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EM shower (↑) vs. hadronic shower (↓)

Introduction

◉ Long-lived neutral hadrons (𝒏, 𝑲𝑳𝟎) are important probes for physics at 𝝉-charm region
• e.g., about 1/3 of 'Λ#$ decays contain )𝑛 where 20% of them are still unknown (PRD 108, L031101)

◉ However, 𝝉-charm facilities have no dedicated hadronic calorimeter
• Detection relies on electromagnetic calorimeter (ECAL, EMC)
• Its size & material prevent full deposition of hadronic showers

◉ Direct reconstruction of neutral hadron is very challenging
• Momentum is unknown

• Sizable energy leakage
• Position isn’t always known

• Clusters are less centralized than photons
• Identification is not perfect

• Can be confused with photon / beam background / detector noises
• MC simulation is imprecise

• Up to ~10% discrepancy from data (NIMA 1033, 166672)
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Observation of a rare beta decay of the charmed baryon 
with a Graph Neural Network

arXiv: 2410.13515, accepted by Nature Commun.

• Practical solution for neutron identification
• Enables an important charm study at BESIII

Vision Calorimeter for Anti-neutron Reconstruction:            
A Baseline

arXiv: 2408.10599, submitted to AAAI 2025 Conference

• Precise anti-neutron position measurement
• First realization of momentum prediction ability

Our works

The studies are based on BESIII data,
but are also applicable to STCF with similar EMC designs.

https://arxiv.org/abs/2410.13515
https://arxiv.org/abs/2408.10599
https://arxiv.org/abs/2410.13515
https://arxiv.org/abs/2408.10599
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Neutron identification 
via Graph Neural Network
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Task overview

◉ The physics goal: measure Λ#% → 𝑛𝑒%𝜈&
• The second-most-dominant Λ#% semi-leptonic decay is still unobserved
• Tons of theoretical predictions wait to be confirmed & calibrated

◉ Experimental challenge
• Simultaneous existence of neutron & neutrino
• Dominant background from Λ#% → Λ 𝑛𝜋' 𝑒%𝜈&, yield ~10x signal
• Need very powerful tool to identify neutron from photon & noises

Distinction in 𝑛/Λ EMC patterns can 
be seen from eyes.

Deep learning may recognize such 
distinctions in a smart & flexible way. 

?
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Why Graph Neural Network (GNN)

◉ Our task parallels jet tagging in LHC experiments at a new energy scale
• EMC cells are in regular grids, but users can only access reconstructed shower objects
• The graph-based model ParticleNet beats image/sequence-based ones in jet tagging (PRD 101, 056019)
• GNN can represent more arbitrary relations between data objects as nodes & edges in a graph

arXiv: 2007.13681
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Our GNN toolkit

◉ Event representation – point cloud
• Unordered, permutation-invariant set of particle showers
• Each shower carries spatial coordinates + additional features

• Energy, time, number of hits, cluster expansion moments…
• Symmetry-preserving, high expressiveness, low computational cost

◉ Model structure – Dynamic Graph CNN (arXiv: 2007.13681)
• Build “edge features” between 𝑘-nearest neighboring points
• Design a symmetric “convolution” function on edges
• Dynamically update the graph after each convolution block

Neighboring in feature space → Neighboring in semantics
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Data-driven analysis pipeline

◉ It’s easy to train 𝒏/𝚲 classifier with MC samples and apply 
to data
• But the MC simulation is imprecise!

◉ Utilize control samples from 10 billion 𝑱/𝝍 events at BESIII
① Train GNN model with 𝐽/𝜓 → 𝑝̅𝒏𝜋%	vs.	𝑝̅𝚲𝐾% events 

from real data
② Use the model to predict 𝐽/𝜓 data, 𝐽/𝜓 MC, Λ#% data 

and Λ#% MC samples
③ Weight the GNN responses between 𝐽/𝜓 data & MC 
④ Correct Λ#% MC shape using bin-by-bin weight factors 
⑤ Fit to Λ#% data with Λ#% MC shapes

Conjugate channels are treated separately,
as anti-neutron may annihilate with EMC while neutron won’t
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Quantify ML-related systematic uncertainties

◉ Model uncertainty
• Lack of knowledge about best model configurations
• Incorporate randomness in training

• Data processing sequence, network initialization, dropout…
• Ensemble different models in prediction

• Physics results form a Gaussian distribution

◉ Domain shift
• Residual diffs between 𝐽/𝜓 & Λ#% datasets (kinematics, BKG environment...)
• Replace Λ#% datasets with another independent control sample: 𝐽/𝜓 → Σ% 𝒏𝜋% )Σ$ 𝑝̅𝜋'  vs. 𝐽/𝜓 → Ξ$ 𝚲𝜋$ )Ξ%('Λ𝜋%)
• Data & MC still well consistent in large statistics after correction
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Physics outcomes

◉ First observation of 𝚲𝒄% → 𝒏𝒆%𝝂𝒆 with over 𝟏𝟎𝝈 significance
• ℬ Λ#% → 𝑛𝑒%𝜈& = 0.357 ± 0.034*+,+. ± 0.014*.*+. %

◉ First measurement of |𝑽𝒄𝒅| from charmed baryon decays
• 𝑉#0 = 0.208 ± 0.011123. ± 0.0074567 ± 0.0018(:!")

The study is based on 4.5	fb!" data at BESIII.
One-year run at STCF can improve BR and |𝑉#$| precisions to ~3% (systematics dominant) 
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One step forward

◉ Full neutron reconstruction beyond identification is desired.
• More meaningful physics results (e.g., form factors) require knowing the neutron momentum

◉ We tried predicting neutron momentum with GNN, but failed
• A regression task that doesn’t perfectly fit our toolkit 

Ideal effect:
Positive correlated mapping

Our result:
Assign all outputs near average

to yield local minimum for loss function

Truth Truth
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Does the limitation come from detector, 
or our deep learning technique?

We should seek help from ML experts.
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Anti-neutron reconstruction 
via Visual Object Detector
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Vision Calorimeter (ViC)

◉ An object detection approach
• Represent EMC hits on a 2D image
• Find the position of )𝑛 within a binding box
• Determine its confidence score, class and incident momentum

A comprehensive reconstruction with particle type, position and momentum measurements.
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Image quantification

◉ Pixels
• BESIII barrel EMC has 44 rings × 120 cells, end-cap EMC has 6 rings × [96, 96, 80, 80, 64, 64] cells
• Set image size with 960 × 480 pixels

• 960 is the least common multiple of (120, 96, 80, 64)
• Define position-varied cell height according to their center positions

◉ Colors
• EMC deposited energy range is 0.5 MeV ~ 2 GeV
• Take log scale: [10$<.<, 10'.<]
• Divide low, medium and high measures to fill blue, green and red channels
• Add a -30db Gaussian noise due to the sparsity of on-fire EMC cells
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Bounding box generation

◉ Why not just make point-wise position prediction?
• Bounding box (BBox) prediction can better exploit contextual information
• Superior performance in afterward tests
• Need to generate pseudo BBox around )𝑛 incident position

◉ Choice of BBox width
• Smaller size → higher precision upper limit
• Larger size → more available contextual information
• Best performance at 10× cell-based size
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Network configuration

◉ Architecture
• Backbone: Swin-Transformer pre-trained on ImageNet
• Detection head: RetinaNet

◉ Loss function
• Conventional choice in object detection is IOU

• 𝐼𝑂𝑈 = 𝑆(𝐺𝑇 ∩ 𝑃𝑟𝑒𝑑)/𝑆(𝐺𝑇 ∪ 𝑃𝑟𝑒𝑑)
• We design a more center-oriented version

https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1708.02002
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Performance of ViC (I)

◉ Dataset
• 1 million 𝐽/𝜓 → 𝑝'𝒏𝜋$	events taken from BESIII data
• Plan to extend to 10 million events

◉ In position measurement
• Compared with conventional clustering algorithm, ViC 

improves the precision by 75% at full efficiency
• From 17.4∘ to 9.9∘

• ViC can double this precision at 90% efficiency
• A near-practical performance of 5∘

◉ How comes the improvement?
• Conventional clustering algorithm would split a discontinues 

hadronic shower
• Usually caused by multiple scattering
• Only the most energetic one is considered

• ViC can better handle such scenarios

Point-wise 
prediction

Better performance

Clustering 
algorithm
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Performance of ViC (II)

◉ In momentum measurement
• No conventional methods so far
• ViC firstly realize such capability in EMC
• Resolution ~25% in sub-GeV region

• Even better than dedicated HCALs in this region (~80%/ 𝐸) ?!

◉ In classification
• ViC is capable to identify )𝑛 & 'Λ (though not optimized)
• Position & momentum measurements also compatible for 'Λ case

Point-wise 
prediction

Ide
al 
pe
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ViC shows potential to develop an universal 
neutral hadron reconstruction algorithm!
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Summary & outlook

◉ Neutral hadron reconstruction is challenging at 𝝉-charm facilities. 
• Information recorded in detector is rare & sparse

◉ Deep learning could be a key to fully exploit such information.
• A practical solution for neutron identification with Graph Neural Network
• A baseline model for anti-neutron reconstruction with Visual Object Detector

◉ Prospects in STCF
• EMC maintains BESIII spec but with faster time response

• Allow identification & momentum measurement via time-of-flight method
• 300	ps time resolution can offer 3𝜎 𝑛/𝛾 separation & 8% momentum precision for a neutron @ 1	GeV/𝑐 

• MUD serves as auxiliary detector for neutral hadron

More data & more information is always welcomed for deep learning.


