

PhD Qualification Report

Yuan Zhang

Supervisor: Yi Jiang

2024/04/23

Outline

- **≻**Resume
- >Scientific research
 - ➤ Introduction of charmonia
 - ➤ Data analysis procedure
 - > Results
- >Summary and future research plan

Resume

▶ Basic information

➤ Name: Yuan Zhang

➤ Student ID: SA22004065

> Master supervisor: Yi Jiang

➤ PhD supervisor: Yi Jiang

Education:

➤ 2018 to 2022: University of Science and Technology of China

➤ 2022 to now: University of Science and Technology of China

Course

课程名称		成绩	绩点值 章
对撞物理	4	85	3.7
高能物理实验数据分析	4	93	4
高能核物理实验前沿	3	93	4
研究生综合英语	2	通过	
日常交流英语	2	通过	
新时代中国特色社会主义理论与实践	2	通过	
自然辩证法概论	1	通过	
高等量子力学	4	88	3.7
量子场论	4	85	3.7
核与粒子物理实验方法	4	90	4
物理学中的群论	4	82	3.3
近代物理进展	4	86	3.7

GPA:3.75

Average score of basic course: 87

Total Credit: 35

计 曾时间 ·	2024-04-23	14:33:09

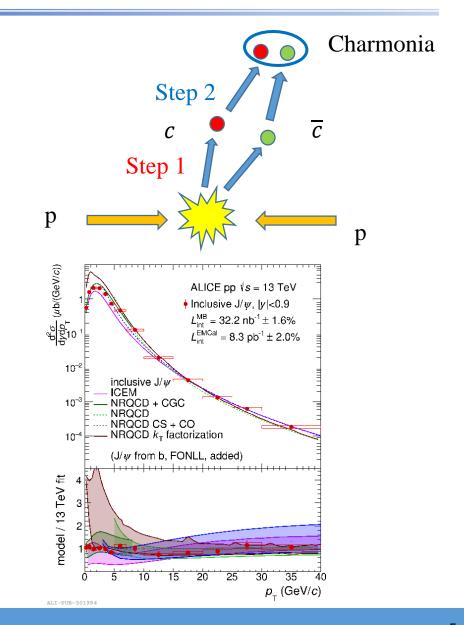
您适用的培养计划标准		2022年级070200物理学硕士	校验结果:尚未合格	
培养计划校验详情		未完成必修环节:学位论文开题报告(2学分)您的成绩课程类别有空值,对校验结果有影响,请联系教学秘书修改		
培养计划备注		老系统迁移		
培养计划要求		已经获得学分	是否合格	
总学分(带必修环节)>=35		总学分=35	合格	
基础课【加权平均】>=75		基础课【加权平均】=87	合格	
公共课程学分>=7 (<=7)		公共课程学分=7	合格	
其他课程学分>=0		其他课程学分=3	合格	
课程类别合并组学分>=16	专业基础课学分>=0	专业基础课学分=12 合格	O Ho	
	学科基础课学分>=8	学科基础课学分=16 合格	合格	
学位论文开题	报告(2学分)		尚未合格	

Introduction of charmonia

- > Charmonia: bound states of charm and anti-charm quark pairs.
- > Crucial for studying charmonium production mechanisms and testing different QCD-based models.
 - ➤ Heavy-quark production (perturbative QCD)
 - > Formation of the charmonium states (non-perturbative QCD)

NRQCD:

$$(2\pi)^3 2P_H^0 \frac{d\sigma_H}{d^3 P_H} = \sum_n d\hat{\sigma}_n(P_H) \langle \mathcal{O}_n^H \rangle$$

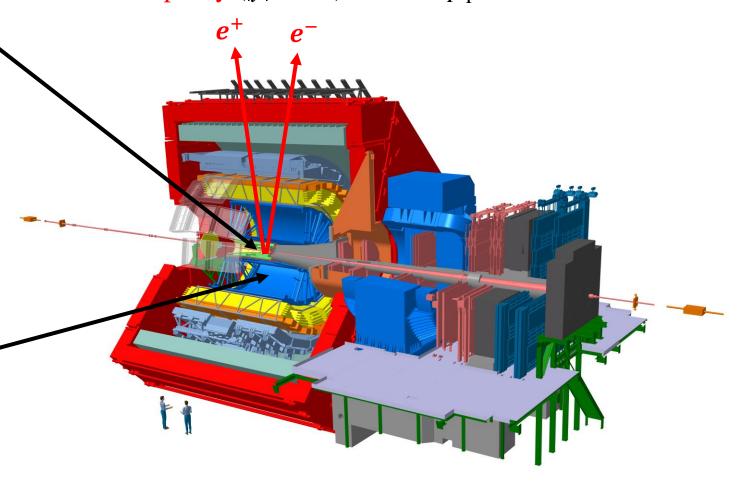

Production of a heavy quark pair Expansion in: α_s

Hadronization (LDMEs) Expansion in: *v*

ICEM:

$$\frac{d\sigma_{\psi}(P)}{d^{3}P} = F_{\psi} \int_{M_{\psi}}^{2M_{D}} d^{3}P' dM \frac{d\sigma_{c\bar{c}}(M, P')}{dM d^{3}P'} \delta^{3}(P - \frac{M_{\psi}}{M}P')$$

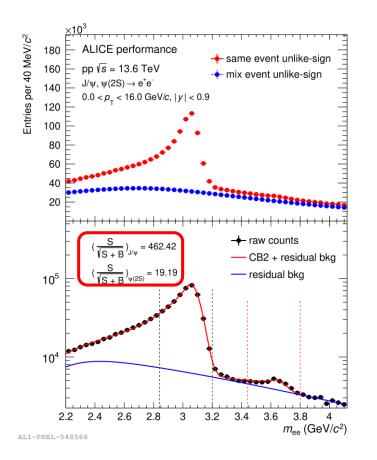
> Measurement of $\psi(2S)$ -to-J/ ψ ratio can give further restrictions on the model.



Charmonium reconstruction with ALICE

- ➤ Inner Tracking System (ITS)
 - > Tracking
 - > Vertex reconstruction
- > ITS upgrade:
 - → 6 layers ⇒ 7 layers equipped with Monolithic Active Pixel Sensors (MAPS).
 - > Radius of innermost layer reduced.
 - Material budget for each of the 3 innermost layers reduced.
- ➤ Time Projection Chamber (TPC)
 - > Tracking
 - Particle identification via dE/dx measurement
 - Momentum measurement
- > TPC upgrade:
 - Readout chambers replaced with Gas Electron Multiplier (GEM) chambers.

Enable continuous readout of Pb–Pb events at an interaction rate up to 50 kHz (~10² w.r.t. run 2).

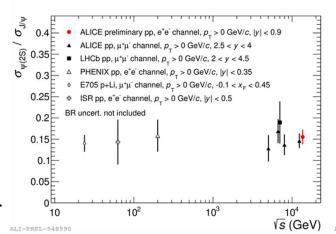

Inclusive J/ψ, ψ(2S) can be reconstructed in e⁺e⁻ channel at midrapidity (|y| < 0.9) down to $p_T = 0$.

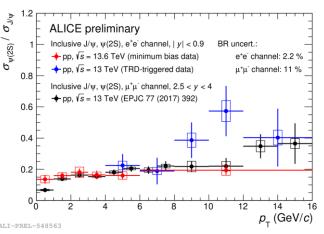
Data analysis procedure

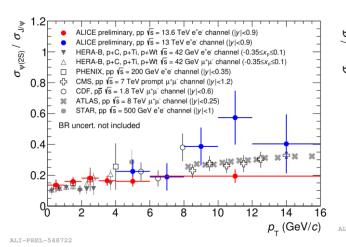
 \triangleright Inclusive charmonia are reconstructed in e⁺e⁻ channel at midrapidity (|y| < 0.9) down to $p_T = 0$.

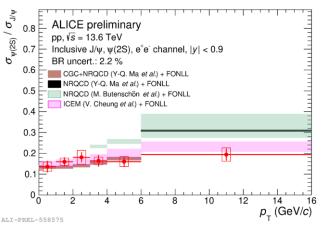
$$\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi}} = \frac{N_{\psi(2S)}}{N_{J/\psi}} \frac{(A \times \varepsilon)_{J/\psi}}{(A \times \varepsilon)_{\psi(2S)}} \frac{BR_{J/\psi \to ee}}{BR_{\psi(2S) \to ee}}$$

- ➤ Dataset:
 - ightharpoonup pp collisions at $\sqrt{s} = 13.6$ TeV collected in 2022 with the ALICE upgraded detector.
 - \gt 524 × 10⁹ minimum-bias (MB) events used in this analysis thanks to the continuous readout.
- \triangleright Electron identification via TPC dE/dx.
- > Signal extraction:
 - Signal shapes are described by two Crystal Ball functions. Possible differences between the J/ ψ and ψ (2S) shapes are assigned as systematic uncertainties.
- The significance of J/ ψ is about 462 and the significance of $\psi(2S)$ reach to nearly 20.

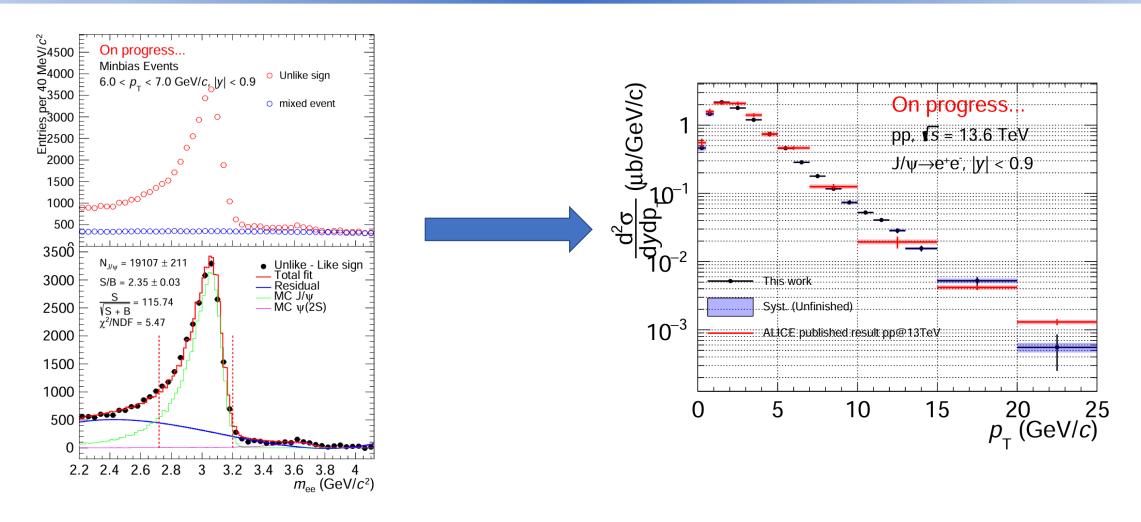

Results


- The result (red point) is shown together with existing results from ALICE at forward rapidity and from other experiments.
 - The uncertainty is reduced because of the improvement of statistics.
 - ➤ In agreement with other results.
 - ➤ No significant energy and rapidity dependence.
 - \triangleright Slight p_T dependence (also expected from models).
- Comparison with models:
 - > NRQCD overestimates the ratio.
 - ightharpoonup CGC + NRQCD describes the ratio at low $p_{\rm T}$ up to 6 GeV/c.
 - > ICEM can reproduce the data.
- The first preliminary results in ALICE Run 3.
- ➤ Reported by CERN News.




https://home.cern/news/news/physics/alice-reports-new-charmonia-measurements-lhc-run-3

Paper proposal is ongoing.



J/ψ cross section measurement

 \triangleright The measurement of J/ ψ cross section is still ongoing and requesting the preliminary.

Conference

- \triangleright Quark matter 2023 (Houston, America) Poster : Measurements of inclusive J/ψ and ψ(2S) production at midrapidity in pp collisions at √s = 13.6 TeV with ALICE.
- ► CLHCP 2023 (Shanghai, China) Talk: Measurements of inclusive J/ψ and $\psi(2S)$ production at midrapidity in pp collisions at $\sqrt{s} = 13.6$ TeV with ALICE.
- \triangleright QPT 2023 (Guangdong, China) Poster: Measurements of inclusive J/ψ and ψ(2S) production at midrapidity in pp collisions at √s = 13.6 TeV with ALICE.
- ➤ QWG 2024 (Mohali, India) Talk: First psi(2S) measurement at midrapidity and Upsilon(nS) cross sections at forward rapidity in pp collisions at sqrt(s) =13 TeV at ALICE.

Summary and future plan

- The score and credit achieve the requirements.
- > Scientific research:
 - \triangleright Preliminary results of measurement of $\psi(2S)$ -to-J/ ψ ratio at midrapidity in pp collisions at 13.6 TeV using ALICE Run 3 datasets. Paper proposal is ongoing.
 - \triangleright Measurement of J/ ψ production cross section at midrapidty in pp collisions at 13.6 TeV using ALICE Run 3 datasets is ongoing and requesting the preliminary results.
- > Future plan:
 - \triangleright Finish the paper proposal of $\psi(2S)$ -to-J/ ψ ratio and preliminary requests of J/ ψ production cross section.
 - \triangleright Measure the prompt and non-prompt $\psi(2S)$ -to-J/ ψ ratio as a functions of p_T and multiplicity in Run 3.