Electromagnetic form factors of Baryons

Lingyun Dai

with Q.H.Yang, D.Guo, M.Li, J.Haidenbauer, X.W. Kang, U.-G. Meissner, et.al.

Guangzhou, Nov. 2024 The International Workshop on Future Tau Charm Facilities (FTCF2024)

大学名称或校徽

Outline

Baryon

- Baryon inner structure?
- EIC, EicC: 3D structure of proton?
- § Mass, spin,radius?
- § STCF: EMFF, the inner structure of baryons?
- **Threshold enhancement?** pp, $\Lambda\Lambda$, $\Sigma\Sigma$, $\Lambda_c\Lambda_c$, $\Xi\Xi(?)...$

Strategy

■ New insights in strong interactions?

2. NN scattering amplitudes

§ **SU(2) N scattering amplitude**

- elastic NN scattering: E.Epelbaum *et.al.*, EPJA51 (2015) , 53
	- pion(s) exchange: NN Chiral EFT+G-parity
	- LECs of contact term: to be fixed by data
- annihilation: unitarity, fit to the data

$$
V^{NN} = V_{1\pi} + V_{2\pi} + V_{3\pi} + ... + V_{cont}
$$

$$
V_{el}^{NN} = -V_{1\pi} + V_{2\pi} - V_{3\pi} + ... + V_{cont}
$$

$$
V_{ann}^{NN} = \sum_{X} V^{NN \to X}
$$

J.Haidenbauer, talk at Bochum

ChEFT

- Up to N³LO, in time ordered ChEFT:
	- only irreducible diagrams contributes
	- Lippmann-Shwinger equation

ChEFT: potentials

■ pion(s) exchange potentials:

$$
V_{1\pi}(q) = \left(\frac{g_A}{2F_\pi}\right)^2 \left(1 - \frac{p^2 + p^{\prime 2}}{2m^2}\right) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \frac{\boldsymbol{\sigma}_1 \cdot \mathbf{q} \boldsymbol{\sigma}_2 \cdot \mathbf{q}}{\mathbf{q}^2 + M_\pi^2}
$$

 $V_{2\pi} = V_C + \tau_1 \cdot \tau_2 W_C + [V_S + \tau_1 \cdot \tau_2 W_S] \sigma_1 \cdot \sigma_2 + [V_T + \tau_1 \cdot \tau_2 W_T] \sigma_1 \cdot q \sigma_2 \cdot q$ + $[V_{LS} + \tau_1 \cdot \tau_2 W_{LS}] i(\sigma_1 + \sigma_2) \cdot (q \times k)$,

■ Fourier transformation: change it into corordinat space to do regularization $\frac{0.002}{0.0022}$

$$
V_C(q) = 4\pi \int_0^\infty f(r) V_C(r) j_0(qr) r^2 dr,
$$

\n
$$
V_S(q) = 4\pi \int_0^\infty f(r) \left(V_S(r) j_0(qr) + \tilde{V}_T(r) j_2(qr) \right) r^2 dr,
$$

\n
$$
V_T(q) = -\frac{12\pi}{q^2} \int_0^\infty f(r) \tilde{V}_T(r) j_2(qr) r^2 dr,
$$

\n
$$
V_{SL}(q) = \frac{4\pi}{q} \int_0^\infty f(r) V_{LS}(r) j_1(qr) r^3 dr.
$$

\n
$$
f(r) = \left[1 - \exp\left(-\frac{r^2}{R^2} \right) \right]^n.
$$

ChEFT: potentials

■ Contact terms: short distance
 $V(^{1}S_{0}) = \bar{C}_{1S_{0}} + C_{1S_{0}}(p^{2} + p^{2}) + D^{1}{}_{1S_{0}}p^{2}p^{2} + D^{2}{}_{1S_{0}}(p^{4} + p^{4}),$ $V(^3S_1) = \tilde{C}_{^3S_1} + C_{^3S_1}(p^2 + p'^2) + D^1{}_{^3S_1}p^2p'^2 + D^2{}_{^3S_1}(p^4 + p'^4),$ $V(^{1}P_{1}) = C_{1p,} pp' + D_{1p,} pp'(p^{2} + p'^{2}),$ $V(^3P_1) = C_{3p_1} p p' + D_{3p_1} p p' (p^2 + p'^2),$ $V(^3P_0) = C_{^3P_0} p p' + D_{^3P_0} p p' (p^2 + p'^2),$ $V(^3P_2) = C_{3p_2} p p' + D_{3p_2} p p' (p^2 + p'^2)$, $V(^3D_1 - {}^3S_1) = C_{\epsilon}, p'^2 + D^1_{\epsilon}, p^2p'^2 + D^2_{\epsilon}, p'^4$, $V({}^3S_1-{}^3D_1)=C_{\epsilon_1}p^2+D^1{}_{\epsilon_1}p^2p^2+D^2{}_{\epsilon_1}p^4,$

■ Non-local regularization

 $f(p',p)=\exp\left(-\frac{p'^m+p^m}{\Lambda^m}\right)$

■ Annihilation terms: short distance physics, around 1 fm or less the same form as that of contact terms

$$
V_{\rm ann} = V_{\bar N N \to X} G_X V_{X \to \bar N N}
$$

Ignore the transition between annihilation channels

Phase shifts of different cutoff

■ LS equation to solve amplitrudes

$$
T_{L''L'}(p'',p';E_k) = V_{L''L'}(p'',p') + \sum_{L} \int_0^\infty \frac{dpp^2}{(2\pi)^3} V_{L''L}(p'',p) \frac{1}{2E_k - 2E_p + i0^+} T_{LL'}(p,p';E_k)
$$

Observables

- Cross sections
- Angular distributions

Why SU(3) ChEFT

- SU(2): so far, so good, but
	- only pion exchanges
	- only works for nucleons
- SU(3) G-parity transformation is not OK as kaon does not have definitive G-parity
	- Direct calculation of BB scattering
	-

$$
B = \begin{pmatrix} \frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^+ & p \\ \Sigma^- & -\frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ -\Xi^- & \Xi^0 & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}
$$

SU(3) ChEFT

- § Fit results
- Phase shifts **being a struck of the Phase shifts**
-
- Cross sections
differential cross sections differential cross sections $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
- ratios, etc.

Yang, Guo, Li, Dai, Haidenbauer, Meissner, JHEP08 (2024) 208

SU(3) ChEFT

§ Angular distributions also help to fix partial wave amplitudes

ChEFT+OGE?

- Consider onegluon exchange potential in the high energy region
- It can reproduce the fractional oscillations
- An efficient way to describe the strong interaction in both low energy region and high energy region

Yang, Guo, Dai*, Haidenbauer, Kang, Meissner, Sci.Bull. 68 (2023) 2729;

3. Application:**EMFFs of nucleons**

CMD-3 has excellent measurement in low energy region § BESIII's high statistics' measurements on nucleon EMFFs

BESIII: PRL 130 (2023) 15, 151905

BESIII: PRD 99 (2019) 092002; PRL 124 (2020) 4, 042001, Nature Phys.17 (2021) 1200

FSI

- To analyze $ee \rightarrow NN$, we need to consider FSI
- § Distorted-wave Born approximation (DWBA):

Vector meson dominance: ${}^{3}S_{1}$ - ${}^{3}D_{1}$

 $-3D_1$ Sci.Bull. 68 (2023) 2729; SU(3) ChEFT: Yang, Guo, Dai*, Haidenbauer, Kang, Meissner,

> SU(2)ChEFT: J.Haidenbauer, X.-W. Kang, U.-G. Meißner, NPA 929 (2014) , PRD91 (2015) 074003.

Individual EMFFs of nucleons

- Modulus: $|G_E|=|G_M|$ at threshold, and will $\sum_{0.0}^{\frac{0.1}{1.9} \text{ proton}}$ $\sum_{2.0}^{\frac{0.1}{1.9} \text{ neutron}}$
- § Phases:
	- An overall phase is $\frac{35}{9}$ unobservable $\overbrace{a_1 \atop a_0 \tbinom{0.2}{1.9} \tbinom{0.2}{2.0} \tbinom{0.2}{2.1} \tbinom{0.2}{2.0} \tbinom{0.2}{2.1} \tbinom{0.2}{2.0} \tbinom{0.2}{2.1} \tbinom{0.2}{2.1} \tbinom{0.2}{2.1} \tbinom{0.2}{2.1} \tbinom{0.2}{2.1} \tbinom{0.2}{2.1} \tbinom{0.2}{2.1} \tbinom{0.2}{2.1} \tbinom{0.2}{2.1$
	- rapidly near threshold $\frac{3}{26}$ -40

Oscillation

■ Effective EMFFs

$$
G_{\text{eff}}(s)| = \sqrt{\frac{\sigma_{e^+e^- \to \bar{N}N}(s)}{\frac{4\pi\alpha^2\beta}{3s}C(s)[1 + \frac{2M_N^2}{s}]}}
$$

■ Subtracted form factors: oscillation a metal of the space A. Bianconi & E. Tomasi-Gustafsson, PRL114 (2015) 232301; PRC103 (2021) 035203

$$
G_{\rm osc}(s) = |G_{\rm eff}| - G_D(s), \quad G_D^p(s) = \frac{\mathcal{A}_p}{(1 + s/m_a^2)[1 - s/q_0^2]^2}, \quad G_D^n(s) = \frac{\mathcal{A}_n}{[1 - s/q_0^2]^2}
$$

Oscillation

■ We propose a fractional oscillation model

$$
G_{\rm osc}^{N}(\tilde{p}) = G_{\rm osc,1}^{N}(\tilde{p}) + G_{\rm osc,2}^{N}(\tilde{p}),
$$

\n
$$
G_{\rm osc,j}^{N}(\tilde{p}) = G_{\rm osc,j}^{0,N} - \frac{\omega_{j}^{2}}{\Gamma(\alpha_{j}^{N})} \int_{0}^{\tilde{p}+p_{0}^{N}} (\tilde{p}+p_{0}^{N}-t)^{\alpha_{j}^{N}-1} G_{\rm osc,j}^{N}(t)dt
$$

■ Oscillation behavior of SFFs

Oscillation

- The 'overdamped' oscillator dominates near the threshold. It reveals the enhancement near threshold.
- The 'underdamped' oscillator dominates in the high energy region. The proton's and neutron's has a 'phase delay'.
-

§ Other dynamics? Lin, Hammer, Meißner, PRL128 (2022) 052002 Cao, J.P. Dai, Lenske, PRD 105 (2022) 7, L071503, etc Qian, Liu, Cao, Liu, PRD 107 (2023) 9, L091502; Yan, Chen, Xie, PRD 107 (2023) 7, 076008

Underlying physics?

- § Two limits of fractional oscillators:1 for diffusion and 2 for wave equations of motions.
- Distributions of higher order polarized charges.

Underlying physics?

- § Proton: valence quarks of uud; Neutron: udd
- negative polarization electric charges for the proton, when not very faraway from the nucleon.
- § positive polarization for the neutron
- **It explains the phase** difference!

EMFFs of other baryons

§ NN-YY potentials given by Juelich model

- **FSI described by LS equation**
- parameters fixed by fitting to the pp-->YY data

SU(3) ChEFT

- SU(3) gives more information in pp, $\Sigma\Sigma$, $\Lambda\Lambda$ coupled channel scattering Juelich model: Haidenbauer et.al.,
	- NPA562 (1993) 317; Haidenbauer, Meissner, Dai, PRD103 (2021) 014028.
- More data in BB scattering: $p p \rightarrow \Sigma \Sigma$, $\Lambda \Lambda$, etc.

BESIII, PRD107 (2023) 7, 072005

For BESIII's YN scattering data, See Jielei Zhang's Talk

- An overall description of the EMFFs of the Octet? STCF?
- **BB** scattering from SU(3) is partly done

Individal EMFFs of Λ^c

- Effective form factors for LO, NLO from ChEFT
- Cutoff independent. 6.6

$$
B_{\bar{3}} = \begin{pmatrix} 0 & \Lambda_c & \Xi_c^+ \\ -\Lambda_c & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix} \quad B_6 = \begin{pmatrix} \Sigma_c^{++} & \frac{1}{\sqrt{2}} \Sigma_c^+ & \frac{1}{\sqrt{2}} \Xi_c^{\prime +} \\ \frac{1}{\sqrt{2}} \Sigma_c^+ & \Sigma_c^0 & \frac{1}{\sqrt{2}} \Xi_c^{\prime 0} \\ \frac{1}{\sqrt{2}} \Xi_c^{\prime +} & \frac{1}{\sqrt{2}} \Xi_c^{\prime 0} & \Omega_c \end{pmatrix}.
$$

 $\frac{\sum_{3}^{2} - \left(-\frac{1}{2c} + \frac{1}{c^{2}}\right)}{\sum_{1}^{2} - \left(-\frac{1}{2c} + \frac{1}{c^{2}}\right)}$ (1992) 1148 6

Yan, Cheng, et.al., PRD46 (1992) 1148 6 Zou, Liu, Liu, Jiang,PRD108 (2023) 014027

Guo, Yang, Dai, PRD109 (2024) 104005 $\frac{3.8}{10}$ 4.60 $\frac{4.65}{\sqrt{5}}$ (GeV)

Separated contributions

- § Modulus
	- LO: Flat $G_E^{\Lambda_c}/G_M^{\Lambda_c} \simeq \sqrt{s}/2M_{\Lambda_c} \simeq 1$
	- § NLO: Fluctuations in the high energy $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ region $\frac{1}{\sum_{0.8}^{0.8}}$
small cut-off
	- § small cut-off
- Phases $\frac{e^{0.8}}{\frac{\sqrt{2}}{9}0.6}$
	- an overall phase is $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ a unknown, we set it $\left[\begin{array}{cc} 0.2 \\ 0.0 \end{array}\right]_{4.60}$ $\left[\begin{array}{cc} 0.2 \\ 4.60 \end{array}\right]_{4.70}$ $\left[\begin{array}{cc} 0.2 \\ 0.0 \end{array}\right]_{4.60}$
	- threshold
more fluctuations in $\frac{1}{\sum_{\omega=0.8}^{\infty}1.2}$ more fluctuations in $\frac{8}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ the phase of G_F

Separated contributions

- Contact term: essential for threshold enhancement
	- S-wave contribution is significant!
- Annihilation term: crucial for fluctuation

4. Summary

NN Amplitude

SU(2) ChEFT works well at P_{Lab} <300 MeV up to N³LO. For SU(3) one, we calculate NN scattering with other Baryons included. Need more measurements on hyperons.

EMFFs of N

We study the EMFFs of nucleons within SU(3) ChEFT. A fractional oscillation model is proposed, polarized charge density distributions.

EMFFs of Y EMFFs are predicted. SU(3) ChEFT is necessary to improve YY amplitude are calculated based on Juelich model. The the analysis. Individual EMFFs of $\mathsf{\Lambda_c}$, oscillation from \blacksquare interference.

Prospects?

BESIII's new data for SU(3) ChEFT? ChEFT + OGE to study NN scatterings? Hyperons?----**STCF can give more measurements for SU(3) ChEFT and EMFFs.**

Thank You For your patience!