Hb}}^2}{\Lambda} \cdot \frac{\chi}{g_{\text{HW}}^2 \cdot g_{\text{Hb}}^2} = \frac{g_{\text{HZ}}^4}{\Gamma}$$

3) combination of all measurements

More details in Kaili's talk in CEPC workshop https://indico.ihep.ac.cn/event/22089/contributions/168545

EWK precision measurements@ CEPC (ZH, Z pole, WW runs)

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37-41]	$0.1 { m MeV} (0.005 { m MeV})$	Z threshold	E_{beam}
$\Delta\Gamma_Z$	2.3 MeV [37-41]	$0.025 { m ~MeV} (0.005 { m ~MeV})$	Z threshold	E_{beam}
Δm_W	$9 { m MeV} [42-46]$	$0.5 { m ~MeV} (0.35 { m ~MeV})$	WW threshold	E_{beam}
$\Delta\Gamma_W$	49 MeV [46–49]	$2.0 { m MeV} (1.8 { m MeV})$	WW threshold	E_{beam}
Δm_t	$0.76 { m GeV} [50]$	$\mathcal{O}(10) \mathrm{MeV^a}$	$t\bar{t}$ threshold	
ΔA_e	4.9×10^{-3} [37, 51–55]	$1.5 \times 10^{-5} \ (1.5 \times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	$0.015 \ [37, \ 53]$	$3.5 \times 10^{-5} \; (3.0 \times 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc.
$\Delta A_{ au}$	$4.3 imes 10^{-3}$ [37, 51–55]	$7.0 imes 10^{-5} \; (1.2 imes 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	$0.02 \ [37, 56]$	$20 imes 10^{-5} \; (3 imes 10^{-5})$	Z pole	QCD effects
ΔA_c	$0.027 \ [37, \ 56]$	$30 imes 10^{-5} \; (6 imes 10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37-41]	$2 { m ~pb} (0.05 { m ~pb})$	Z pole	lumiosity
δR_b^0	$0.003 \ [37, 57-61]$	$0.0002~(5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 62-65]$	$0.001~(2 imes 10^{-5})$	Z pole	gluon splitting
δR_e^0	$0.0012 \ [37-41]$	$2 \times 10^{-4} \; (3 \times 10^{-6})$	Z pole	E_{beam} and t channel
δR^0_μ	0.002 [37-41]	$1 \times 10^{-4} \ (3 \times 10^{-6})$	Z pole	E_{beam}
$\delta R_{ au}^0$	$0.017 \ [37-41]$	$1 \times 10^{-4} \; (3 \times 10^{-6})$	Z pole	E_{beam}
$\delta N_{ u}$	$0.0025 \ [37, 66]$	$2 imes 10^{-4}~(3 imes 10^{-5}$)	$ZH \operatorname{run} (\nu \nu \gamma)$	Calo energy scale

CEPC is expected to improve the current precision by 1-2 orders of magnitude, offering a great opportunity to test the consistency of the SM.

The status of electroweak global fit

*****7 key observables in electroweak global fit

- ► Consistency study of the standard model electroweak section
- ▶ Need CEPC Z pole and WW runs : Precise measurements on EWK observables.

undamental constant	δx/x	measurements
$\alpha = 1/137.035999139 (31)$	1×10 ⁻¹⁰	$e^{\pm} g_2$
$G_F = 1.1663787 (6) \times 10^{-5} \text{ GeV}^{-2}$	1×10 ⁻⁶	$\mu^{\pm} lifetime$
$M_Z = 91.1876 \pm 0.0021 \text{ GeV}$	1×10 ⁻⁵	LEP
$M_W = 80.379 \pm 0.012 \text{ GeV}$	1×10-4	LEP/Tevatron/LHC
$\sin^2\!\theta_{\rm W} = \ 0.23152 \pm 0.00014$	6×10-4	LEP/SLD
$n_{top} = 172.74 \pm 0.46 \text{ GeV}$	3×10-3	Tevatron/LHC
$M_H = 125.14 \pm 0.15 \text{ GeV}$	1×10-3	LHC

W mass measurement status

- $\mathbf{*} \mathbf{m}_{\mathbf{W}}$ is a key observable to test SM consistency
 - ► Significant tension between CDF and latest CMS result
 - ▶ m_W Measurement at future collider is essential, large impact to EWK global fit

Prospect of W mass measurement at CEPC (WW threshold runs)

***** Expect to reach below 1MeV precision on W mass

► Four energy scan points:

- 157.5, 161.5, 162.5(W mass, W width measurements)
- 172.0 GeV (αQCD (mW), Br (W->had), CKM |Vcs|)

Observable current precision		CEPC precision (Stat. Unc.)
Δm_Z	2.1 MeV [37–41]	$0.1 { m ~MeV} (0.005 { m ~MeV})$
$\Delta\Gamma_Z$	$2.3 { m MeV} [37-41]$	$0.025 { m ~MeV} (0.005 { m ~MeV})$
Δm_W	9 MeV [42-46]	$0.5 { m ~MeV} (0.35 { m ~MeV})$

P.X.Shen, P.Azzuri , G.Li et,al, Eur.Phys.J.C 80 (2020) 1, 66 Joint study of CEPC/Fcc-ee

Top quark measurements *a* ttbar threshold runs

$t\bar{t}$ modes are considered as upgrades.

the optimal energy point

In the table, 342.75 GeV, 344.00 GeV and 343.50 GeV are optimal energy points for top quark mass, width and α_S , respectively

The top quark mass can be measured with an unprecedented precision (one order of magnitude better than hadron colliders can achieve).

CEPC ttbar runs physics potential is competitive Top mass Vs alpha s likelihood

23

CEPC has potential to reveal new physics @10 TeV by combining Higgs, EWK and top measurements \rightarrow power of precision

BSM searches: dark matter, SUSY...

Significantly better detection sensitivity to dark matter and SUSY

Higgs-portal Dark matter J. Gu -43 10 section [cm²] LHC BR(h→inv) < 24% (3.5%) FCC-hh (Dijet) CEPC BR(h→inv) < 0.31% 10^{-44} HL-LHC (Dijet) Dijet $g_{Q}=1/4$ FCC-hh Dark Standard 10⁻⁴⁵ Sector Model LE-FCC cross HE-LHC Monojet 10⁻⁴⁶ $h \to X_{\rm dm} X_{\rm dm}$ HL-LHC $g_{\rm DM}=1, g_{\rm Q}=1/4$ 10^{-47} 10^{-48} 10^{-49} 10^{-50} andaX4T (5.6 tx) CLIC₃₀₀₀ $g_{\text{DM}} \times g_E = 1/4$ XENONnT (20 t×yr) **CLIC**₃₈₀ CEPC (fermion DM) 10⁻⁴⁸ $(15.6 t \times vr)$ Monophoton ILC 10⁻⁴⁹ FCC-ee **European Strategy Coherent Neutrino Scattering** Axial-Vector CEPC 0.5 10 0.1 5 20 30 40 60 5 10 $M_{\rm Mediator}$ [TeV] WIMP mass [GeV]

SUSY Dark matter

BSM searches: exotic decays, Dark Sector...

Significantly better detection sensitivity to Higgs/Z exotic decays than HL-LHC

26

Physics case and physics benchmark study in Ref-TDR

Please consider to join us for Reference detector TDR physics benchmark study

	Processes @ c.m.s.	Domain	Anticipated relative accuracies/up	@Ref TDR
			limit with CDR baseline detector +	
			TDR Luminosity, with Jol	
H→cc			1.7%	1.6%
H→ss [1]	vvH @ 240 GeV	Higgs	95% up limit of 0.75E-3	95% up limit of 0.70E-3
H→sb [1]			95% up limit of 0.22E-3	95% up limit of 0.20E-3
H→inv [2]	qqH	Higgs/NP	95% up limit of 0.13%	Same
Vcb [3]	WW→lvqq @ 240/160 GeV	Flavor	0.4%	0.36%
W fusion Xsec [2]	vvH @ 360 GeV	Higgs	1.1%	Same
α_s	Z→tautau @ 91.2 GeV	QCD	NAN	Theoretical Uncertainty Dominant
CKM angle $\gamma - 2\beta$	Z→bb, B→DK @ 91.2 GeV	Flavor	NAN	~o(0.1 - 1) degree
Weak mixing angle [4]	Z@ 91.2 GeV	EW	2.4E-6 using 1 month data (~ 2E11 Z)	~ tiny improvement due to VTX
Higgs recoil [5]	IIH	Higgs	δm = 2.5 MeV	Same
			$\delta\sigma/\sigma$ = 0.25%/0.4% (wi/wo qqH)	
H→bb, gg [2]	vvH + qqH	Higgs	bb: 0.14% -> 0.13%	bb: 0.12%
			gg: 0.81% -> 0.65%	gg: 0.62%
			(wi/wo Jol)	
H→di muon [2]	qqH	Higgs	6.4%	Same
H→di photon [2]	qqH	Higgs	3%	1.8%
W mass & Width [6]	W threshold scan @160 GeV	EW	0.7 MeV & 2.4 MeV @ 6 iab	Same
Top mass & Width [7]	Top threshold scan @360 GeV	EW	9 MeV & 26 MeV @ 100 ifb	Same
Bs→ υυφ [8]	91.2 GeV	Flavor	0.9% (1.8%@Tera-Z)	Same, if object recon. ~ CDR
Bc→ τυ [9]	91.2 GeV	Flavor	0.35% (0.7%@Tera-Z)	Same, if object recon. ~ CDR
$B0 \rightarrow 2\pi^0$ [10]	91.2 GeV	Flavor	NAN	0.3% need to validate photons finding

 H->γγ precisions improves significantly, if low mass tail tamed.
 Physics measurements using Jol, etc, benefit from better VTX and have 5-10% improvements , and assuming that the TDR BMR could eventually reach 3.7%

- If BMR of 3% achieved, precisions of most benchmarks could be further improved by 5-10%
- Need further development on pattern recognition capability of Crystal Bar ECAL

Summary

- * CEPC physics studies constantly updated, improved and expanded to fully explore the CEPC physics potential.
- Reference detector TDR under preparation, to be completed by the mid-2025 for the proposal of China's 15th 5-year plan.
- Please consider to join us for Reference detector TDR physics benchmark study
- Intense R&D activities are underway on the baseline detector concept targeting key technologies of all sub detectors. Significant progress has been made and several R&D projects have reached milestones.
- * It is important to expand international collaboration and explore synergies with other international projects.
 - Existing collaboration: CALICE Collaboration (PFA calorimeters), LCTPC Collaboration (TPC), INFN(Drift chamber), CMOS tracker Collaboration (Silicon tracker), French and Spain institutes (CMOS pixel), DRD1-8 Collaboration

Backup

Flavor physics studies @ Z pole

CEPC provides a unique opportunity to study Z LFV decays, rare B decays, tests of LFU in tau decays or Bc decays etc.

White paper draft

1	Introduction		1
2	Description of CEPC facility		1
	2.1	Key Collider Features for Flavor Physics	3
	2.2	Key Detector Features for Flavor Physics	3
3	Cha	arged Current Semileptonic and Leptonic b Decays	9
4	Rare/Penguin and Forbidden b Decays		10
	4.1	Dileptonic Modes	10
	4.2	Neutrino Modes	11
	4.3	Radiative Modes	12
	4.4	Lepton Flavor Violating (LFV), Lepton Number Violating(LNV) and Baryon	
		Number Violating (BNV) Decays	12
5	Hadronic b Decays and CP Violation Measurements		13
6	Spectroscopy and Exotics		14
7	Charm Physics		14
8	au Physics		15
9	Flavor Physics at Higher Energies		16
	9.1	Flavor Physics from Z Decays	17
	9.2	Flavor Physics from W Decays	17
	9.3	Flavor Physics from Higgs and Top	18
10	10 Production of BSM States from Heavy Flavor Decays		18
11	Tw	o Photon and ISR Physics with Heavy Flavors	18
12	12 Summary		

Contents

More details in flavor physics section

The 4th Detector Concept

The 4th Detector Concept

Silicon combined with TPC or DC and TOF

\rightarrow better tracking and PID

- Good k/pi separation up to 20GeV
- 4D Crystal ECAL with timing
 - ► For PFA and with better EM resolution
- **Scintillating glass HCAL:**
 - Cost effective, better jet resolution

*****Boson mass resolution (BMR):4% \rightarrow 3%

Silicon Pixel Chips for Vertex Detector

JadePix-3 Pixel size ~ $16 \times 23 \ \mu m^2$

Tower-Jazz 180nm CiS process Resolution 5 microns, 53mW/cm²

MOST 1

Goal: $\sigma(IP) \sim 5 \mu m$ for high P track

CDR design specifications

- Single point resolution ~ 3µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 5 series: JadePix, TaichuPix, CPV, Arcadia, COFFEE

TaichuPix-3, FS 2.5x1.5 cm² 25×25 μm² pixel size

CPV4 (SOI-3D), 64×64 array ~21×17 μm² pixel size

Develop **COFFEE** for a CEPC tracker using SMIC 55nm HV-CMOS process

Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

Jadepix3/TaichuPix3 beam test @ DESY

Collaboration with CNRS and IFAE in Jadepix/TaichuPix R & D

TaichuPix3 vertex detector prototype beam test @ DESY

beam direction

Spatial resolution ~ 5 μm

Hit maps of multiple layers of vertex detector Beam spot

36

Silicon Tracker using HV-CMOS: ATLASPix → CEPCPix

- □ Large area: ~70 m² in TPC+SiTrk → Cost effectiveness
- □ Focus on MAPS pixel tracker, also started SSD for outer layers
- Joint efforts on an ATLASPix3 based demonstrator
- □ ATLASPix & MightyPix use TSI 180nm HV process
- □ Exploring SMIC 55 nm HV HR proces
 - ➔ Smaller feature size & alternative foundry
- □ Other possibilities, e.g. MALTA3, TPSCo-65nm

The 2nd design for SMIC 55nm HV HR process

Hitmap with Fe55 source

Hitmap with electron beam

Collaboration with UK/Germany/Italy colleague