

Neutron reconstruction at tau-charm facilities with Deep Learning

Yangu Li (李彦谷)

Peking University & University of Chinese Academy of Sciences

FTCF 2024, Guangzhou November 21, 2024

Introduction

• Long-lived neutral hadrons (n, K_L^0) are important probes for physics at τ -charm region

• e.g., about 1/3 of $\overline{\Lambda}_c^-$ decays contain \overline{n} where 20% of them are still unknown (PRD **108**, L031101)

• However, τ -charm facilities have no dedicated hadronic calorimeter

- Detection relies on electromagnetic calorimeter (ECAL, EMC)
- Its size & material prevent full deposition of hadronic showers

Direct reconstruction of neutral hadron is very challenging

- Momentum is unknown
 - Sizable energy leakage
- Position isn't always known
 - Clusters are less centralized than photons
- Identification is not perfect
 - Can be confused with photon / beam background / detector noises
- MC simulation is imprecise
 - Up to $\sim 10\%$ discrepancy from data (NIMA **1033**, 166672)

EM shower (\uparrow) vs. hadronic shower (\downarrow)

Our works

- Enables an important charm study at BESIII

The studies are based on BESIII data, but are also applicable to STCF with similar EMC designs.

Vision Calorimeter for Anti-neutron Reconstruction: A Baseline

arXiv: 2408.10599, submitted to AAAI 2025 Conference

- Precise anti-neutron position measurement
- First realization of momentum prediction ability

Yangu Li

Neutron identification via Graph Neural Network

Task overview

• The physics goal: measure $\Lambda_c^+ \rightarrow ne^+\nu_e$

- The second-most-dominant Λ_c^+ semi-leptonic decay is still unobserved
- Tons of theoretical predictions wait to be confirmed & calibrated

• Experimental challenge

- Simultaneous existence of neutron & neutrino
- Dominant background from $\Lambda_c^+ \to \Lambda(n\pi^0)e^+\nu_e$, yield ~10x signal
- Need very powerful tool to identify neutron from photon & noises

3 -0.2	-0.1	0	0.1	0.2	0.3	0.4	0.5	0
NRQM	Phys. Rev.	D 40 (198	89) 2955		•			
RQM	Phys. Rev.	D 56 (199	97) 348		•			
HQET	Phys. Rev.	C 72 (200	05) 035201		•			
CQM	Phys. Rev.	D 90 (201	4) 114033	•				
RQM	Eur. Phys.	J. C 76 (2	2016) 628		•			
SU(3)	Phys. Rev.	D 93 (201	l6) 056008					
QCDSR	J. Phys. G 4	44 (2017)	075006		нн			
SU(3)	JHEP 11 (2	017) 147		F				
LFQM	Chin. Phys.	C 42 (20	018) 093101	•				
SU(3)	Phys. Lett.	B 792 (20	019) 214				 i	
MBM	Phys. Rev.	D. 101 (2	020) 094017		•			
LFCQM	Phys. Rev.	D 103 (20	021) 054018	-		•		
SU(3)	Phys. Lett.	B 823 (20	021) 136765				— •–	-
HBM	Phys. Rev.	D 107 (20	023) 033008			— •—		
QCDSR	Phys. Rev.	D 108 (20	023) 074017	F				
LQCD	Phys. Rev.	D 97 (201	8) 034511			 -		
Exp?					?			
3 -0.2	-0.1	0	0.1	0.2	•	0.4	0.5	(
$\mathbf{B}(\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{ne}^{+} \vee_{\mathbf{e}})$ (%)								

Distinction in n/Λ EMC patterns can be seen from eyes.

Deep learning may recognize such distinctions in a smart & flexible way.

Why Graph Neural Network (GNN)

Our task parallels jet tagging in LHC experiments at a new energy scale

- EMC cells are in regular grids, but users can only access reconstructed shower objects
- The graph-based model ParticleNet beats image/sequence-based ones in jet tagging (PRD 101, 056019)
- GNN can represent more arbitrary relations between data objects as nodes & edges in a graph

Our GNN toolkit

Event representation – point cloud

- Unordered, permutation-invariant set of particle showers
- Each shower carries spatial coordinates + additional features
 - Energy, time, number of hits, cluster expansion moments...
- Symmetry-preserving, high expressiveness, low computational cost

Model structure – Dynamic Graph CNN (arXiv: 2007.13681)

- Build "edge features" between *k*-nearest neighboring points
- Design a symmetric "convolution" function on edges
- Dynamically update the graph after each convolution block

Neighboring in feature space \rightarrow Neighboring in semantics

Data-driven analysis pipeline

- It's easy to train n/Λ classifier with MC samples and apply to data
 - But the MC simulation is imprecise!
- Utilize control samples from 10 billion J/ψ events at BESIII
 - (1) Train GNN model with $J/\psi \rightarrow \bar{p}n\pi^+ \text{ vs. } \bar{p}\Lambda K^+$ events from real data
 - 2 Use the model to predict J/ψ data, J/ψ MC, Λ_c^+ data and Λ_c^+ MC samples
 - (3) Weight the GNN responses between J/ψ data & MC
 - (4) Correct Λ_c^+ MC shape using bin-by-bin weight factors
 - (5) Fit to Λ_c^+ data with Λ_c^+ MC shapes

Conjugate channels are treated separately, as anti-neutron may annihilate with EMC while neutron won't

Quantify ML-related systematic uncertainties

Model uncertainty

- Lack of knowledge about best model configurations
- Incorporate randomness in training
 - Data processing sequence, network initialization, dropout...
- Ensemble different models in prediction
 - Physics results form a Gaussian distribution

Domain shift

- Residual diffs between $J/\psi \& \Lambda_c^+$ datasets (kinematics, BKG environment...)
- Replace Λ_c^+ datasets with another independent control sample: $J/\psi \to \Sigma^+(\mathbf{n}\pi^+)\overline{\Sigma}^-(\bar{p}\pi^0)$ vs. $J/\psi \to \Xi^-(\Lambda\pi^-)\overline{\Xi}^+(\overline{\Lambda}\pi^+)$
- Data & MC still well consistent in large statistics after correction

Physics outcomes

- First observation of $\Lambda_c^+ \rightarrow ne^+\nu_e$ with over 10σ significance • $\mathcal{B}(\Lambda_c^+ \rightarrow ne^+\nu_e) = (0.357 \pm 0.034_{\text{stat.}} \pm 0.014_{\text{syst.}})\%$
- First measurement of $|V_{cd}|$ from charmed baryon decays
 - $|V_{cd}| = 0.208 \pm 0.011_{\text{exp.}} \pm 0.007_{\text{LQCD}} \pm 0.001_{\tau(\Lambda_c^+)}$

The study is based on 4.5 fb⁻¹ data at BESIII. One-year run at STCF can improve BR and $|V_{cd}|$ precisions to ~3% (systematics dominant)

One step forward

Full neutron reconstruction beyond identification is desired.

• More meaningful physics results (e.g., form factors) require knowing the neutron momentum

We tried predicting neutron momentum with GNN, but failed

• A regression task that doesn't perfectly fit our toolkit

Does the limitation come from detector, or our deep learning technique?

We should seek help from ML experts.

Anti-neutron reconstruction via Visual Object Detector

Vision Calorimeter (ViC)

An object detection approach

- Represent EMC hits on a 2D image
- Find the position of \bar{n} within a binding box
- Determine its confidence score, class and incident momentum

A comprehensive reconstruction with particle type, position and momentum measurements.

Image quantification

Pixels

- BESIII barrel EMC has 44 rings × 120 cells, end-cap EMC has 6 rings × [96, 96, 80, 80, 64, 64] cells
- Set image size with 960 × 480 pixels
 - 960 is the least common multiple of (120, 96, 80, 64)
- Define position-varied cell height according to their center positions

Colors

- EMC deposited energy range is 0.5 MeV ~ 2 GeV
- Take log scale: [10^{-3.3}, 10^{0.3}]
- Divide low, medium and high measures to fill blue, green and red channels
- Add a -30db Gaussian noise due to the sparsity of on-fire EMC cells

layers	cells	w (pixels)	h (pixels)	note	
2	-	30	8		
2	-	24	8	empty	
3	-	20	7		
2	64	15	6		
2	80	12	6	end-cap	
2	96	10	5		
1	-	10	5	empty	
5	120	8	5		
4	120	8	6		
5	120	8	7		
16	120	8	8	borrol	
5	120	8	7	Darrei	
4	120	8	6		
5	120	8	5		
1	-	10	5	empty	
2	96	10	5		
2	80	12	6	end-cap	
2	64	15	6		
3	-	20	7		
2	-	24	8	empty	
2	-	30	8		
				•	

Bounding box generation

Why not just make point-wise position prediction?

- Bounding box (BBox) prediction can better exploit contextual information
- Superior performance in afterward tests
- Need to generate pseudo BBox around \bar{n} incident position

Choice of BBox width

- Smaller size \rightarrow higher precision upper limit
- Larger size \rightarrow more available contextual information
- Best performance at 10× cell-based size

The performance of incident position prediction with different pseudo GT BBox sizes. **Left**: mAB at different relative efficiency levels; **Right**: relative efficiency with different angular bias thresholds.

Network configuration

Architecture

- Backbone: <u>Swin-Transformer</u> pre-trained on ImageNet
- Detection head: <u>RetinaNet</u>

Loss function

- Conventional choice in object detection is IOU
 - $IOU = S(GT \cap Pred)/S(GT \cup Pred)$
- We design a more center-oriented version

$$\mathcal{L}_{CO} = 1 - IoU + \alpha \cdot \frac{(\cos \gamma - 1)^2}{(\cos \gamma_{\rm mer} - 1)^2}$$

Performance of ViC (I)

Dataset

- 1 million $J/\psi \rightarrow p \overline{n} \pi^-$ events taken from BESIII data
- Plan to extend to 10 million events

In position measurement

- Compared with conventional clustering algorithm, ViC improves the precision by 75% at full efficiency
 - From 17.4° to 9.9°
- ViC can double this precision at 90% efficiency
 - A near-practical performance of 5°

How comes the improvement?

- Conventional clustering algorithm would split a discontinues hadronic shower
 - Usually caused by multiple scattering
 - Only the most energetic one is considered
- ViC can better handle such scenarios

Performance of ViC (II)

In momentum measurement

- No conventional methods so far
- ViC firstly realize such capability in EMC
- Resolution ~25% in sub-GeV region
 - Even better than dedicated HCALs in this region ($\sim 80\%/\sqrt{E}$) ?!

In classification

- ViC is capable to identify $\overline{n} \& \overline{\Lambda}$ (though not optimized)
- Position & momentum measurements also compatible for $\overline{\Lambda}$ case

Reconstruction performance of \bar{n} and $\bar{\Lambda}$.[†] indicates that the corresponding correlation value is not an average but is recalculated across all testing samples.

		$\downarrow mAB$ (°)	\downarrow mAE (GeV/c)	↓ mRE (%)	↑ Corr.	↑ Acc. (%)
S.F.S.	$ar{n}{ar{\Lambda}}$	16.34 20.15	0.1546 0.1421	28.17 36.93	0.5733 0.5389	95.38 54.04
	avg.	18.24	0.1483	32.55	0.6390†	74.71
ViC	$ar{n}{ar{\Lambda}}$	10.16 15.10	0.1414 0.1285	25.52 33.60	0.6365 0.5469	93.14 73.82
	avg.	12.63	0.1349	29.56	0.6785 [†]	83.48

ViC shows potential to develop an universal neutral hadron reconstruction algorithm!

Summary & outlook

• Neutral hadron reconstruction is challenging at τ -charm facilities.

• Information recorded in detector is rare & sparse

Deep learning could be a key to fully exploit such information.

- A practical solution for neutron identification with Graph Neural Network
- A baseline model for anti-neutron reconstruction with Visual Object Detector

Prospects in STCF

- EMC maintains BESIII spec but with faster time response
 - Allow identification & momentum measurement via time-of-flight method
 - 300 ps time resolution can offer $3\sigma n/\gamma$ separation & 8% momentum precision for a neutron @ 1 GeV/c
- MUD serves as auxiliary detector for neutral hadron

More data & more information is always welcomed for deep learning.

Thanks for your attention!