[Introduction](#page-3-0) **[The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0)** [Summary](#page-40-0) Summary Reduce the uncertainties Summary

Discovering tau atom and tau mass

Jing-Hang Fu

(Beihang Univeisity)

J.H. Fu, S. Jia, X.Y. Zhou, Y.J. Zhang, C.P. Shen, C.Z. Yuan Sci.Bull. 69 (2024) 1386-1391 (arXiv:2305.00171 [hep-ph])

2024.11.19 @ SYSU

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

Outline

1 [Introduction](#page-3-0) $\tau^+\tau^-$ [atom](#page-4-0) τ [mass](#page-9-0)

- 2 [The frame of Calculation](#page-15-0)
- ³ [Reduce the uncertainties](#page-24-0)
- 4 [Summary](#page-40-0)

1 [Introduction](#page-3-0)

 $\tau^+\tau^-$ [atom](#page-4-0)

 τ [mass](#page-9-0)

2 [The frame of Calculation](#page-15-0)

³ [Reduce the uncertainties](#page-24-0)

1 [Introduction](#page-3-0) $\tau^+\tau^-$ [atom](#page-4-0)

 τ [mass](#page-9-0)

2 [The frame of Calculation](#page-15-0)

³ [Reduce the uncertainties](#page-24-0)

- D QED atoms (e⁺e[−], μ⁺e[−], τ⁺e[−], μ⁺μ[−], τ⁺μ[−], τ⁺τ−), composed of unstructured, point-like lepton pairs, are simpler than hydrogen formed of a proton and an electron.
- **2** The properties of QED atoms have been studied to test QED, fundamental symmetries, New Physics, gravity, and so on (hep-ex/0106103, 0912.0843, 1710.01833, 1802.01438, Phys.Rept. 975 (2022) 1-61).

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0) Summary

Positronium

- $\, {\bf 0} \,$ Only positronium $({e^+e^-})$ and muonium (μ^+e^-) were discovered in 1951 and 1960 respectively.
- 2 Positronium was discovered by Martin Deutsch in 1951.
- **3** Positronium can be applied to medicine and biology: Nature Reviews Physics 1 (2019)527, Rev. Mod. Phys. 95 (2023) 021002.

- \mathbf{D} $\tau^+\tau^-$ atom is the smallest QED atom for Bohr radius is 30.4 fm (Moffat:1975uw)
- $\mathbf{2}$ $\tau^+\tau^-$ atom is named tauonium (Avilez:1977ai,Avilez:1978sa), ditauonium (2204.07269, 2209.11439), or true tauonium (2202.02316).
- $\,$ We name them following charmonium: $\, J_{\tau} (n \mathcal{S})$ for $\,n^{2S+1} L_J = n^3 S_1 \,$ and $J^{PC} = 1^{--}$, $\chi_{\tau J}(nP)$ for $n^{2S+1}L_J = (n+1)^3 P_J$ and $J^{PC} = J^{++}$.
- 4 The production η_{τ} (2202.02316), and J_{τ} (2302.07365).

[Introduction](#page-3-0) The Frame of Calculation Reduce the uncertainties [Summary](#page-40-0) Summary **Introduction**
 its beam energy measurement system (BEMS) application of the system of th[e same technique at th](#page-24-0)e same technique at the same technique at the same technique at the same technique at the same of the same o

[c](#page-11-0)[o](#page-12-0)[ll](#page-13-0)[id](#page-14-0)ers can reach accuraci[es](#page-15-0) [o](#page-16-0)[f](#page-17-0) [t](#page-18-0)[h](#page-19-0)[e](#page-20-0)[ac](#page-22-0)[tu](#page-23-0)al c.m. energy not worse than 50 [k](#page-24-0)[e](#page-25-0)[V](#page-26-0) [\[](#page-28-0)[4](#page-29-0)[8\]](#page-30-0)[.](#page-31-0)[L](#page-33-0)[a](#page-34-0)[st](#page-35-0)[b](#page-37-0)[ut](#page-38-0) [n](#page-39-0)ot least, on the c.m.

$e^+e^- \rightarrow J_\tau \rightarrow \mu^+\mu^-$ at STCF, 2302.07365 ∂_{τ} in the literature μ at Situation **s** = 50 keV at the tau-pair production threshold threshold threshold threshold theoretical threshold threshold

TABLE IV: Cross sections and expected number of events for the *s*-channel production of ortho-ditauonium ($τ_1$), and for the τ⁺τ⁻ and (background) $\mu^+\mu^-$ continua, in e^+e^- at $\sqrt{s} \approx m_\tau$ at various facilities. The last column lists the expected signal statistical significance.

- Table IV lists the expected resonant T¹ cross sections and number of events at various *e e* facilities. We list first **D** The statistical significance, S/\sqrt{B} is 6.4 σ (17 σ) with 1 ab^{-1} data and $\delta_W = 1(0.1) \text{ MeV}.$ \mathbf{u}) where the small numbers to be observed on top of the orders-of-top of the orders-of-top of the orders-of-top orders-of-top orders-of-top orders-of-top orders-of-top orders-of-top orders-of-top orders-of-top orde
- magnitude larger dimuon continuum background. On the other hand, the STCF is expected to integrate 1 about 1 and **2** Monochromatized beams can also provide a very precise measurement of the tau ייט*ט*ווי
. lepton mass with an uncertainty at least $\mathcal{O}(25$ keV) . \blacksquare

*B = 6.5 For the STCF faci[lity](#page-7-0), we consider in a state in
The possibility t[o](#page-9-0) [mo](#page-7-0)[no](#page-8-0)[ch](#page-9-0)[ro](#page-3-0)[m](#page-4-0)[a](#page-8-0)[ti](#page-9-0)[z](#page-2-0)[e t](#page-3-0)[h](#page-14-0)[e](#page-15-0) possibility to monochromatize the possibility of the possibility of th*

nificance around *S*/

beams down to δ[√]

 τ [mass](#page-9-0)

2 [The frame of Calculation](#page-15-0)

³ [Reduce the uncertainties](#page-24-0)

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0)

Need more precise measurements $m_\tau,~\Gamma_\tau,~(g-2)_\tau$ in PDG 2024

$$
J = \frac{1}{2}
$$

Mass m = 1776.93 ± 0.09 MeV
 $(m_{\tau^+} - m_{\tau^-})/m_{\text{average}} < 2.8 \times 10^{-4}$, CL = 90%
Mean life r = (290.3 ± 0.5) × 10⁻¹⁵ s
 $c\tau$ = 87.03 μ m
Magnetic moment anomaly = -0.057 to 0.024, CL = 95%
Re(d_{τ}) = -0.185 to 0.061 × 10⁻¹⁶ e cm, CL = 95%
Im(d_{τ}) = -0.103 to 0.0230 × 10⁻¹⁶ e cm, CL = 95%

 \sim 0.50 μ m, \sim 10 μ \sim 10 μ \sim 10 μ

イロト イ団ト イミト イミト・(ミ) めんぐ

• Comparing the electronic branching fractions of τ and μ , lepton universality can be tested.

$$
\left(\frac{g_{\tau}}{g_{\mu}}\right)^2 = \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^5 \frac{B(\tau \to e \nu \bar{\nu})}{B(\mu \to e \nu \bar{\nu})} (1 + F_W)(1 + F_{\gamma}),
$$

• BESIII measurement, 1405.1076

$$
\left(\frac{g_{\tau}}{g_{\mu}}\right)^2=1.0016\pm0.0042,
$$

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0) Summary

Measured m_{τ} , 175 M enents with 190 fb $^{-1}$, Belle II 2305.19116

$$
\delta m_{\tau} = \left(\frac{\partial \sigma}{\partial m_{\tau}}\right)^{-1} \cdot \sqrt{\frac{\sigma}{\mathcal{L}}}
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

[Introduction](#page-3-0) The Frame of Calculation [Reduce the uncertainties](#page-24-0) Summary Summary [w](#page-10-0)[i](#page-12-0)[t](#page-13-0)[h](#page-14-0) error bars [are data an](#page-15-0)d the histo[gr](#page-24-0)[a](#page-26-0)[m](#page-28-0)[i](#page-32-0)[s](#page-33-0) [τ](#page-36-0) [p](#page-39-0)air inclusive [MC.](#page-40-0) The upper two plots are from the second scan point, the

m_τ measurement at BESIII, 1405.1076 are from the third scan point, and the lower two are from the fourth scan point.

イロメ イ押 トイヨ トイヨメ È. 299

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0) Summary

$\textsf{Statistical}$ uncertainty $<$ 45 keV, systematic uncertainty 90 keV, 1812.10056

Three energy regions:

- \triangleright Low energy region Point 1, 14 pb⁻¹, to determine background
- Near threshold Point 2, 39 pb⁻¹ and point 3, 26 pb-1 , to determine tau mass
- \triangleright High energy region Point 4, 7 pb⁻¹ for X² check Point 5, 14 pb⁻¹ to determine detection efficiency

Total lum. ~100pb⁻¹, uncertainty: 0.1MeV

We obtain more than 130 pb⁻¹ tau scan data!

1 [Introduction](#page-3-0)

2 [The frame of Calculation](#page-15-0)

³ [Reduce the uncertainties](#page-24-0)

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

[Introduction](#page-3-0) **[The Frame of Calculation](#page-15-0) Accompany Reduce** the uncertainties [Summary](#page-40-0) Summary $e^+e^-\to\tau^+\tau^-\to X^+Y^-\bar\nu\nu$ around the $\tau^+\tau^-$ production threshold

Cross sections in BESIII, 1405.1076

$$
\sigma(E_{\rm CM},m_{\tau},\delta_w^{\rm BEMS})=\frac{1}{\sqrt{2\pi}\delta_w^{\rm BEMS}}\int_{\overline{\mathcal{C}\,m}}^{\infty}dE'_{\rm CM}e^{\frac{-(E_{\rm CM}-E'_{\rm CM})^2}{2(\delta_w^{\rm BEMS})^2}}\int_0^{1-\frac{\left(\overline{\mathbf{M}}m\right)^2}{E''_{\rm CM}}}\!dxF(x,E'_{\rm CM})\frac{\sigma_1(E'_{\rm CM}\sqrt{1-x},m_{\tau})}{|1-\underline{\Pi}(E_{\rm CM})|^2}
$$

² Updated cross sections

$$
\sigma_{ex}(W,m_{\tau},\bigcap_{v} \delta_{w}) = \underbrace{\int_{m(J_{\tau})}^{\infty} dW'}_{w} \underbrace{e^{-\frac{(W-W')^{2}}{2\delta_{w}^{2}}} \sqrt{1-\frac{w(J_{\tau})^{2}}{W'^{2}}} dx F(x,W') \frac{\bar{\sigma}(W' \sqrt{1-x},m_{\tau},\bigcap_{v} \sqrt{1-x}}{|1-\Pi(W' \sqrt{1-x})|^{2}}.
$$

3 Difference: shift $2m_{\tau}$ to $m(J_{\tau})$ in the range of integration and add Γ_{τ} as a variable of the cross sections after including $J_{\tau}(nS)$ atom. **KORK E KERKERKERKER** [Introduction](#page-3-0) **[The Frame of Calculation](#page-15-0) Accompany Reduce** the uncertainties [Summary](#page-40-0) Summary

$\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau})$, orthogonal complete normalized basis, 1312.4791

 $\mathbf{0} \bar{\sigma}(W, m_{\tau}, \Gamma_{\tau})$

$$
\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau}) = \frac{4\pi\alpha^2}{3W^2} \frac{24\pi}{W^2} \text{Im} [G_{X^+Y^-\bar{\nu}\nu}(0,0,W-2m_{\tau})],
$$

 $\mathbf{2}$ $G_{\mathsf{X^+Y^-}\bar{\nu}\nu}(\vec{r},\vec{r}^{\,\prime},E)$ represents a Green function of $\tau^+\tau^-$ currents in the non-relativistic effective theory, where $\tau^+\tau^-$ decay to $X^+Y^-\bar\nu\nu$

$$
G_{X^+Y^-\bar{\nu}\nu}(\vec{r},\vec{r}',E)=\sum_n\frac{\psi_n(\vec{r})\psi_n^*(\vec{r}')}{E_n-E-i\epsilon}Br[n\rightarrow X^+Y^-\bar{\nu}\nu]+\int\frac{d^3\vec{k}}{2\pi^3}\frac{\psi_{\vec{k}}(\vec{r})\psi_{\vec{k}}^*(\vec{r}')}{E_{\vec{k}}-E-i\epsilon},
$$

³ Then

$$
\bar{\sigma}(W) = \bar{\sigma}^{J_{\tau}}(W) + \bar{\sigma}(W)_{con.}
$$

KED KARD KED KED E VOQO

Breit-Wigner formula

1 Green function approach to bound states is consistent with Breit-Wigner formula for a narrow bound states

$$
\bar{\sigma}^{J_{\tau}}(W)=\sum_{n}\frac{6\pi^2}{W^2}\delta(W-m(J_{\tau}(nS)))\Gamma(J_{\tau}(nS)\rightarrow e^+e^-)Br(J_{\tau}(nS)\rightarrow X^+Y^-\rlap{\,/}E)
$$

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0)

Decay mode of $J_{\tau}(nS)$

$$
\Gamma_{\text{total}}(J_{\tau}(nS)) = \Gamma_{\text{Annihilation}}(J_{\tau}(nS)) + \Gamma_{\text{Weak}}(J_{\tau}(nS)) + \Gamma_{\text{E1}}(J_{\tau}(nS))
$$

\n
$$
\Gamma_{\text{Annihilation}}(J_{\tau}(nS)) = (2 + R)\Gamma(J_{\tau}(nS) \rightarrow e^{+}e^{-})
$$

\n
$$
\Gamma_{\text{Weak}}(J_{\tau}(nS)) = 2\Gamma(\tau \rightarrow \nu X^{-})
$$

K ロ ▶ K 御 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ 約9.09

<table>\n<tbody>\n<tr>\n<th>[Introduction](#page-3-0)</th>\n<th>[The Frame of Calculation](#page-15-0)</th>\n<th>[Reduce the uncertainties](#page-24-0)</th>\n<th>[Summary](#page-40-0)</th>\n</tr>\n<tr>\n<td>00000000000</td>\n<td>000</td>\n<td>0000</td>\n</tr>\n</tbody>\n</table>

Parameters

1 Parameters

$$
m_{\tau} = m_{\tau}^{\text{PDG}} = 1776.86 \text{ MeV}, \quad R = 2.342 \pm 0.0645,
$$

\n
$$
\Gamma_{\tau} = 2.2674 \pm 0.0039 \text{ meV}, \qquad \delta_{W} = 1 \text{ MeV},
$$

\n
$$
\varepsilon_{X+Y-\not{E}} = (8 \pm 0.2)\%, \quad \varepsilon_{\mu+\mu} = 45\%,
$$

\n
$$
\alpha(0) = 1/137.036, \qquad \Delta \alpha_{\text{had}}(m_{J_{\tau}}) = (74 \pm 7) \times 10^{-4}.
$$

 $\bm{2}$ The resulting NLO expression for $\bar{\sigma}^{J_{\tau}}(W)$ is given by

$$
\bar{\sigma}^{J_{\tau}}(W) = (3.12 \pm 0.02) \delta \left(\frac{W - 2m_{\tau} + 13.8 \text{ keV}}{1 \text{ MeV}} \right) \text{ pb},
$$

where 13.8 keV =
$$
\sum_n B_n Br_{X+Y-\not{E}}^{J_\tau(nS)} \Gamma_{e^+e^-}^{J_\tau(nS)}/\sum_n Br_{X+Y-\not{E}}^{J_\tau(nS)} \Gamma_{e^+e^-}^{J_\tau(nS)}
$$
.

88 continuum process and interaction $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ 0000000000

with *Br^J*τ(*nS*) [−](#page-15-0)*[E](#page-16-0)*/

¹²¹ greater than that from *m*^τ and Γτ.

[Introduction](#page-3-0) The [Fr](#page-18-0)ame of Calculation [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0) [1](#page-13-0)**[19](#page-14-0) [being the](#page-15-0) bran[c](#page-24-0)hing frac[t](#page-25-0)[i](#page-26-0)[o](#page-32-0)[n](#page-29-0)[f](#page-33-0)raction** of **Calculation** of *[J](#page-36-0)*_{[τ](#page-38-0)} *J*_τ *J*_τ *J*_τ *J*₂ *J* [\(](#page-39-0)*nS*) →

 ΔE . The uncertainty from $J_{\tau}(nS)$. The uncertainty from R is one order of ΔE

TABLE II: The decay data of $J_{\tau}(nS)$ in meV.

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0)

Cross sections from $J_{\tau}(nS)$

1 Then we get the cross section $\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau})$

$$
\bar{\sigma}(W) = (3.12 \pm 0.02)\delta\left(\frac{W - 2m_\tau + 13.8 \text{keV}}{\text{MeV}}\right) \text{ pb} + \theta(W - 2m_\tau)\bar{\sigma}_{con.}(W)
$$

2 Continue $\bar{\sigma}_{con.}(2m_{\tau})$

 $\bar{\sigma}_{\text{Continue}}(2m_{\tau}) = 236 \text{ pb}$

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0)

Cross sections from $J_{\tau}(nS)$

 $\overline{}$

1 [Introduction](#page-3-0)

2 [The frame of Calculation](#page-15-0)

³ [Reduce the uncertainties](#page-24-0)

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶ 「 듣 → 9 Q Q

 ϵ

Reduce the uncertainties

1 The measured cross secitons

$$
\sigma^{X^+Y^- \cancel{E}}(W) = \frac{N^{X^+Y^- \cancel{E}}(W)}{\mathcal{L}\varepsilon}
$$

- **2** Uncertaintiy of ISR(\sim 0.5% © BESIII), the vacuum polarization factor (0.14%), and the integrated luminosity ($\sim 0.5\%$ © BESIII) are all larger than 0.1%.
- \bullet Systematical uncertainty of cross section measurement at STCF maybe $> 0.2\%$.
- 4 The significance of 5 σ require $S/\sqrt{(\Delta_{\mathit{stat.}}(B+S))^2+(\Delta_{\mathit{syst.}}(B+S))^2}>5.$
- **6** If Ignore statistical uncertainty, systematic significance of 5σ require $S/B > 1\%$ at STCF.

KEL KALE KELKELKAN DE

 $J/\psi(15)$

[Introduction](#page-3-0) **[The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0)** [Summary](#page-40-0) Summary Reduce the uncertainties Summary

Uncertainty of J/ψ decay: 10 B events, 0.5% uncertainty

$$
I^G(J^{PC}) = 0^-(1^{--})
$$

 $Mass | m = 3096.900 \pm 0.006 \text{ MeV}$

Full width $\Gamma=92.6\pm1.7$ keV $\quad \textrm{(S}=1.1)$

Scale factor/ p

 \textbf{D} We introduce $R_{\textsf{X}^{+} \textsf{Y}^{-} \textsf{\#}}$, ratio of the cross sections, as

$$
R_{X^+Y^-\notin}(W,\delta_W,m_\tau)=\frac{\sigma(W,m_\tau,\Gamma_\tau,\delta_W)}{\sigma^{\mu^+\mu^-}(W,\delta_W)}.
$$

Here, $\sigma^{\mu^+\mu^-}(W,\delta_W)$ is calculated with $\bar\sigma^{\mu^+\mu^-}(W)=\frac{4\pi\alpha^2(1+3\alpha/4\pi)}{3W^2}$ $\frac{1+3\alpha/4\pi}{3W^2}$. **2** The measurement is

$$
\mathcal{R}_{X^+Y^-\vec{\mathbf{E}}}(W,\delta_W,m_\tau)=\frac{N_{X^+Y^-\vec{\mathbf{E}}}}{N_{\mu^+\mu^-}}.
$$

[Introduction](#page-3-0) **[The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0)** [Summary](#page-40-0) Summary Reduce the uncertainties Summary

Fit approach

1 The least squares method

$$
\chi^2 = \sum_i \left(\frac{\mathcal{R}_i^{\text{data}} - \hat{\mathcal{R}}_i(m_\tau)}{\Delta \mathcal{R}_i^{\text{data}}} \right)^2.
$$

- $\widehat{{\mathcal R}}_i(m_\tau)$ is the theoretical fit function with J_τ . The expected m_τ can be determined from the minimum value of $\chi^2.$
- \bullet To quantify the significance of the J_{τ} , another fit is performed by excluding the $\bar{\sigma}^{J_{\tau}}$ in $\hat{\mathcal{R}}_i$. This leads to a new minimum value $\chi^2_{\rm without}\,_{\tau}$ at a new τ mass.
- Φ The significance of the J_τ atom can be calculated from $\Delta\chi^2_{J_\tau}=\chi^2_{\rm without}\,J_\tau-\chi^2.$

KEL KALE KELKELKAN DE

1 The least squares method

$$
\chi^2 = \sum_{i=1}^3 \chi_i^2 = \sum_{i=1}^3 \left(\frac{\mathcal{R}_i^{\text{data}} - \hat{\mathcal{R}}_i(m_\tau)}{\Delta \mathcal{R}_i^{\text{data}}} \right)^2,
$$

2 Where $\mathcal{R}^{\text{data}}_{i} = \frac{N^{\text{data}}_{X+Y-\cancel{E},i}}{N^{\text{data}}_{++} - \frac{1}{X}}$ $\frac{\Delta X + Y - \bar{F}, i}{N_{\text{data}}^{\text{data}}}$ and $\Delta \mathcal{R}_i^{\text{data}}$ is its statistical uncertainty (the systematic $\mu^+\mu^-,$ uncertainty is discussed below).

- **3** The values of $\frac{\chi_i^2}{\zeta_i^2}$ $\frac{\chi_i}{\mathcal{L}_i}$ are relatively large at $W = 3552.56$ and 3555.83 MeV.
- 4 An additional energy point of 3549.00 MeV is needed to obtain the whole lineshape of the $e^+e^-\to X^+Y^-\rlap{\,/}E$ cross section.

KOD KAPIKIEIK E KORA

¹⁸² pseudoexperiment pseudoexperiments with

TABLE III: Numbers of $e^+e^- \to X^+Y^-E$ and $\mu^+\mu^-$ events and their statistical uncertainties in the pseudoexperiments with $m_{\tau} = m_{\tau}^{\text{PDG}}$.

Determine χ^2 and m_τ

[Introduction](#page-3-0) **[The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0)** [Summary](#page-40-0) Summary Reduce the uncertainties Summary

1 A least-square fit is applied

$$
\chi^2 = \sum_{i=1}^3 \left(\frac{\mathcal{R}_i^{\text{data}} - \hat{\mathcal{R}}_i(m_\tau)}{\Delta \mathcal{R}_i^{\text{data}}} \right)^2,
$$

2 Where $\mathcal{R}^{\text{data}}_{i} = \frac{N^{\text{data}}_{X+Y-\cancel{F},i}}{N^{\text{data}}_{++} - \frac{1}{N}}$ $\frac{X+Y-E, i}{N_{\text{at}}^{\text{data}}}$ and $\Delta \mathcal{R}_i^{\text{data}}$ is its statistical uncertainty. u^+u^- , i

 $\bm{3}$ And $\hat{\mathcal{R}}_i(m_\tau)$ is the expected ratio at the τ mass m_τ to be determined from the fit.

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0)

Ratio of the events

[Discovering tau atom and tau mass](#page-0-0) 33 / 43

 \equiv 990

④差す ④差する

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0)

 $E = \Omega Q$

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) **Properties Abb ∫ About the uncertainties** [Summary](#page-40-0) The statistical significance distribution in 10^5 sets pseudoexperiments

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0) The significance of $J_\tau(nS)$ as a function of $m_\tau^{\text{Natural}} - m_\tau^{\text{PDG}}$.

メロメ メ御 メメ きょうぼ おう \equiv 990

The significance of $J_\tau(nS)$ in 10^5 sets pseudoexperiments

- \blacksquare The average value of $\chi^2/{\rm ndf}$ is 0.7/2 with $J_\tau(nS)$, and 51/2 without $J_\tau(nS)$.
- 2 Considering the systematic uncertainties, the average signal significance of J_{τ} is 6.7 σ , which is 6.8 σ without systematic uncertainties.
- ³ These data samples correspond to 350 (175) days' runtime at the STCF(SCTF).
- Φ If the δ_W is reduced to 0.1 ${\rm MeV}$, the required integrated luminosity is only 66 ${\rm fb^{-1}}$.

 m_{τ}

 \bullet With these data samples, a high precision τ mass is obtained

 $m_{\tau} = (1776\,860.00 \pm 0.25 \,(\text{stat.}) \pm 0.99 \,(\text{syst.})) \,\text{keV.}$

2 The fit with the $J_{\tau}(nS)$ contribution removed gives a shift of -4 keV relative to the nominal fit with both the bound state and continuum contributions.

- \bullet The uncertainty of the energy scale W is estimated according to the VEPP-4M, which had a characteristic uncertainty of 1.5 keV in the beam energy in the $\psi(2S)$ mass scan (hep-ex/0306050). The uncertainty of W_2 (W_3) is estimated to be $1.5\sqrt{2} = 2.12$ keV, leading to 0.72 (0.35) keV in $\sigma_{m_{\tau}}$.
- $\sigma_{m_{\tau}}$ from energy spread and energy scale are 16 keV and $^{+22}_{-86}$ keV from BESIII (1405.1076), and 25 keV and 40 keV from KEDR (JETP Lett. 85 (2007) 347-352). Take the maximum ratio of $16/22 \sim 0.73$, leading to $0.73 \times \sqrt{0.72^2 + 0.35^2} = 0.59$ keV in $\sigma_{m_{\tau}}$.
- ${\bf 3}\,\,\varepsilon_{\boldsymbol{X}^+ \boldsymbol{Y}^- \boldsymbol{\ell}} = (8.0 \pm 0.2)\%$ lead to 0.04 keV in $\sigma_{\boldsymbol{m}_{\tau}}.$
- 4 By exchanging the NLO correction with the NNLO correction in the calculation of the $e^+e^-\to X^+Y^-\rlap{\,/}E$ cross sections, which is included in 0.07 keV in σ_{m_τ} due to the theoretical accuracy.

KOD KAPIKIEIK E KORA

[Introduction](#page-3-0) [The Frame of Calculation](#page-15-0) [Reduce the uncertainties](#page-24-0) [Summary](#page-40-0) occurs of Calculation Reduce the uncertainties Summary of the Summary of the Erame of Calculation Reduce the uncertainties Summary of the Summary of th ²⁶⁰ icance of the *J*[τ](#page-18-0) [o](#page-21-0)[f](#page-22-0) [6](#page-23-0).7σ, which will be [6](#page-24-0).[8](#page-27-0)[σ](#page-29-0) [i](#page-31-0)[f](#page-32-0) [t](#page-34-0)[h](#page-36-0)[e](#page-37-0) [s](#page-39-0)ystematic

Natural

Significance

The systematic uncertainties $\sigma_{m_{\tau}}$ ²⁶¹ uncertaintie[s](#page-15-0) [a](#page-16-0)[r](#page-17-0)[e](#page-19-0) not taken into account.

 \overline{f} fig. \overline{f}

1 [Introduction](#page-3-0)

- **2** [The frame of Calculation](#page-15-0)
- ³ [Reduce the uncertainties](#page-24-0)

イロメ イ団メ イモメ イモメー $E = 990$

- \bf{D} We show that the $\tau^+\tau^-$ atom can be observed with a significance larger than 5σ with a 1.5 ab^{-1} data sample at STCF or SCTF, by measuring the cross section ratio of the processes $e^+e^- \to X^+Y^-\ell\llap{/}$ and $e^+e^- \to \mu^+\mu^-$.
- \bullet With the same data sample, the τ lepton mass can be measured with a precision of 1 keV , a factor of 100 improvement over the existing world best measurements.
- \bullet We propose to measure the relative rate $\mathcal{R} = \frac{N_{X+Y} \mu}{N_{\mu^+ \mu^-}}$ $\frac{\mathbf{v}_{\mathsf{X}+\mathsf{Y}-\mathsf{E}}}{N_{\mu^+\mu^-}}$ rather than the absolute cross section so that the uncertainties are controlled at a low level since those in VP, ISR, and luminosity determinations are canceled.

KOD KAPIKIEIK E KORA

Thank you for your listening!

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 → の Q Q ◇

[Discovering tau atom and tau mass](#page-0-0) 43 / 43