Report on PhD Application

Applicant: Dongsheng Li (SA22004019)Discipline: Particle and Nuclear PhysicsSupervisor: Prof. Yifei Zhang

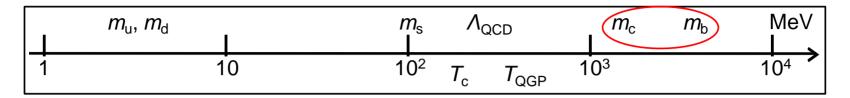
2024/4/23

Contents

- I. Academic Performance
- II. Scientific Research
 - A) Study of beauty decay electron with LHC published data
 - B) Hypernuclei measurement at STAR
- III. Summary

Academic Performance

李东升 💿	
学号: SA22004019	年级: 2022级
学生类别: 学术硕士	院系:近代物理系
导师姓名: 张一飞	预计毕业时间: 2025-08-30
学籍状态: 正常	入学年月: 2022-09-01


培养层次:	硕士研究生
专业: 070)200 物理学
在校标识:	在校
注册状态:	已注册

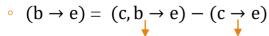
培养计划校验

未上传

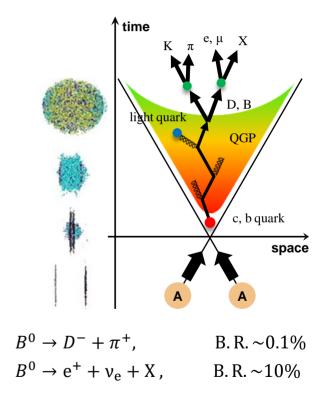
计算时间: 2024-04-21 22:30:00

您适用的培养计划标准		2022年级070200物理学硕士	校验结果:尚未合格	
培养计划校验详情		未完成必修环节:学位论文开题报告(2学分) 您 联系教学	的成绩课程类别有空值,对校验结果有影响,请 秘书修改	
培养计划备注		老系统迁移		
培养计划要求		已经获得学分	是否合格	
总学分(带必修环节)>=35		总学分=35	合格	
基础课【加权平均】>=75		基础课【加权平均】=84	合格	
公共课程学分>=7 (<=7) 其他课程学分>=0		公共课程学分=7	合格	
		其他课程学分=3	合格	
课程类别合并组学分>=16	专业基础课学分>=0	专业基础课学分=12 合格	合格	
体性关闭口开组子刀 > - 10	学科基础课学分>=8	学科基础课学分=16 合格		
学位论文开题报告(2学分)			尚未合格	

• Relativistic heavy-ion collision

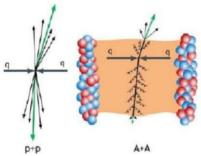

- Au+Au / Pb+Pb at $\sqrt{s_{NN}} \sim \text{GeV/TeV}$
- A little bang
- Extremely hot and dense
- Formation of quark-gluon-plasma (QGP)

Heavy flavor quark

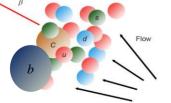

- Produced via hard scattering at early stage
- Sensitive probe to QGP properties

• b quark

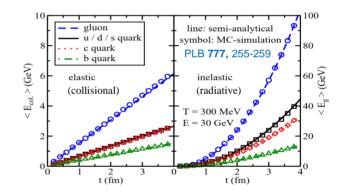
- Small production cross section and hadronic decay B.R.
- A data driven method to study the b decay electrons



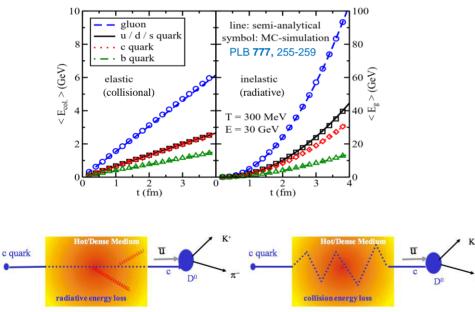
from data open charm and J/psi from data + decay simulation



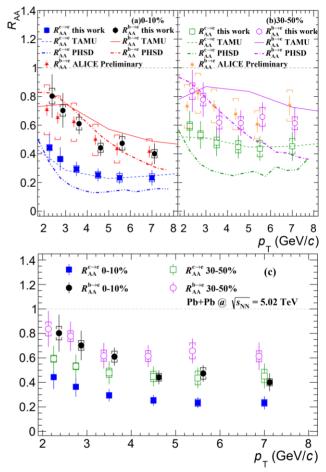
• Experimental observables


- Nuclear modification factor R_{AA}
- $R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm bin} \rangle} \frac{dN_{\rm AA}/dp_{\rm T}}{dN_{\rm pp}/dp_{\rm T}}$
- A normalized relative yield between AA collision (w/ QGP) and the pp reference (w/o QGP)
- Driven by energy loss in medium
- Expectation: the higher quark mass, the smaller energy loss

- Elliptic flow v_2
- Describing the anisotropic momentum distribution
- Probing the hydrodynamic properties of the medium


Brownian motion $\frac{\partial \rho}{\partial t} \sim D \frac{\partial^2 \rho}{\partial x^2}$ *D* – Diffusion coefficient

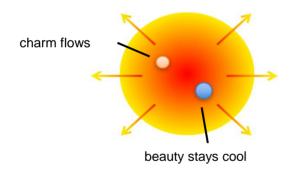
2024/4/23

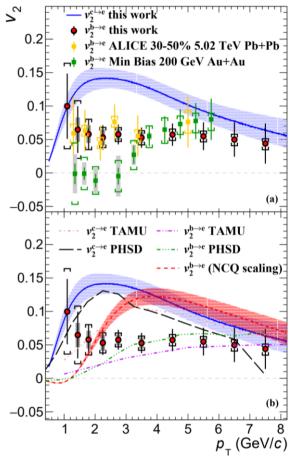

• Results

- Nuclear modification factor R_{AA}
- Energy loss in medium: b quark < c quark
- Consistent with mass-dependent energy loss scenario

(Baier et al, Kharzeev et al, Djordjevic et al, Wiedemann et al.)

(Teaney et al, Rapp et al, Molnar et al, Gossiaux et al.)

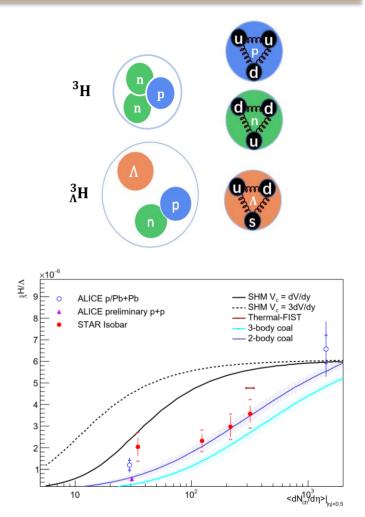




Dongsheng Li, Fan Si (First Co-author) *et al.*, "Charm and beauty isolation from heavy flavor decay electrons in p+p and Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV at LHC"

• Results

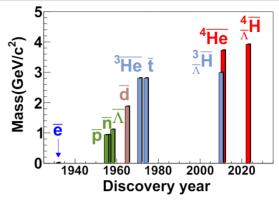
- Elliptic flow v_2
- Strong deviation (4.5 σ) from the Number-of-Constituent-Quark scaling hypothesis at $p_{\rm T} = 3-7$ GeV/c
- b quark is not thermalized in HIC at LHC energy (in contrast to c quark, already thermalized at RHIC energy)


Dongsheng Li, Fan Si (First Co-author) *et al.*, "Charm and beauty isolation from heavy flavor decay electrons in p+p and Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV at LHC"

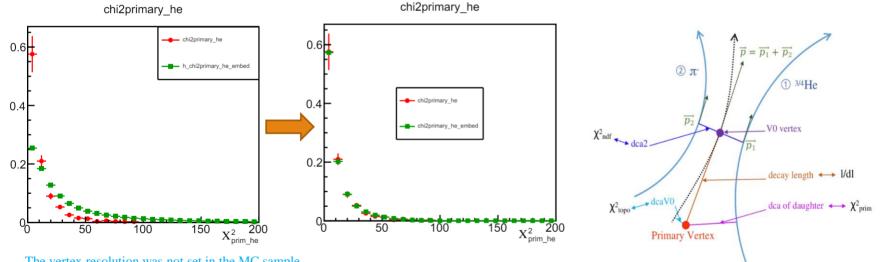
Research B: Hypernuclei at STAR

- Hypernuclei production mechanism in HIC
- Nucleon coalescence model v.s. Thermal model
- Both qualitatively describe hypernuclei yields in HIC
- A Powerful tool to distinguish between two models:

Multiplicity dependence of yield ratios ${}^{3}_{\Lambda}\text{H}/\Lambda$ $S_{3} = \frac{{}^{3}_{\Lambda}\text{H}/{}^{3}\text{He}}{\Lambda/p}$


- ${}^{3}_{\Lambda}$ H and hyperon(Λ, Ξ) yield measurement in Ru+Ru/Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR
- Complementary to the ALICE measurements
- Consistent with the 2-body coalescence prediction
- The results will be shown at SQM2024 (accepted as a talk)

Research B: Hypernuclei at STAR


• Observation of the Antimatter Hypernucleus $\frac{4}{\Lambda}\overline{H}$

- Measurement on yield, lifetime, etc...
- Main work done by the group at IMP, CAS
- I found and solved a problem in their MC sample
 - The Data-MC discrepancies used to be ignored
 - Lead to 10-20% efficiency difference

arXiv:2310.12674

(STAR Collaboration) Observation of the Antimatter Hypernucleus $\frac{4}{\Lambda}H$

The vertex resolution was not set in the MC sample The Kalman filter algorithm is applied in the calculation. Many topological variables were affected by this problem I reported the problem before the release of this paper

Summary

- Academic Performance
 - Qualified for application
- Scientific Research
 - Beauty decay electron at LHC (published)
 - Hypernuclei measurement at STAR
 - Production mechanism (preliminary)
 - Observation of novel anti-matter hypernucleus (under journal review)

	First Co-author	Physics Letters B 832, 137249 (2022)
Publication	Principal Author	arXiv:2310.12674
	Online	the 7th China LHC Physics (CLHCP 2021), Nov. 25-28, 2021
Conference		STAR Collaboration Meeting, Feb. 27 - Mar. 3, 2023

Thank you!