

Hadronic molecules with exotic $J^{PC} = 0^{--}$

Xiang-Kun Dong

In collaboration with T. Ji, F.-K. Guo, U.-G. Meißner, and B.-S. Zou Based on PRL 129(2022)10,102002 and PLB 853(2024)138646.

HISKP, Bonn University

Nov. 20, 2024

FTCF2024-Guangzhou Nov. 17-21, 2024

			 ■ のへの
Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	1/15

Contents

- **1** Spin partner of $\psi(4230)$ with $J^{PC} = 0^{--}$
- **2** Hints in hidden-strangeness sector
- 3 Summary

Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	1/15

$\psi(4230)$ related hadronic molecules

- Y(4260) observed in $e^+e^- \rightarrow \gamma_{\rm ISR} J/\psi \pi^+\pi^-$ by BaBar.
- Candidate of exotic state, properties different from $c\bar{c}$.
- Strong coupling to $D\overline{D}_1$, hadronic molecules.
- HQSS implies other molecular states of $D^{(*)}\overline{D}_{1,2}$.

Table: The hadronic molecules considered in this work and their possible experimental candidates.

Molecule	Components	J^{PC}	Candidates	Mass~(GeV)	E_B (MeV)
$\psi(4230)$	$\frac{1}{\sqrt{2}}(D\bar{D}_1 - \bar{D}D_1)$	1	$\psi(4230)$	$4.220\pm0.015^\dagger$	67 ± 15
$\psi(4360)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1-\bar{D}^*D_1)$	$1^{}$	$\psi(4360)$	$4.368\pm0.013^\dagger$	62 ± 14
$\psi(4415)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_2-\bar{D}^*D_2)$	$1^{}$	$\psi(4415)$	$4.421\pm0.004^\dagger$	49 ± 4
$\psi_0(4360)$	$\frac{1}{\sqrt{2}}(D^*\bar{D}_1-\bar{D}^*D_1)$	0	-	-	-

• $\psi(4230), \psi(4360) \& \psi(4415)$ as inputs.

•
$$\mathcal{C}|D\rangle = |\bar{D}\rangle, \ \mathcal{C}|D^*\rangle = -|\bar{D}^*\rangle, \ \mathcal{C}|D_1\rangle = |\bar{D}_1\rangle, \ \mathcal{C}|D_2^*\rangle = -|\bar{D}_2^*\rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Meson-exchange interaction

• Meson-exchange potential

$$\mathcal{M}_{ij}^{P} = \alpha_{ij}^{P} \frac{1}{q^{2} + m_{P}^{2}} + \beta_{ij}^{P} \frac{q^{2}}{q^{2} + m_{P}^{2}} = A_{ij}^{P} \frac{1}{q^{2} + m_{P}^{2}} + B_{ij}^{P},$$
$$\mathcal{M}_{ij}^{V} = \alpha_{ij}^{V} \frac{1}{q^{2} + m_{V}^{2}} + \beta_{ij}^{V} \frac{q^{2}}{q^{2} + m_{V}^{2}} = A_{ij}^{V} \frac{1}{q^{2} + m_{V}^{2}} + B_{ij}^{V}.$$

• HQSS \Rightarrow 4 independent contact terms for isoscalar $D^{(*)}\bar{D}_{1,2}^{(*)}$ system

$$F^{d}_{Ij_{\ell}} \equiv \left\langle \frac{1}{2}, \frac{3}{2}, j_{\ell} \left| \hat{\mathcal{H}}_{I} \right| \frac{1}{2}, \frac{3}{2}, j_{\ell} \right\rangle, \quad F^{c}_{Ij_{\ell}} \equiv \left\langle \frac{1}{2}, \frac{3}{2}, j_{\ell} \left| \hat{\mathcal{H}}_{I} \right| \frac{3}{2}, \frac{1}{2}, j_{\ell} \right\rangle$$

where $j_{\ell} = 1, 2$ is the spin of light quarks.

Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	3/15

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Contact terms

- P, V-exchange $\Rightarrow \delta$ potential in position, short-distance interaction.
- Resonance saturation: The interaction is saturated by meson exchange.
- *t*-channel \Rightarrow two kinds of δ potential \Rightarrow two parameters c, d.
- "u"-channel \Rightarrow another two contact terms. Not included.
- Introduce c, d for renormalization, the potential read

$$V_{ij} = -\frac{1}{4\sqrt{M_1M_2M_3M_4}} \left(A_{ij}^P \frac{1}{q^2 + m_P^2} + A_{ij}^V \frac{1}{q^2 + m_V^2} + dB_{ij}^P + cB_{ij}^V \right)$$

• Gaussian form factor

$$V_{ij}\left(\boldsymbol{k}',\boldsymbol{k}\right) \to V_{ij}\left(\boldsymbol{k}',\boldsymbol{k}\right) e^{-\boldsymbol{q}^{2}/\Lambda^{2}}$$
 (1)

with $q^2 = k^2 + k'^2 - 2kk' \cos \theta$.

• Poles from LSE

$$T_{ij}(E; \mathbf{k}', \mathbf{k}) = V_{ij}(\mathbf{k}', \mathbf{k}) + \sum_{n} \int \frac{\mathrm{d}^{3}l}{(2\pi)^{3}} \frac{V_{in}(\mathbf{k}', \mathbf{l}) T_{nj}(E; \mathbf{l}, \mathbf{k})}{E - l^{2}/(2\mu_{n}) - \Delta_{n1} + i\epsilon}$$

4/15

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

t-channel results

• Adjusting c, d to reproduce the binding energy of $\psi(4230), \psi(4360) \& \psi(4415),$

$$\chi^2 = \sum_i \left(\frac{E_{B,ii} - E_{\exp,ii}^{\text{cen}}}{E_{\exp,ii}^{\text{err}}} \right)^2.$$

- Single channel. Predicted ψ_0 binding energy, 72.4 ± 17.4 MeV.
- Little coupled-channel effects on predicted ψ_0 .

Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	5/15

-

$D\bar{D}^*\pi$ 3-body effects

• Cut C_1 , OPE. TOPT. Left-hand cut

$$\frac{1}{q^2 - m_\pi^2 + i\epsilon} \to \frac{1}{2E(m_\pi, q)} \left(\frac{1}{d_1} + \frac{1}{d_2}\right)$$

$$d_i = \sqrt{s} - E(m_{\pi}, \boldsymbol{q}) - E(m_i, \boldsymbol{k}) - E(m_i, \boldsymbol{k}')$$

• Cut C_2 , D_1 self-energy. Right-hand cut.

$$\Gamma_{D_1}(E, \mathbf{l}) = \frac{g_S^2}{4} (m_{D_1}^2 - m_{D^*}^2)^2 \frac{p_{\rm cm}}{8\pi m_{D^*\pi}^2},$$

Assumed in *S*-wave. $g_S = g_{S0} = 2.0 \text{ GeV}^{-1}$ and $g_S = g_{S1} = \sqrt{31/12} g_{S0}$ for uncertainty.

Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	6/15

(日)

3-body effects on pole positions of $\psi_{(0)}$

Table: Pole positions relative to the $D^* \overline{D}_1$ threshold in units of MeV with $c_V = 0.50, c_P = 0.18$ from the single *t*-channel fitting. " C_2 " means the D_1 self-energy considered while the *u*-channel pion exchange not and " $C_1 \& C_2$ " means both contributions included.

System	1		0	
<i>t</i> -channel	-63.5 ± 13.8		$.8 -72.4 \pm 17.4$	
g_S	g_{S0}	g_{S1}	g_{S0}	g_{S1}
C_2	-61.5 - 3.5i	-61.5 - 9.2i	-70.0 - 3.5i	-70.0 - 8.9i
$C_1 \& C_2$	-65.8 - 6.6i	-73.1 - 14.2i	-65.8 - 0.30i	-59.4 - 1.1i

- Binding energies change $\mathcal{O}(10 \text{ MeV})$ with 3-body effects.
- Called $\psi_0(4360)$ with mass 4366 ± 18 MeV.
- For 1^{--} , $D\bar{D}^*\pi$ partial width $\sim \Gamma_{D_1}$.
- For 0^{--} , $D\bar{D}^*\pi$ partial width is tiny. C and P conservation.
- Limited decay channels for 0^{--} , total decay width much smaller than 10 MeV.

			▶ ≣ ୭९୯
Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	7/15

Experimental search

- $\psi_0(4360)$ production channel in e^+e^- annihilation at $\sqrt{s} \sim 5$ GeV is *P*-wave $\eta\psi_0(4360)$. High chances in STCF with $e^+e^- \to \eta D\bar{D}^*$.
- Hard to distinguish from $\eta\psi(4360)$ with only invariant mass distribution of, e.g., $D\bar{D}^*$, $J/\psi\eta$. Angular distribution is necessary.

•
$$e^+e^- \to \gamma^* \to \eta(p_1) + \psi_0(p_2), \ \mathcal{M}_0 \propto \epsilon(\gamma^*) \cdot q$$

•
$$e^+e^- \to \gamma^* \to \eta(p_1) + \psi(p_2), \ \mathcal{M}_1 \propto \epsilon_{\alpha\beta\gamma\delta}\epsilon^{\alpha}(\gamma^*)\epsilon^{*\beta}(\psi)P^{\gamma}q^{\delta}.$$

• Sum over initial and final polarizations we have

Figure: Angular distribution of $e^+e^- \rightarrow \eta \psi_{(0)}$. θ is the angle between the outgoing η and initial e^+e^- beam.

Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	8/15

Contents

1 Spin partner of $\psi(4230)$ with $J^{PC} = 0^{--}$

2 Hints in hidden-strangeness sector

Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	8/15

(ロ)、

Experimental signals in hidden-strangeness system?

- Similar pattern is expected in hidden-strangeness sector.
- $D^* \overline{D}_1 \Rightarrow K^* \overline{K}_1$ and $J/\psi \eta^{(\prime)} \Rightarrow \phi \eta^{(\prime)}$.
- $J/\psi \to \phi \eta \eta'$

- $\phi\eta$ distribution not published.
- Let's fit it with $K^* \overline{K}_1(1270)$ channel.

			- E - 19 K C
Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	9/15

Fitting framework

• Production amplitude of $J/\psi \to \phi \eta' \eta$

$$T_{J/\psi \to \phi \eta' \eta} = P_a q_\eta \tilde{q}_{\eta'} + P_b G_{33} T_{31} q_{\eta'} + P_c G_{33} T_{32} q_\eta,$$

with $J/\psi\eta$ - $J/\psi\eta'$ - $K^*\bar{K}_1$ scattering amplitudes,

$$\begin{split} T_{33} &= V_{33} + V_{33} G_{33} T_{33} + \mathcal{O} \left(V_{31}^2, V_{32}^2 \right), \\ T_{31} &= T_{33} V_{33}^{-1} V_{31} + \mathcal{O} \left(V_{31}^3, V_{32}^3 \right), \\ T_{32} &= T_{33} V_{33}^{-1} V_{32} + \mathcal{O} \left(V_{31}^3, V_{32}^3 \right). \end{split}$$

• The differential decay width of J/ψ ,

$$\frac{\mathrm{d}\Gamma_{J/\psi\to\phi\eta'\eta}}{\mathrm{d}M_{\phi\eta'}} = \int \mathrm{d}M_{\phi\eta}^2 \frac{2M_{\phi\eta'}}{256\pi^3 m_{J/\psi}^3} |T_{J/\psi\to\phi\eta'\eta}|^2 + \alpha f_{\mathrm{bg}}(M_{\phi\eta'}).$$

Fit results

Figure: $K^* \overline{K}_1$ rescattering only in $J/\psi \eta'$ channel, $P_b = 0$.

			- <u> </u>
Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	11/15

Fit results

Figure: $K^* \overline{K}_1$ rescattering in both $J/\psi \eta'$ and $J/\psi \eta$ channels, P_b free.

			ः ह ज्यत
Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	12/15

Lineshape in $\phi\eta$ channel

FIG. 3. Dalitz plots for modes I (a) and II (b).

Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	13/15

Angular distribution

Figure: The η polar angular distribution. Left: BESIII analysis; Right: Our analysis.

- $J^P = 0^-$ is excluded in BESIII analysis.
- PHSP process contribution dominates, S-wave, flat,

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} \propto \frac{1}{4} \begin{cases} \left(\tilde{\alpha}_1 + \frac{3}{4}(1 - \tilde{\alpha}_1)(1 + \cos^2\theta)\right) & \text{for } 1^{--} \\ \left(\tilde{\alpha}_0 + \frac{3}{4}(1 - \tilde{\alpha}_0)(1 - \cos^2\theta)\right) & \text{for } 0^{--} \end{cases}$$

 $\tilde{\alpha}_1 = 0.815$ and $\tilde{\alpha}_0 = 0.835$ are the fraction of the PHSP process.

- 0⁻⁻ is also plausible.
- Using the complete set of J/ψ events in BESIII.

Nov.	20.	2024	
	- 		

14/15

э

Contents

1 Spin partner of $\psi(4230)$ with $J^{PC} = 0^{--}$

2 Hints in hidden-strangeness sector

Nov. 20, 2024	Xiang-Kun Dong (HISKP)	0 molecular states	14/15

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Summary

- No $J^{PC} = 0^{--}$ states observed up to now. Exotic quantum numbers.
- $\psi(4230), \psi(4360) \& \psi(4415) \text{ as } 1^{--} D^{(*)} D_{1,2} \text{ molecules} \Rightarrow \text{Robust}$ prediction of narrow $0^{--} \psi_0(4360)$.
 - Meson-exchange;
 - 3-body effects.
- Searched for in $e^+e^- \to \eta\psi_0 \to \eta(J/\psi\eta^{(\prime)}/D\bar{D}^*)$. High chances in STCF.
- Hints of the 0^{--} hadronic molecule in hidden-strangeness sector, to be confirmed by using the full set of J/ψ events in BESIII.

Thanks for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●