

Proposal for the prompt inclusive J/ψ and $\psi(3686)$ production measurement at STCF

Olga Bakina
Joint Institute for Nuclear Research, Dubna

The 6th International Workshop on Future Tau Charm Facilities Sun Yat-sen University, Guangzhou, China, November 17-21, 2024

Prompt inclusive charmonium production

Goal:

- Test the NRQCD factorization hypothesis: the independence of Long Distance Matrix Elements (LDME) that describe the hadronization of the cc pair from the process (hadron-hadron collisions, electroproduction, or e⁺e⁻ annihilation);
- Clarify the contribution of the color octet channel in the range of \sqrt{s} below the J/ ψ cc threshold (\sim 6 GeV): the color-octet LDMEs are non-zero if σ >10 pb at \sqrt{s} = 4.6 \sim 5.6 GeV (Eur. Phys. J. C (2017) 77: 597);
- > Test if unknown channels/states exist.

Data only available at $\sqrt{s} = 10.6$ GeV:

- $\sim 2.5 \pm 0.3 \text{ pb} \text{ (BaBar)}$
- $\sim 1.5 \pm 0.2 \text{ pb} \text{ (Belle)}$
- $\sim 1.9 \pm 0.2 \; \mathrm{pb} \; \mathrm{(CLEO)}$

Figure: NRQCD factorization. The LDMEs <O^H_n> are determined from experimental data.

Prompt inclusive J/ψ production $(e^+e^- \to J/\psi_{prompt} X)$

- $\bullet \quad \textbf{Prompt} = \textbf{Total} \{\psi(3686) \rightarrow J/\psi X\} \{\chi_{c1.2} \rightarrow J/\psi X\} \{e^+e^- \rightarrow \gamma_{ISR}J/\psi\} \{e^+e^- \rightarrow \gamma_{ISR}\psi(3686)\}$
 - J/ψ produced in the decay of classical charmonia $\psi(3686)$ and $\chi_{c1,2}$ are excluded
 - J/ψ produced via the ISR return to the J/ψ and $\psi(3686)$ resonances are excluded
 - Other classical charmonia like $\psi(3770)$, χ_{c0} , etc. are ignored as far as their possible contribution is negligibly small
 - J/ ψ produced in the decay of exotic XYZ states like $\psi(4230)$, $Z_c(4200)$, etc. are treated as a signal in the present analysis
- The region of main interest is $\sqrt{s} > 4.5 \text{ GeV}$ (far from resonances)

Prompt inclusive
$$\psi(3686)$$
 production $(e^+e^- \rightarrow \psi(3686)_{prompt}X)$

- Prompt = Total $\{e^+e^- \rightarrow \gamma_{ISR}\psi(3686)\}$
 - $\psi(3686)$ produced via the ISR return to the $\psi(3686)$ resonance are excluded
 - $\psi(3686)$ produced in the decay of exotic XYZ states like $\psi(4230)$, $\psi(4360)$, etc. are treated as a signal in the present analysis
- The region of main interest is $\sqrt{s} > 4.8 \text{ GeV}$ (far from resonances)

BESIII: Prompt inclusive J/ψ and $\psi(3686)$ production (I)

Data: $\mathcal{L} = 22 \text{ fb}^{-1}, \sqrt{s} = 3.81 - 4.95 \text{ GeV}$

Channel: $J/\psi \to \mu^+\mu^-, \psi(3686) \to J/\psi \pi^+\pi^-, \chi_{cJ} \to \gamma J/\psi, (J = 1, 2)$

Figure: Yield of J/ψ from different sources normalized to corresponding luminosity.

BESIII: Prompt inclusive J/ψ and $\psi(3686)$ production (II)

The preliminary result for the prompt inclusive production of

the J/ψ meson in the range $4.53 \sim 4.95 \text{ GeV}$ is $\sigma = 14.0 \pm 1.7_{\rm stat} \, {
m pb}$

the $\psi(3686)$ meson in the range $4.84 \sim 4.95 \text{ GeV}$ is $\sigma = 16.9 \pm 2.8_{stat} \text{ pb}$

Main sources of systematic uncertainty:

- Reconstruction of charged tracks & photons;
- Uncertainties of the branching fraction values for the $\psi(3686) \rightarrow J/\psi X$ and $\psi(3686) \rightarrow \pi^+\pi^-J/\psi$ decays.

Opportunities of STCF:

Measurements of the prompt inclusive charmonium production in the wide energy range $\sqrt{s} = 5 \sim 7$ GeV (below and above the J/ $\psi c\bar{c}$ threshold) will allow to obtain the full set of the color-octet LDMEs.

Thank you for your attention!