Reduce the uncertainties

Discovering tau atom and tau mass

Jing-Hang Fu

(Beihang Univeisity)

J.H. Fu, S. Jia, X.Y. Zhou, Y.J. Zhang, C.P. Shen, C.Z. Yuan Sci.Bull. 69 (2024) 1386-1391 (arXiv:2305.00171 [hep-ph])

2024.11.19 @ SYSU

Outline

1 Introduction $\tau^+\tau^-$ atom τ mass

- **2** The frame of Calculation
- **3** Reduce the uncertainties
- **4** Summary

 $au^+ au^-$ atom

au mass

2 The frame of Calculation

3 Reduce the uncertainties

1 Introduction $\tau^+\tau^-$ atom

au mass

2 The frame of Calculation

3 Reduce the uncertainties

QED atom

- **1** QED atoms (e^+e^- , μ^+e^- , τ^+e^- , $\mu^+\mu^-$, $\tau^+\mu^-$, $\tau^+\tau^-$), composed of unstructured, point-like lepton pairs, are simpler than hydrogen formed of a proton and an electron.
- 2 The properties of QED atoms have been studied to test QED, fundamental symmetries, New Physics, gravity, and so on (hep-ex/0106103, 0912.0843, 1710.01833, 1802.01438, Phys.Rept. 975 (2022) 1-61).

The Frame of Calculation

Positronium

- Only positronium (e⁺e⁻) and muonium (µ⁺e⁻) were discovered in 1951 and 1960 respectively.
- 2 Positronium was discovered by Martin Deutsch in 1951.
- Solution of the applied to medicine and biology: Nature Reviews Physics 1 (2019)527, Rev. Mod. Phys. 95 (2023) 021002.

The Frame of Calculatio

$au^+ au^-$ atom

- 1 $\tau^+\tau^-$ atom is the smallest QED atom for Bohr radius is 30.4 fm (Moffat:1975uw)
- 2 $\tau^+\tau^-$ atom is named tauonium (Avilez:1977ai,Avilez:1978sa), ditauonium (2204.07269, 2209.11439), or true tauonium (2202.02316).
- **3** We name them following charmonium: $J_{\tau}(nS)$ for $n^{2S+1}L_J = n^3S_1$ and $J^{PC} = 1^{--}$, $\chi_{\tau J}(nP)$ for $n^{2S+1}L_J = (n+1)^3P_J$ and $J^{PC} = J^{++}$.
- **4** The production η_{τ} (2202.02316), and J_{τ} (2302.07365).

The Frame of Calculation

Reduce the uncertainties

Summary 000

$e^+e^- ightarrow J_ au ightarrow \mu^+\mu^-$ at STCF, 2302.07365

TABLE IV: Cross sections and expected number of events for the *s*-channel production of ortho-ditauonium (\mathcal{T}_1), and for the $\tau^+\tau^$ and (background) $\mu^+\mu^-$ continua, in e^+e^- at $\sqrt{s} \approx m_T$ at various facilities. The last column lists the expected signal statistical significance.

Colliding system, \sqrt{s} ($\delta_{\sqrt{s}}$ spread), \mathcal{L}_{int} , experiment		σ			Ν		S/\sqrt{B}
	${\mathcal T}_1$	$ au^+ au^-$	$\mu^+\mu^-$	${\mathcal T}_1$	$\mathcal{T}_1 \to \mu^+ \mu^-$	$\mu^+\mu^-$	
e^+e^- at 3.5538 GeV (1.47 MeV), 5.57 pb ⁻¹ , BES III	1.9 pb	117 pb	6.88 nb	10.4	2.1	38 300	0.01σ
e^+e^- at $\sqrt{s} \approx m_T$ (1.24 MeV), 140 pb ⁻¹ , BES III	2.2 pb	103 pb	6.88 nb	310	63	$9.63\cdot 10^5$	0.06σ
e^+e^- at $\sqrt{s} \approx m_T$ (1 MeV), 1 ab ⁻¹ , STCF	2.6 pb	95 pb	6.88 nb	$2.6\cdot 10^6$	$5.3\cdot10^5$	$6.88\cdot 10^9$	6.4σ
e^+e^- at $\sqrt{s} \approx m_T$ (100 keV), 0.1 ab ⁻¹ , STCF	22 pb	46 pb	6.88 nb	$2.2\cdot 10^6$	$4.5\cdot 10^5$	$6.88\cdot 10^8$	17σ

- **1** The statistical significance, S/\sqrt{B} is 6.4 σ (17 σ) with 1 ab^{-1} data and $\delta_W = 1(0.1)$ MeV.
- 2 Monochromatized beams can also provide a very precise measurement of the tau lepton mass with an uncertainty at least $\mathcal{O}(25 \text{ keV})$.

 τ mass

2 The frame of Calculation

3 Reduce the uncertainties

au

Need more precise measurements $m_{ au},\ {\sf \Gamma}_{ au},\ (g-2)_{ au}$ in PDG 2024

$$J = \frac{1}{2}$$
Mass $m = 1776.93 \pm 0.09 \text{ MeV}$
 $(m_{\tau^+} - m_{\tau^-})/m_{\text{average}} < 2.8 \times 10^{-4}$, CL = 90%
Mean life $\tau = (290.3 \pm 0.5) \times 10^{-15} \text{ s}$
 $c\tau = 87.03 \ \mu\text{m}$
Magnetic moment anomaly = $-0.057 \text{ to } 0.024$, CL = 95%
 $\text{Re}(d_{\tau}) = -0.185 \text{ to } 0.061 \times 10^{-16} \text{ ecm}$, CL = 95%
 $\text{Im}(d_{\tau}) = -0.103 \text{ to } 0.0230 \times 10^{-16} \text{ ecm}$, CL = 95%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Frame of Calculatio

Reduce the uncertainties

$m_{ au}$ and lepton universality, 1405.1076

• Comparing the electronic branching fractions of τ and μ , lepton universality can be tested.

$$\left(rac{g_{ au}}{g_{\mu}}
ight)^2 = rac{ au_{\mu}}{ au_{ au}} \left(rac{m_{\mu}}{m_{ au}}
ight)^5 rac{B(au o e
u ar{
u})}{B(\mu o e
u ar{
u})} (1+F_W)(1+F_{\gamma}),$$

• BESIII measurement, 1405.1076

$$\left(rac{g_{ au}}{g_{\mu}}
ight)^2 = 1.0016 \pm 0.0042,$$

The Frame of Calculation

Reduce the uncertainties

Summary 000

Measured m_{τ} , 175 M enents with 190 fb⁻¹, Belle II 2305.19116

$$\delta m_{\tau} = \left(\frac{\partial \sigma}{\partial m_{\tau}}\right)^{-1} \cdot \sqrt{\frac{\sigma}{\mathcal{L}}}$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

The Frame of Calculation

Reduce the uncertainties

Summary 000

m_{τ} measurement at BESIII, 1405.1076

Scan	$E_{\rm CM}$ (MeV)	$\mathcal{L}(\mathrm{nb}^{-1})$	_	2.0 [• • • • • • • • • • • • • • • • • •
J/ψ	3088.7	78.5 ± 1.9	$\widehat{\mathbf{O}}$	
	3095.3	219.3 ± 3.1	č	
	3096.7	243.1 ± 3.3	J	15
	3097.6	206.5 ± 3.1		
	3098.3	223.5 ± 3.2	ō	
	3098.8	216.9 ± 3.1	Ę;	
	3103.9	317.3 ± 3.8	Ö	1.0 -
au	3542.4	4252.1 ± 18.9	Ð	
	3553.8	5566.7 ± 22.8	S	
	3561.1	3889.2 ± 17.9	S	
	3600.2	9553.0 ± 33.8	õ	
ψ'	3675.9	787.0 ± 7.2	0	- / -
	3683.7	823.1 ± 7.4	了 了	
	3685.1	832.4 ± 7.5	O	
	3686.3	1184.3 ± 9.1		0.0
	3687.6	1660.7 ± 11.0		3540 3550 3560 3570 3580 3590 3600 3610
	3688.8	767.7 ± 7.2		$M/(M_{O})/$
	3693.5	1470.8 ± 10.3		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Statistical uncertainty < 45 keV, systematic uncertainty 90 keV, 1812.10056

Three energy regions:

- Low energy region Point 1, 14 pb⁻¹, to determine background
- Near threshold Point 2, 39 pb⁻¹ and point 3, 26 pb⁻¹, to determine tau mass
- High energy region Point 4, 7 pb⁻¹ for X² check Point 5, 14 pb⁻¹ to determine detection efficiency

Total lum. ~100pb⁻¹, uncertainty: 0.1MeV

We obtain more than 130 pb⁻¹ tau scan data!

Zhang Jianyong

2 The frame of Calculation

3 Reduce the uncertainties

4 Summary

The Frame of Calculation

Reduce the uncertainties

$e^+e^- o au^+ au^- o X^+Y^- ar{ u} u$ around the $au^+ au^-$ production threshold

1 Cross sections in BESIII, 1405.1076

$$\sigma(E_{\rm CM}, m_{\tau}, \delta_w^{\rm BEMS}) = \frac{1}{\sqrt{2\pi}\delta_w^{\rm BEMS}} \int_{2m_{\tau}}^{\infty} dE'_{\rm CM} e^{\frac{-(E_{\rm CM} - E'_{\rm CM})^2}{2(\delta_w^{\rm BEMS})^2}} \int_0^{1-\frac{4m^2}{E'_{\rm CM}}} dx F(x, E'_{\rm CM}) \frac{\sigma_1(E'_{\rm CM}\sqrt{1-x}, m_{\tau})}{|1-\underline{\prod}(E_{\rm CM})|^2}$$

2 Updated cross sections

$$\sigma_{ex}(W, m_{\tau}, \Gamma_{y}, \delta_{w}) = \int_{m(J_{\tau})}^{\infty} dW' \frac{e^{-\frac{(W-W')^{2}}{2\delta_{w}^{2}}}}{\sqrt{2\pi}\delta_{w}} \int_{0}^{1-\frac{(W(J_{\tau})^{2})}{W'^{2}}} dx F(x, W') \frac{\bar{\sigma}(W'\sqrt{1-x}, m_{\tau}, \Gamma_{y})}{|1-\Pi(W'\sqrt{1-x})|^{2}}.$$

3 Difference: shift $2m_{\tau}$ to $m(J_{\tau})$ in the range of integration and add Γ_{τ} as a variable of the cross sections after including $J_{\tau}(nS)$ atom.

The Frame of Calculation

Reduce the uncertainties

$\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau})$, orthogonal complete normalized basis, 1312.4791

$$ar{\sigma}(W, m_{ au}, \Gamma_{ au}) = rac{4\pi lpha^2}{3W^2} rac{24\pi}{W^2} ext{Im} \left[G_{X^+Y^-ar{
u}
u}(0, 0, W - 2m_{ au})
ight],$$

2 $G_{X^+Y^-\bar{\nu}\nu}(\vec{r},\vec{r}',E)$ represents a Green function of $\tau^+\tau^-$ currents in the non-relativistic effective theory, where $\tau^+\tau^-$ decay to $X^+Y^-\bar{\nu}\nu$

$$G_{X^+Y^-\bar{\nu}\nu}(\vec{r},\vec{r}',E) = \sum_{n} \frac{\psi_n(\vec{r})\psi_n^*(\vec{r}')}{E_n - E - i\epsilon} Br[n \to X^+Y^-\bar{\nu}\nu] + \int \frac{d^3\vec{k}}{2\pi^3} \frac{\psi_{\vec{k}}(\vec{r})\psi_{\vec{k}}^*(\vec{r}')}{E_{\vec{k}} - E - i\epsilon},$$

3 Then

$$\bar{\sigma}(W) = \bar{\sigma}^{J_{\tau}}(W) + \bar{\sigma}(W)_{con.}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 ・ ○ < ♡

Breit-Wigner formula

 Green function approach to bound states is consistent with Breit-Wigner formula for a narrow bound states

$$\bar{\sigma}^{J_{\tau}}(W) = \sum_{n} \frac{6\pi^2}{W^2} \delta(W - m(J_{\tau}(nS))) \Gamma(J_{\tau}(nS) \to e^+e^-) Br(J_{\tau}(nS) \to X^+Y^- \not \in)$$

Reduce the uncertainties

Decay mode of $J_{\tau}(nS)$

$$\begin{split} &\Gamma_{\rm total}(J_{\tau}(nS)) = \Gamma_{\rm Annihilation}(J_{\tau}(nS)) + \Gamma_{\rm Weak}(J_{\tau}(nS)) + \Gamma_{\rm E1}(J_{\tau}(nS)) \\ &\Gamma_{\rm Annihilation}(J_{\tau}(nS)) = (2+R)\Gamma(J_{\tau}(nS) \to e^+e^-) \\ &\Gamma_{\rm Weak}(J_{\tau}(nS)) = 2\Gamma(\tau \to \nu X^-) \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Parameters

1 Parameters

2 The resulting NLO expression for $\bar{\sigma}^{J_{\tau}}(W)$ is given by

$$ar{\sigma}^{J_{ au}}(W) = (3.12 \pm 0.02) \, \delta\left(rac{W - 2m_{ au} + 13.8 \, \mathrm{keV}}{1 \, \mathrm{MeV}}
ight) \, \, \mathrm{pb},$$

Decay width of $J_{\tau}(nS)$

TABLE II: The decay data of $J_{\tau}(nS)$ in meV.

n	$\Gamma^{J_\tau(nS)}_{e^+e^-}$	$2\Gamma_{\tau}$	$\Gamma_{E1}^{J_\tau(nS)}$	$\Gamma^{J_{\tau}(nS)}_{\text{total}}$	$\Gamma^{J_{\tau}(nS)}_{e^+e^-}Br^{J_{\tau}(nS)}_{X^+Y^-E}$
1	6.484	4.535	0.0000	32.695	0.899
2	0.808	4.535	0.0000	8.044	0.455
3	0.239	4.535	0.0072	5.573	0.195
$\sum_{n=1}^{\infty}$					1.795 ± 0.012

The Frame of Calculation

Reduce the uncertaintie

Summary 000

Cross sections from $J_{\tau}(nS)$

1 Then we get the cross section $\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau})$

$$ar{\sigma}(W) = (3.12 \pm 0.02) \delta\left(rac{W - 2m_{ au} + 13.8 \mathrm{keV}}{\mathrm{MeV}}
ight) \ \mathrm{pb} + heta(W - 2m_{ au}) ar{\sigma}_{con.}(W)$$

2 Continue $\bar{\sigma}_{con.}(2m_{\tau})$

 $\bar{\sigma}_{Continue}(2m_{\tau}) = 236 \text{ pb}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

The Frame of Calculation 0000000●

Reduce the uncertaintie

Summary 000

Cross sections from $J_{\tau}(nS)$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

2 The frame of Calculation

3 Reduce the uncertainties

・ロト・日本・日本・日本・日本・日本

Discovering tau atom and tau mass

(

Reduce the uncertainties

1 The measured cross secitons

$$\sigma^{X^+Y^-\notin}(W) = \frac{N^{X^+Y^-\notin}(W)}{\mathcal{L}\varepsilon}$$

- 2 Uncertaintiy of ISR($\sim 0.5\%$ @ BESIII), the vacuum polarization factor (0.14%), and the integrated luminosity ($\sim 0.5\%$ @ BESIII) are all larger than 0.1%.
- **3** Systematical uncertainty of cross section measurement at STCF maybe > 0.2%.
- **4** The significance of 5σ require $S/\sqrt{(\Delta_{stat.}(B+S))^2 + (\Delta_{syst.}(B+S))^2} > 5$.
- **6** If Ignore statistical uncertainty, systematic significance of 5σ require S/B > 1% at STCF.

 $J/\psi(1S)$

The Frame of Calculation

Reduce the uncertainties

Uncertainty of J/ψ decay: 10 B events, 0.5% uncertainty

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 3096.900 \pm 0.006$ MeV

Full width $\Gamma = 92.6 \pm 1.7 \text{ keV}$ (S = 1.1)

Scale factor/ p

$J/\psi(1S)$ DECAY MODES	Fra	ction (Γ _i /Γ)	Confidence level (MeV/c)
hadrons	(87.7 \pm 0.5) %	_
$virtual\gamma o hadrons$	((13.50 \pm 0.30) %	-
ggg	(64.1 \pm 1.0) %	-
$\gamma g g$	(8.8 \pm 1.1) %	-
<u>e+ e-</u>	(5.971 \pm 0.032) %	1548
$e^+ e^- \gamma$	[hhaa] (8.8 ± 1.4 $) imes 10^{-1}$	-3 1548
$\mu^+ \mu^-$	(5.961 \pm 0.033) %	1545

Reduce the uncertainties

1 We introduce $R_{X^+Y^-\not\!\!\!E}$, ratio of the cross sections, as

$$R_{X^+Y^-\not\in}(W,\delta_W,m_\tau)=\frac{\sigma(W,m_\tau,\Gamma_\tau,\delta_W)}{\sigma^{\mu^+\mu^-}(W,\delta_W)}.$$

Here, $\sigma^{\mu^+\mu^-}(W, \delta_W)$ is calculated with $\bar{\sigma}^{\mu^+\mu^-}(W) = \frac{4\pi\alpha^2(1+3\alpha/4\pi)}{3W^2}$. 2 The measurement is

$$\mathcal{R}_{X^+Y^-\not\in}(W,\delta_W,m_\tau)=\frac{N_{X^+Y^-\not\in}}{N_{\mu^+\mu^-}}.$$

(ロ) (四) (三) (三) (三) (○) (○)

The Frame of Calculation

Reduce the uncertainties

Fit approach

1 The least squares method

$$\chi^2 = \sum_i \left(rac{\mathcal{R}_i^{ ext{data}} - \hat{\mathcal{R}}_i(m_ au)}{\Delta \mathcal{R}_i^{ ext{data}}}
ight)^2.$$

- 2 $\hat{\mathcal{R}}_i(m_{\tau})$ is the theoretical fit function with J_{τ} . The expected m_{τ} can be determined from the minimum value of χ^2 .
- **3** To quantify the significance of the J_{τ} , another fit is performed by excluding the $\bar{\sigma}^{J_{\tau}}$ in $\hat{\mathcal{R}}_i$. This leads to a new minimum value $\chi^2_{\text{without } J_{\tau}}$ at a new τ mass.
- 4 The significance of the J_{τ} atom can be calculated from $\Delta \chi^2_{J_{\tau}} = \chi^2_{\text{without } J_{\tau}} \chi^2$.

Reduce the uncertainties

Determine energy points

1 The least squares method

$$\chi^2 = \sum_{i=1}^3 \chi_i^2 = \sum_{i=1}^3 \left(\frac{\mathcal{R}_i^{\text{data}} - \hat{\mathcal{R}}_i(m_{\tau})}{\Delta \mathcal{R}_i^{\text{data}}} \right)^2,$$

2 Where $\mathcal{R}_{i}^{\text{data}} = \frac{N_{x+y-\not{E},i}^{\text{data}}}{N_{\mu+\mu-,i}^{\text{data}}}$ and $\Delta \mathcal{R}_{i}^{\text{data}}$ is its statistical uncertainty (the systematic uncertainty is discussed below).

- **3** The values of $\frac{\chi_i^2}{L_i}$ are relatively large at W = 3552.56 and 3555.83 MeV.
- ④ An additional energy point of 3549.00 MeV is needed to obtain the whole lineshape of the $e^+e^- \rightarrow X^+Y^- \notin$ cross section.

TABLE III: Numbers of $e^+e^- \rightarrow X^+Y^- \not\!\!\!E$ and $\mu^+\mu^-$ events and their statistical uncertainties in the pseudoexperiments with $m_\tau = m_\tau^{\text{PDG}}$.

i	$\mathcal{L}_i/\mathrm{fb}^{-1}$	W_i/MeV	$N^{\mathrm{data}}_{X^+Y^- olimits, i}$	$N^{ m data}_{\mu^+\mu^-,\ i}$
1	5	3549.00	$0.1^{+1.2}_{-0.1}$	$(1.1764 \pm 0.0003) \times 10^7$
2	500	3552.56	$(8.772 \pm 0.009) \times 10^5$	$(1.17394 \pm 0.00003) \times 10^9$
3	1000	3555.83	$(2.4052\pm0.0005)\times10^7$	$(2.34331 \pm 0.00005) \times 10^9$

Reduce the uncertainties

Determine χ^2 and m_{τ}

1 A least-square fit is applied

$$\chi^2 = \sum_{i=1}^3 \left(rac{\mathcal{R}_i^{ ext{data}} - \hat{\mathcal{R}}_i(m_{ au})}{\Delta \mathcal{R}_i^{ ext{data}}}
ight)^2,$$

2 Where $\mathcal{R}_{i}^{\text{data}} = \frac{N_{x+y-\not\in,i}^{\text{data}}}{N_{\mu+\mu^{-},i}^{\text{data}}}$ and $\Delta \mathcal{R}_{i}^{\text{data}}$ is its statistical uncertainty.

3 And $\hat{\mathcal{R}}_i(m_{\tau})$ is the expected ratio at the τ mass m_{τ} to be determined from the fit.

The Frame of Calculatio

Reduce the uncertainties

Summary 000

Ratio of the events

◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 → の Q (?)

The Frame of Calculatio

Reduce the uncertainties

Summary 000

The cross section of J_{τ}

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ � � �

Reduce the uncertainties

The statistical significance distribution in 10⁵ sets pseudoexperiments

(4日) 4回) 4目) 4目) 目 の()

The Frame of Calculation

Reduce the uncertainties

The significance of $J_{\tau}(nS)$ as a function of $m_{\tau}^{
m Natural} - m_{\tau}^{
m PDG}$

- イロト (四) (注) (注) (注) (の)()

The significance of $J_{\tau}(nS)$ in 10⁵ sets pseudoexperiments

- **1** The average value of χ^2/ndf is 0.7/2 with $J_{\tau}(nS)$, and 51/2 without $J_{\tau}(nS)$.
- 2 Considering the systematic uncertainties, the average signal significance of J_{τ} is 6.7 σ , which is 6.8 σ without systematic uncertainties.
- 3 These data samples correspond to 350 (175) days' runtime at the STCF(SCTF).
- 4 If the δ_W is reduced to 0.1 MeV, the required integrated luminosity is only 66 fb⁻¹.

 $m_{ au}$

() With these data samples, a high precision τ mass is obtained

 $m_{ au} = (1.776.860.00 \pm 0.25 \text{ (stat.)} \pm 0.99 \text{ (syst.)}) \text{ keV}.$

2 The fit with the $J_{\tau}(nS)$ contribution removed gives a shift of -4 keV relative to the nominal fit with both the bound state and continuum contributions.

The systematic uncertainties $\sigma_{m_{\tau}}$

- 1 The uncertainty of the energy scale W is estimated according to the VEPP-4M, which had a characteristic uncertainty of 1.5 keV in the beam energy in the $\psi(2S)$ mass scan (hep-ex/0306050). The uncertainty of W_2 (W_3) is estimated to be $1.5\sqrt{2} = 2.12$ keV, leading to 0.72 (0.35) keV in $\sigma_{m_{\tau}}$.
- 2 $\sigma_{m_{\tau}}$ from energy spread and energy scale are 16 keV and $^{+22}_{-86}$ keV from BESIII (1405.1076), and 25 keV and 40 keV from KEDR (JETP Lett. 85 (2007) 347-352). Take the maximum ratio of 16/22 ~ 0.73, leading to $0.73 \times \sqrt{0.72^2 + 0.35^2} = 0.59$ keV in $\sigma_{m_{\tau}}$.
- **④** By exchanging the NLO correction with the NNLO correction in the calculation of the $e^+e^- \rightarrow X^+Y^- \not\models$ cross sections, which is included in 0.07 keV in σ_{m_τ} due to the theoretical accuracy.

The Frame of Calculatio

Reduce the uncertainties

The systematic uncertainties $\sigma_{m_{\tau}}$

Sources	$\sigma_{m_{\tau}}/{ m keV}$
Energy scale of W_2	0.72
Energy scale of W_3	0.35
Energy spread δ_W	0.59
Efficiency	0.04
Theory	0.07
Systematic uncertainties	0.99

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ■ ○ ○ ○ ○

- 2 The frame of Calculation
- **3** Reduce the uncertainties

・ロト・日本・日本・日本・日本・日本

Summary

- **1** We show that the $\tau^+\tau^-$ atom can be observed with a significance larger than 5σ with a 1.5 ab⁻¹ data sample at STCF or SCTF, by measuring the cross section ratio of the processes $e^+e^- \rightarrow X^+Y^-\not\!\!\!E$ and $e^+e^- \rightarrow \mu^+\mu^-$.
- 2 With the same data sample, the τ lepton mass can be measured with a precision of 1 keV, a factor of 100 improvement over the existing world best measurements.

Thank you for your listening!

(ロ) (四) (三) (三) (三) (○) (○)

Discovering tau atom and tau mass