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Introduction

primary 7Y

@ Long-lived neutral hadrons (n, K?) are important probes for physics at t-charm region
+ e.g., about 1/3 of A7 decays contain 7 where 20% of them are still unknown (PRD 108, L031101)

@® However, T-charm facilities have no dedicated hadronic calorimeter
+ Detection relies on electromagnetic calorimeter (ECAL, EMC)
* Its size & material prevent full deposition of hadronic showers

@ Direct reconstruction of neutral hadron is very challenging
* Momentum is unknown
» Sizable energy leakage

« Position isn’t always known
» Clusters are less centralized than photons

« |dentification is not perfect wsiwe ST :

« Can be confused with photon / beam background / detector noises (g s [
*  MC simulation is imprecise &vsﬁf -

* Upto ~10% discrepancy from data (NIMA 1033, 166672) e, |
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Our works

Vision Calorimeter for Anti-neutron Reconstruction:
A Baseline

arXiv: 2408.10599, submitted to AAAI 2025 Conference

Observation of a rare beta decay of the charmed baryon
with a Graph Neural Network

arXiv: 2410.13515, accepted by Nature Commun.

Positron (e*)

n =ZiEibi/EiEi, 0 = E,E6:/ LiEq, ¢n = ®(BBox ctr), §, = ©(BBox ctr),
pr:N/A Pn = Ppred

Sl s/ Reconstruction

* Precise anti-neutron position measurement
* First realization of momentum prediction ability

* Practical solution for neutron identification
* Enables an important charm study at BESIII
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L ———_

The studies are based on BESIII data,
but are also applicable to STCF with similar EMC designs.
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Neutron identification
via Graph Neural Network




Task overview
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@ The physics goal: measure AY - netv, U e, -
NRQM Phys. Rev. D 40 (1989) 2955 3
 The second-most-dominant Af semi-leptonic decay is still unobserved ROM  Phys. Rev. D S6 (1397) 348 .
HQET Phys. Rev. C 72 (2005) 035201 o
* Tons of theoretical predictions wait to be confirmed & calibrated CQM  PhyRe.D QO 103 .
RQM Eur. Phys. J. C 76 (2016) 628 .
SU@3) Phys. Rev. D 93 (2016) 056008 ——
QCDSR  J. Phys. G 44 (2017) 075006 -
. SU@3) JHEP 11 (2017) 147 ——
@ Experimental challenge QM GuPm.Cogmmn s
. . . SU@B) Phys. Lett. B 792 (2019) 214 ]
* Simultaneous existence of neutron & neutrino VBM Phos Rov D, 101 2020) 094017 .
+ Dominant background from Af —» A(nr®)e*v,, yield ~10x signal sy e st s
° 1 1 H HBM Phys. Rev. D 107 (2023) 033008 ——
Need very powerful tool to identify neutron from photon & noises oS
LQCD Phys. Rev. D 97 (2018) 034511 ——t
.E.xp.?.lu...l‘...I....I....I... ‘) I RS T RS
-03 -0.2 -0.1 0 0.1 0.2 ° 04 0.5 0.6

B(A{— ne*v,) (%)

Distinction in n/A EMC patterns can
be seen from eyes.

~
Deep learning may recognize such u

distinctions in a smart & flexible way.
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Why Graph Neural Network (GNN)

@ Our task parallels jet tagging in LHC experiments at a new energy scale
* EMC cells are in regular grids, but users can only access reconstructed shower objects
* The graph-based model ParticleNet beats image/sequence-based ones in jet tagging (PRD 101, 056019)
* GNN can represent more arbitrary relations between data objects as nodes & edges in a graph
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arXiv: 2007.13681
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Our GNN toolkit

@® Event representation - point cloud
* Unordered, permutation-invariant set of particle showers
* Each shower carries spatial coordinates + additional features
* Energy, time, number of hits, cluster expansion moments...
*  Symmetry-preserving, high expressiveness, low computational cost

@® Model structure - Dynamic Graph CNN (arxiv: 2007.13681)
 Build “edge features” between k-nearest neighboring points
« Design a symmetric “convolution” function on edges
* Dynamically update the graph after each convolution block

Neighboring in feature space = Neighboring in semantics
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e” = MLP(X], XJ)
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Fully Connected
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Data-driven analysis pipeline

_x10°
) . o po ° ]/1/) data ;ﬁ E t Data: J/y —)pn'r't_
@ It’s easy to train n/A classifier with MC samples and apply iraining i A s+
F : - prh
tO data §,14 E [] MC: a7y > pKA

* But the MC simulation is imprecise!
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GNN output for 77/ A classification
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@ Utilize control samples from 10 billion J /1 events at BESIII RelES }- N
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(1) Train GNN model with J /3 — pnr* vs. pPAKT events N J/wMC J /¥ data 22
i evaluation evaluation 2k
from real data | sample sample 18k } Weight factors for i !
. I .51-6 F t Weight factors for A
(2) Use the model to predict J /4y data, J/ip MC, A} data I 51’23 i
+ u ’ . . + l.+1 | t i "J.
and A MC samples : > 20; _+;;++;+.;”.;v,;;gio;quw"“’““r'“h*'*
. Q E
(3) Weight the GNN responses between J /i data & MC : ol
. . . . 0'2_
(4) Correct AT MC shape using bin-by-bin weight factors I A MC Af data D s st it
. ) I pred|Cted predlcted GNN output for ii/A classification
(5) Fit to At data with A MC shapes (Wl sample
\ A
\-——————————'/ ““ 120 t Data: A7
’ ! [] MC:A- - ey
. 100 e
. _ |:| MC: A; = Ae™v
“‘ §80 H [ MC: other A; decays
‘ 560
Conjugate channels are treated separately, Salb )
as anti-neutron may annihilate with EMC while neutron won't 0}
B A ST NUUER U BT t
0 I bt Y .

i nitds g T e erarlil
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GNN output for ii/A classification
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Quantify ML-related systematic uncertainties

@ Model uncertainty s | ]

» Lack of knowledge about best model configurations gzz: :

* Incorporate randomness in training B a0 E

» Data processing sequence, network initialization, dropout... glz: :

* Ensemble different models in prediction 8 of ;
 Physics results form a Gaussian distribution o e o osts 6004

Br(As;—netv,)

@ Domain shift
 Residual diffs between J/y & At datasets (kinematics, BKG environment...)
« Replace A} datasets with another independent control sample: J /i - 2t (nat)Z~(pr®) vs. J /Y - E-(Arn")ET (Ant)
« Data & MC still well consistent in large statistics after correction

x10°

120 t Data: A] S0 t  Data: J/y —» £ (iin")Z*(pn’)

100 b [] MC:A; » ey ] t  Data: J/y ~ Er(Ar")=-(Ar")
_ (] MC: A = Ae 7 Ty [ MC: g1y - E-(n)z*(pr®)
Ss80f (] MC: other A; decays = [ MC: gy - E¥(An)E-(An")
£ 30
N
=40 [ * = 20

20f ! / * 10

S, * IR, . st
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GNN output for 7i/A classification GNN output for ii/A classification
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Physics outcomes
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120 [ ¢ Data 1 120 ¢ I_)ata ; NRQM Phys. Rev. D 40 (1989) 2955 °
; 0 A} - netv. ] ! B A - e, ] RQM Phys. Rev. D 56 (1997) 348 .
~100 + + 1 ~100 F PR ]
' E A > ety s B A7 - Aev ] HQET  Phys. Rev. C 72 (2005) 035201 .
S sof Il Other A; decays ] S gk Il Other A; decays . c
I ] g QM Phys. Rev. D 90 (2014) 114033 °
é 60 -{ - ‘; 60 § RQM Eur. Phys. J. C 76 (2016) 628 °
R 4l ] = 40 b . SUB3) Phys. Rev. D 93 (2016) 056008 —e—i
20 F ; * bt 20 | * ; ] QCDSR  J. Phys. G 44 (2017) 075006 1o
o L Pt b i it ) b ity e § ti4 ] SU@3) JHEP 11 (2017) 147 ——i
3f ] 3f ] LFQM  Chin. Phys. C 42 (2018) 093101
T 0 bbb detbetban bt b st bt g ik b A T 0 Bhcbpribibgdeighitibibbsbiab, doutba L AALE 4 5
SE 3 a: : : MBM Phys. Rev. D. 101 (2020) 094017 °
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
GNN output for n/A classification GNN output for ii/A classification LFCQM  Phys. Rev. D 103 (2021) 054018 TS
SU@3) Phys. Lett. B 823 (2021) 136765 ——
HBM Phys. Rev. D 107 (2023) 033008 ——i
@ First observation of A;I: - ne+ve with over 100 significance QCDSR  Phys. Rev. D 108 (2023) 074017 ——
- B(AL - netv,) = (0.357 + 0.034,¢ + 0-014‘syst.)% LQCD  Phys. Rev. D 97 (2018) 034511 —.—i
BESIII exp. ——
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@® First measurement of |V ;| from charmed baryon decays B(A! — ne*v,)(%)

* [Vegl = 0.208 £ 0.011¢y, % 0.007;gcp % 0.001, (44

The study is based on 4.5 fb~! data at BESIII.
One-year run at STCF can improve BR and |V,4| precisions to ~3% (systematics dominant)
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One step forward

@ Full neutron reconstruction beyond identification is desired.
< More meaningful physics results (e.g., form factors) require knowing the neutron momentum

@® We tried predicting neutron momentum with GNN, but failed
« A regression task that doesn'’t perfectly fit our toolkit

Our result:
|deal effect: Assign all outputs near average
Positive correlated mapping to yield local minimum for loss function

CMS simulation ASyy %107

Predict
Predict

Does the limitation come from detector,
- or our deep learning technique?

We should seek help from ML experts.

0.4

HIIIH

0A3||||111|1|||||1|1||||1||

Truth
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Anti-neutron reconstruction
via Visual Object Detector




Vision Calorimeter (ViC)

@ An object detection approach
* Represent EMC hits on a 2D image
* Find the position of n within a binding box
« Determine its confidence score, class and incident momentum

A comprehensive reconstruction with particle type, position and momentum measurements.

1
}
6T (6,6) : || bbox ||
TS ST : ’ D I !
------ VAN | 7]
; ®
—~ & = 1
B S H - . S 1 [ ~ 1
93 . 7 . . : |Lont1.|
w . . . = -
® = S : \ = p=1.096GeV/c
l _ - - : confi. = 0.534
\\ | . | |
\\ ! n
(b) Pseudo GT\BBox .: . | Visual Detection .:; !
Representation Generation™, . i and Regression .
/ \\ T " - N
(c) " " : (e) " " : 29.9 FPS
}

Tatency: 0.05484 sec
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Image quantification

@® Pixels
< BESIII barrel EMC has 44 rings x 120 cells, end-cap EMC has 6 rings x [96, 96, 80, 80, 64, 64] cells

+  Set image size with 960 x 480 pixels
e 960 is the least common multiple of (120, 96, 80, 64)

: . . , . . . 1 i ixels) h (pixel
- Define position-varied cell height according to their center positions ayzers cells | W(I;I(’)‘e ) (p‘ge ) | mote
2 - 24 8 empty
3 - 20 7
@® Colors 2 o4 15 6
. . 2 80 12 6 end-cap
* EMC deposited energy range is 0.5 MeV ~ 2 GeV 2 9% 10 5
« Take log scale: [1073-3,10°3] 1 - | 10 5 | empty
. : : . 5 120 8 5
* Divide low, medium and high measures to fill blue, green and red channels 4 120 g 6
. . . . 12 7
* Add a -30db Gaussian noise due to the sparsity of on-fire EMC cells o : g
5 120 8 7 barrel
. 4 120 8 6
x10° Overall Histogram 5 120 8 5
Low Energy 1 - 10 5 | empty
L, 2" Medium Energy 2 96 10 5
§ High Energy 2 80 12 6 end-cap
2 2 o4 15 6
S g
3 - 20 7
2 - 24 8 empty
0 | T T T T = T T T 2 - 30 8
-3.3 -2.9 -2.5 -2.1 -1.7 -1.3 -0.9 -0.5 -0.1 0.3
Energy in GeV (lIg scale)
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Bounding box generation

@ Why not just make point-wise position prediction?
+ Bounding box (BBox) prediction can better exploit contextual information
* Superior performance in afterward tests
* Need to generate pseudo BBox around 7 incident position

@ Choice of BBox width
* Smaller size = higher precision upper limit f—— '
» Larger size — more available contextual information

S
* Best performance at 10x cell-based size a- 2
> 5
A 6- = 7
< =R
= Cell-based Size Q ’.r" Cell-based Size
g - —e— 5x g / —e— 5x
[5) /
10.01 —— jox &% [ 515% | —=— 10x
o —— 15x 2300 —a— 15x
10- g 10.2] 7 529%
Relative Efficiency (%) Angular Bias Threshold (°)

The performance of incident position prediction
with different pseudo GT BBox sizes. Left: mAB at differ-
ent relative efficiency levels; Right: relative efficiency with
different angular bias thresholds.
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Network configuration

@® Architecture —————— w=960px ——————— JUETEE TR
« Backbone: Swin-Transformer pre-trained on ImageNet | ST - ) iz“’;jp K={ ®
* Detection head: RetinaNet - o / 7 i |
< A \ ”
@ Loss function | P e '
« Conventional choice in object detection is IOU / | % o " Pzl
. ) le'U = S(GT 1 Pred)/S(GT U Pred) S . - _ ;@M
. e design a more center-oriented version i ? ——— | Confidence | = o 3
(cosy — 1)2 Backbone FPN Detection Head Output Result

Loco=1—1oU+ a-

(COS Vmer — 1)?

pred

(a)

Yangu Li Neutron reconstruction at tau-charm facilities with Deep Learning


https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1708.02002

Performance of ViC (l)

@ Dataset oo R
* 1 million /Y — pnn~ events taken from BESIII data 25- ‘ BEttfr periorma_ncg e
* Plan to extend to 10 million events " X e -
- Point-wise
— 1.5~ . prediction .
@ In position measurement o 100- 4 q ]
*  Compared with conventional clustering algorithm, ViC E 12.5- algorithm
improves the precision by 75% at full efficiency . )
« From 17.4° t0 9.9° e, — ViC
* ViC can double this precision at 90% efficiency 73 [ Vil
* A near-practical performance of 5° 20.0- Relative Efficiency (%)
@® How comes the improvement?
Clustering Algorithm Vision Calorimeter

* Conventional clustering algorithm would split a discontinues
hadronic shower

! 1

! 1

: =

» Usually caused by multiple scattering i ™ :

1

* Only the most energetic one is considered ! o (;'rd !

. . I ® pred

* VIiC can better handle such scenarios e
Ga=YiEipi/XiEi,0n =Y,Ei0;/YE;, ¢ = ®(BBox ctr), 6; = 0(BBox ctr),

pa:N/A Pn = Ppred
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Performance of ViC (ll)

@® In momentum measurement 12 /
*  No conventional methods so far Point-wise A
1.0 ..
+ VIC firstly realize such capability in EMC prediction ¢ ‘
* Resolution ~25% in sub-GeV region 508 ||
: : . . > g
« Even better than dedicated HCALs in this region (~80%/VE) ?! 3 ¢ ’ /
_\506 ®
8 A4 4
o go ° §04 1 /,';(Je
@ In classification S
. . . . — e . . ,,, o
* VIiC is capable to identify 7 & A (though not optimized) 02 S ;
- ) — P ViC
* Position & momentum measurements also compatible for A case o9 4 SES(Swin-T)
0.0 7
. B Xt 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Reconstru(.:tlon peﬁormance of n and A. T indicates p_gt(GeV/c)
that the corresponding correlation value is not an average but
is recalculated across all testing samples.
JmAB | mAE | mRE 1 Acc.
) GeVi) (%) T (@)
. @ | 1634 0.1546 28.17 05733  95.38
2 A | 2015 01421 3693 0.5389 54.04
P avg. | 1824 01483 3255 0.63901 7471 )
n | 1016  0.1414 2552  0.6365 93.14 ViC shows potential to develop an universal ’. =
2 A [ 1510 01285 33.60 05469 73.82 neutral hadron reconstruction algorithm! 3
avg. | 12.63  0.1349 29.56 0.6785" 83.48
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Summary & outlook

@ Neutral hadron reconstruction is challenging at -charm facilities.
* Information recorded in detector is rare & sparse

@ Deep learning could be a key to fully exploit such information.
» A practical solution for neutron identification with Graph Neural Network
* A baseline model for anti-neutron reconstruction with Visual Object Detector

@® Prospectsin STCF

* EMC maintains BESIII spec but with faster time response
* Allow identification & momentum measurement via time-of-flight method
* 300 ps time resolution can offer 3a n/y separation & 8% momentum precision for a neutron @ 1 GeV/c

* MUD serves as auxiliary detector for neutral hadron

More data & more information is always welcomed for deep learning.

Thank ntion!
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