Tutorial MicroTCA Management

"How to become a MicroTCA expert – this year: within 25 minutes"

1st MicroTCA Workshop

at

Large Scientific Facility Control Workshop

by

University of Science and Technology of China

Heifei, September 18th – 21st, 2024

UNCLASSIFIED

| 1| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Agenda

- About N.A.T.
- From ATCA to MTCA
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

| 2| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

About N.A.T. – who we are

- Gesellschaft f
 ür Netzwerk- und Automatisierungs-Technologie mit beschr
 änkter Haftung => N.A.T.
- Founded in 1990
- Proud to provide quality "made in Germany"
 - since more than 33 years by 25 highly professional employees
- Privately owned and owner lead business
- Own purpose-built building of more than 1,600m² (17,222ft²) with on-site centers for
 - hardware and software design
 - pre-manufacturing , test + repair

3 © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Agenda

- About N.A.T.
- From ATCA to MTCA
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

| 4| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Quick Look At ATCA History for AMC (mezzanine cards)

- Initially developed as function extension for ATCA Boards
- Fully integrated into the ATCA IPMI management structure • ATCA Shelf
- Plugged into a so called ATCA Carrier
- Hot Swap capability •

5 © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Quick Look At ATCA ATCA carrier – the environment an AMC module lives in

- Idea for own system like MTCA:

 directly plug AMC onto backplane

 ^{Zone 3} Requires "virtual carrier" providing
 - Power, management, CLK, Switching

| 6| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Quick Look At ATCA How to migrate from ATCA to MTCA

| 7| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

1.7.1

Agenda

- About N.A.T.
- From ATCA to MTCA
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

| 8| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Management Why do we need it?

- "Who" is in my system?
 - i.e. list of devices (aka "FRU" for Field Replaceable Unit)
- What capabilities does the FRU have?
 - i.e. active connections (AMCs) or RPMs (CUs)
- How healthy is my system?
 - i.e. sensors for current, voltage, temperature
 - i.e. events
- How can I talk to my FRUs?
 - i.e. manipulation of sensors
- How can I service my system?
 - i.e. hot-swap FRUs

9 © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Management in MTCA Physical Connections And Controllers

- IPMB-L
 - connects the MCMC on the MCH to the MMC on the AMC Modules
 - radial architecture
- IPMB-0.1
 - connects the MCMC on the MCH to the EMMC on the PMs and CUs
 - bussed architecture
- I2C-bus
 - connects the AMC to its μRTM
 - the μRTM is treated as managed FRU of the AMC

| 11| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Management in MTCA FRU M states

- PICMG 3.0 and AMC specifications define FRU states, aka "M states"
 - Activation
 - FRU proceeds to state M4
 - Deactivation
 - FRU proceeds to state M1
 - Error (coms lost)
 - FRU moves to state M7
- MCH decides if and when module can reach M4
- MMC uses a state machine to control hot-plug/swap procedure

| 12 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Infrastructure Power up

| 13 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Payload power up

| 14| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Agenda

- About N.A.T.
- From ATCA to MTCA
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

| 15| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Management in xTCA What is behind

- Idea of management:
 - Hardware supervision by software (remote control and monitoring)
 - Intelligent handling of events and actions
 - Abstraction of hardware functionality
 - Operating system independent
 - => I²C (Inter Integrated Circuit)
 - => IPMI (Intelligent Platform Management Interface)

1.4.1

| 16| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Management in xTCA IPMI

- I²C (Inter Integrated Circuit): two wire multi-master capable bus
- IPMI protocol

	START IPMI message					STOF				
Con	nmon:		Header			Data		CRC		
Request:		Src Id	Dst Id	Seq Num	Cmd	CRC1		Data	CRC2	
Res	ponse:	Src Id	Dst Id	Seq Num	Cmd	CRC1	Compl Code	Data	CRC2]

RMCP (Remote Management Control Protocol)

M	1AC	ETH	IP	UDP	RMCP	IPMI message	CRC
---	-----	-----	----	-----	------	--------------	-----

| 17| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Agenda

- About N.A.T.
- From ATCA to MTCA two well connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

| 18 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

MTCA Carrier Hub (MCH) Adaptable to application demands

- Basic Module with GbE-Switch to all AMC slots and Management: carrier manager, shelf manager, system manager
- 2. Clock Module for CLK #1-3/ #1,2,F to all AMC slots
- 3. Fat Pipe Hub Module (3) for AMC slots #1-6
- 4. Fat Pipe Hub Module (4) for AMC slots #7-12

| 19| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

1. X. A.

Management in MTCA Management Structure

| 20| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Large Scientfic Facility Control Workshop, USTC Heifei, Sept 19th – 21st 2024, "Tutorial MicroTCA Management" by Herbert Erd

1.

Excursus: fat pipes and clocks within a MicroTCA system

| 21| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Excursus: fat pipes

- Bits are transmitted one after the other, over single data line
- Every data byte (8bit) is transformed to 10bit symbol that contains enough transitions

 \rightarrow 8B/10B Coding

- Clock is recovered from serial stream
- Bidirectional transmission via dedicated Tx and Rx lines
 - One Tx/Rx pair is called "Lane"
- Multiple Devices interconnect by switches

22 © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Large Scientfic Facility Control Workshop, USTC Heifei, Sept 19th – 21st 2024, "Tutorial MicroTCA Management" by Herbert Erd

Device1

Device3

Switch

Device2

Device4

·Tx—

Excursus: fat pipes within a MicroTCA system

- Fat pipes aka fabrics
- Defined by PICMG AMC.x series
 - AMC.0 Base Specification (with MTCA.0 Ref 3 some changes)
 - AMC.1 PCI Express (PCIe): gen 1, gen 2, gen 3, (gen 4/5)
 - AMC.2 Ethernet: 1GbE, XAUI, 10GbE, 40GbE
 - AMC.3 Storage (SAS)
 - AMC.4 Serial RapidIO (SRIO)
- Link width: x1, x2, x4, lanes aka "ports"
- Compatibility between AMC and switch on MCH ensured by e-keying
- All signal levels are LVDS => incompatibility could not cause damage

| 23 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Excursus: clocking within a MicroTCA system

- Defined by PICMG MTCA.0 and AMC.0
 - frequency limited to 100MHz by spec
 - from an MCH perspective: CLK1, CLK2, CL3
 - from an AMC perspective: TCLKx and FCLK
 - mapping between CLK1-2 and TCLKx/FLCK provided by the backplane
 - Compatibility between AMC and switch on MCH ensured by e-keying

| 24| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Con.	Region	Port	Function	non-redundant system (1x MCH)	redundant system (2x MCH)
	Clock	TCKLA	Telecom Clock A	CLK1	1-CLK1
		TCLKB	Telecom Clock B	CLK2	1+2-CLK2
		FCLK	Fabric Clock or redundant TCLKA	CLK3	2-CLK1
	ſ	0	1GbE	1-A	1-A
ide	ous	1	redundant 1GbE		2-A
S S	Com	2	SAS/SATA	1-B	1-B
asi	0 -	3	redundant SAS/SATA		2-B
â		4	PCle or 1GbE or 10GbE or SRIO	1-D	1-D
	ipe	5	PCle or 1GbE or 10GbE or SRIO	1-E	1-E
	Extended Fat Pipe Fat P	6	PCle or 1GbE or 10GbE or SRIO	1-F	1-F
		7	PCle or 1GbE or 10GbE or SRIO	1-G	1-G
		8	1GbE or 10GbE or SRIO		2-D
		9	1GbE or 10GbE or SRIO		2-E
		10	1GbE or 10GbE or SRIO		2-F
		11	1GbE or 10GbE or SRIO		2-G
e		12	APS or Point-2-Point or rearIO		
Sic		13	Point-2-Point or rearIO		
ed		14	Point-2-Point or rearIO		
pue	ded	15	Point-2-Point or rearIO		
te	kten Dptic	TCLKC+D	Telecom Clocks C+D		
	шO	17	1GbE or 10GbE or SRIO		
		18	1GbE or 10GbE or SRIO		
		19	1GbE or 10GbE or SRIO		
		20	1GbE or 10GbE or SRIO		

| 25 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Large Scientfic Facility Control Workshop, USTC Heifei, Sept 19th – 21st 2024, "Tutorial MicroTCA Management" by Herbert Erd

1

MTCA Carrier Hub (MCH) Adaptable to application demands

| 26 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

NAT-MCH-Gen 4

Standard MCH (SFS)

- MCH-G4
 - 3 different uplink version
 - RJ45/SFP/ix
 - IEEE1588 boundary switch
 - CLk Module
 - CLK 12F and option OXCO
 - HUB EX with Uplink 40/100G
 - HUB E with Uplink 40/100G
 - HUB PCIe with uplink x8/x16
- eMCH-G4 part of NATIVEServer

| 27 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Main differences between Gen3 and Gen4 (excerpt)

Function	NAT-MCH G-3	NAT-MCH G-4 (improvements)		
CPU + O/S + memory	Single core NXP Coldfire + OK1 + 64Mb	Dual ARM core (A9, Xilinx Zynq) + FreeRTOS + 1GB		
Base Switch	Broadcom 1GbE	Microchip 1/10/40GbE, dual ARM core (A53)		
Base Fabric + Uplinks	12x 1GbE + 2x 1GbE (RJ45)	12x 1/ 2.5/10 GbE + 2x 1/ 10 GbE (RJ45/ iX/SFP-DD)		
Clock Module + ext. Input/output	CLK123, CLK12F, CLK-PHYS + dual input/output	CLK-G4 + dual input/output and GPS		
IEEE1588/SyncE + TSN support + OXCO	Not supported + Not supported + NAMC-PTM	Supported + Supported + OCXO		
Fat pipe Ethernet switch	Marvell Amstrong-LP 40GbE	Marvell Amstrong-LP 40GbE		
Fat Pipe + Uplinks	12x XAUI + MPO	12x XAUI /10/40 G + SFP-DD		
Fat pipe PCle Switch + PCle Gen	PLX + Gen3	MicroChip + Gen4		
Fat Pipe + Uplinks	12x PCIe Gen3 + Finisar BOA (NAT-MCH-PHYS80)	12x PCIe Gen4 + SFP-DD		
Fat pipe SRIO Switch + SRIO Gen	IDT + Gen2	?		
Fat Pipe + Uplinks	12x SRIO Gen2 + Infiniband	?		
User Interfaces	CLI, Web (GoAhead) => Update with 2.22.x	unified CLI, reworked Web (Mongoose) incl. CLI		
NATView: HPM update + backplane viewer + FRU-Ed	JRE on external device	Integrated into Web interface (excl. FRU-Editor)		

| 28 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Agenda

- About N.A.T.
- From ATCA to MTCA two well connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

| 29| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Management in xTCA What can you do?

- "Who" is in my system?
 - i.e. list of devices (aka "FRU")
- What capabilities does the FRU have?
 - i.e. active connections (AMCs) or RPMs (CUs)
- How healthy is my system?
 - i.e. sensors for current, voltage, temperature
 - i.e. events
- How can I interfere with my FRUs?
 - i.e. manipulation of sensors
- How can I service my system?
 - i.e. hot-swap FRUs

Summary

- About N.A.T.
- From ATCA to MTCA two well connected standards
- Why do we need management?
- What is behind the management?
- How does it work?
- What can you do?

| 31| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

1.7.1

Thank you for your attention !

Herbert Erd Strategic Business Development Manager

herbert.erd@nateurope.com

N.A.T. GmbH Konrad-Zuse-Platz 9 53227 Bonn, Germany

www.nateurope.com

| 32| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Repository

| 33 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

1.7.1.

NATview Power Configuration Manager Redundancy

| 34 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

NATview Power Configuration Manager n+1 Redundancy

| 35 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Important CLI commands of NAT-MCH example and excerpt

- imsg_info lists all IPMI messages supported by MCH
 - Prints the implementation status for the supported IPMI messages on the Host (RMCP) interface and can be used to print a list of IPMI messages that are supported by the MCH.
- show_ekey shows results of e-keying process, i.e. all activated connections
- show_fru lists all FRUs in system
- show_fruinfo lists contents for given FRU
- show_cu shows status of all cooling units
- show_pm shows status of all power modules
- show_sensorinfo fru_id shows details for all sensors of given FRU
- fan_ctl allows manual control of cooling units
- shutdown fru_id/all initiates gracefull shutdown of single or all FRUs
- fru_start fru_id initiates gracefull start of given FRU

36 © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Inventory: show fru

- Infrastructure
 - 0, 3, 60, 61 MCH1 modules
 - 1, 4, 62, 63 MCH2 modules
 - 40-41 Cooling Unit 12
 - 50-53 Power Modules 1, 2, 3, 4
- Payloads
 - 5-16: AMC1-12
 - 64, 65: MCH-RTM
 - 90-101: µRTM1-12
 - 102-104: eRTM13, 14, 15

IRO	Device .	Juace	Name
	мсн	====== м4	NMCH_CM
3	mcmc1	M4	NAT-MCH-MCMC
5		MA	CCT M 902/411
5	AMC 2	M4	VOTIMED
7	AMC 2	M4	AZIIMER DAMC2W2
/	AMC 3	M4	DAMC WCK7
0	AMC4	M4	DAMC-TCK7
11	AMC /	M4	SIS8300L2 AMC
12	AMC8	M4	SIS8300L2 AMC
13	AMC9	M4	SIS8300L2 AMC
14	AMC10	M4	SIS8300L2 AMC
15	AMC11	M4	SIS8300L2 AMC
16	AMC12	М4	SIS8300L2 AMC
40	CU1	M4	Schroff uTCA CU
41	CU2	M4	Schroff uTCA CU
51	PM2	M4	PM-AC1000
60	Clock1	M4	MCH-Clock
61	HubMod1	M4	MCH-PCIe
64	MCH1-RTM	М4	MCH-RTM-ComEx
91	AMC2-RTM	М4	X2TIMERRTM
92	AMC3-RTM	M4	DAMC2RTM
93	AMC4-RTM	M4	DAMC-TCK7 RTM
96	AMC7-RTM	M1	SIS8300L2 RTM
97	AMC8-RTM	M1	SIS8300L2 RTM
98	AMC9-RTM	M1	SIS8300L2 RTM
99	AMC10-RTM	M1	SIS8300L2 RTM
100	AMC11-RTM	М1	SIS8300L2 RTM
101	AMC12-RTM	M1	SIS8300L2 RTM
104	eRTM15	М4	DRTM-LOG1300

Stato Namo

37 © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Large Scientfic Facility Control Workshop, USTC Heifei, Sept 19th – 21st 2024, "Tutorial MicroTCA Management" by Herbert Erd

FDII

Device

Common Abbreviations ATCA AMC MICROTCA MTCA UTCA μTCA XTCA

Open standards defined by PICMG www.picmg.org

| 38 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Quick Look At ATCA ATCA Shelf Elements

| 39| © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Quick Look At ATCA How to migrate from ATCA to MTCA

- The basic idea of MTCA is to have a shelf that contains just AMC modules
- Backplane directly accepts AMC modules
- AMCs are interchangeable between ATCA and MTCA
- The infrastructure of a ATCA Carrier was adapted into the MTCA shelf • (power management switching)
- power input and all outputs to the front

Large Scientfic Facility Control Workshop, USTC Heifei, Sept 19th – 21st 2024, "Tutorial MicroTCA Management" by Herbert Erd

ATCA Shelf

ATCA and MTCA Specifications

| 41 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Management in xTCA Software structure

| 42 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Management in xTCA Software structure

| 43 | © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Large Scientfic Facility Control Workshop, USTC Heifei, Sept 19th – 21st 2024, "Tutorial MicroTCA Management" by Herbert Erd

1.7

Useful numbers to remember FRU and I²C addresses

Device	Site No.	FRU ID	I ² C Addr.
MCH-CM (Carrier Mngt.)	1	0	0x20
MCMC 1	1	3	0x10
МСМС 2	2	4	0x12
AMC 1-12 AMC 13	1-12 13	5-16 29	0x72-0x88 0xa2
CU 1 CU 2	12	40 41	0xA8 0xAA
PM 1 PM 2 PM 3 PM 4	1234	50 51 51 53	0xC2 0xC4 0xC6 0xC8
MCH-CLK 1	1	60	0x14
MCH-CLK 2	2	62	0x18
MCH-Hub 1 (PCIe SRIO XAUI)	1	61	0x16
MCH-Hub 2 (PCIe SRIO XAUI)	2	63	0x1a
MCH-RTM 1	1	64	0x1c
MCH-RTM 2	2	65	0x1e
OEM 1-19	1-19	60-78	0x42-0x66
μRTM 1-12		90-101	0x72 0x74-0x88
Carrier FRU (backplane FRU)	1	253	0xA4

44 © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

Useful numbers to remember FRU and I²C addresses

Device	Site No.	FRU ID	I ² C Addr.
AMC13 in MCH 1 slot	1	29	0xa2
AMC13 in MCH 2 slot	2	30	0xa4
Telco alarm	1	79	-
Carrier Manager		0	0x20
physical Shelf FRU Info 1		1	
physical Shelf FRU Info 2		2	
Reserved for further AMCs		17-28	
Reserved for further RTMs		102-124	
Reserved		125-127	
Local Shelf Manager		128	
logical ShM (backplane FRU-Info)		254	
Implementation defined		80-89	
reserved for OEM modules		66-78	
reserved for PM		54-59	

45 © 2023 N.A.T. GmbH | UNCLASSIFIED | All trademarks, brands and logos are property of their respective owners

I.Y.P.