η and η' physics

Pablo Sanchez-Puertas

pablosanchez@ugr.es

Departamento de Física Atómica, Molecular y Nuclear, University of Granada, Spain

The 6th International Workshop on Future Tau Charm facilities 19th November 2024, Guangzhou, China

UNIVERSIDAD DE GRANADA

____ What is special about the $\eta - \eta'$ system _____

QCD symmetry breaking: $SU(3)_L \times SU(3)_R \times U(1)_B [\times U(1)_A] \rightarrow SU(3)_V \times U(1)_B$

• $\eta(\eta')$ emerge as an octet (would-be singlet in large- N_c) Goldstone boson (GB) η_8, η_0

• In real world,
$$rac{m_s-m_{u,d}}{\Lambda_{QCD}}
eq 0 \Rightarrow \eta_8-\eta_0$$
 mix into $\eta-\eta'$

• Properties of chiral symmetry breaking, physics and U(1)_A physics

GBs play a central role in describing QCD dynamics at low energies

- Peculiarities of the η, η' and new physics:
 - $\Gamma(\eta \to 3\pi)$ isospin-breaking $(m_d m_u) \sim \Gamma(\eta \to 2\gamma)$; $\Gamma_\eta = 1.31(5)$ keV is small
 - $\Gamma(\eta' \to \eta 2\pi)$ phase-space, $\Gamma(\eta^{(\prime)} \to 4\pi \sim \rho \rho)$ suppressed, $\Gamma_{\eta'} = 188(6)$ keV is moderate
 - $I^G J^{PC} = 0^+ 0^{-+}$ and C, P, T eigenstate with negligible SM $\mathcal{L}P$ contribution

Sensitivity to weakly coupled New Physics and CP tests

Channel	Expt. branching ratio	Discussion
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, $\eta - \eta'$ mixing
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$
$\eta \to \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson, light Higgs scalars
$\eta \rightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)
$\eta \rightarrow 4\gamma$	$<2.8\times10^{-4}$	< 10 ⁻¹¹ 55
$\eta \to \pi^+\pi^-\pi^0$	22.92(28)%	$m_u - m_d$, C/CP violation, light Higgs scalars
$\eta \to \pi^+\pi^-\gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TF and $(g - 2)_{\mu}$, P/CP violation
$\eta \rightarrow \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs
$\eta \rightarrow e^+ e^- \gamma$	$6.9(4)\times10^{-3}$	theory input for $(g - 2)_{\mu}$, dark photon, protophobic X boson
$\eta \rightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_{\mu}$ dark photon
$\eta \to e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays
$\eta \to \mu^+ \mu^-$	$5.8(8)\times10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays, P/CP violation
$\eta \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$	_	C/CP violation, ALPs
$\eta \to \pi^+\pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation ALPs
$\eta \to \pi^+\pi^-\mu^+\mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation, ALPs
$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g - 2)_{\mu}$
$\eta \to e^+ e^- \mu^+ \mu^-$	$<1.6\times10^{-4}$	theory input for $(g - 2)_{\mu}$
$\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$
$\eta \to \pi^+\pi^-\pi^0\gamma$	$< 5 \times 10^{-4}$	direct emission only
$\eta \to \pi^\pm e^\mp v_e$	$<1.7\times10^{-4}$	second-class current
$\eta \to \pi^+\pi^-$	$< 4.4 \times 10^{-6}$ 56	P/CP violation
$\eta \rightarrow 2\pi^0$	$< 3.5 imes 10^{-4}$	P/CP violation
$\eta \rightarrow 4\pi^0$	$< 6.9 \times 10^{-7}$	P/CP violation

= $\ _$ $\eta - \eta'$ topics in this talk $_$

• Many interesting physics: SM+BSM

• Left table from *Phys.Rept. 945 (2022) 1-105*, "Precision tests of fundamental physics with η and η' mesons" by Gan, Kubis, Passemar & Tullin,

 \bullet I will focus on (i) SM/QCD physics for g-2 and (ii) BSM physics: CP-violation

- Note that relevant progress in g-2 contect from $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-\eta^{(\prime)}$ accessible at STCF.
- Lattice also making progress (2106.05398) and some puzzles with experiment (2305.04570)!

• See also S. Gozalez-Solis talk at 2024 Int'l workshop on future Tau Charm facilities for other channels

_ Past present and future of η/η' factories

• Fixed target experiments (i.e. $pd \rightarrow \eta^{3}He$ or $\gamma p \rightarrow \eta p$)

WASA $\sim 5 \times 10^8 \eta$ (past) (EPJ Web Conf. 199) MAMI $\sim 10^8 \eta, 10^6 \eta'$ (past) (2007.00664)

• e^+e^- colliders through $e^+e^- o R(R=\phi,J/\psi) o \eta^{(\prime)}\gamma(+\eta^{(\prime)}\phi)$

	$N(J/\psi,\phi)$	$ imes ({ m BR}_{\eta\gamma+\eta\phi})$	$\times({\operatorname{BR}}_{\eta'\gamma+\eta'\phi})$	Ref
STCF/year	$3.4 imes10^{12}$	$(3.8+1.6) imes 10^{9}$	$(1.8 + 0.2) imes 10^{10}$	2303.15790
BESIII	10^{10}	$(1.1+0.5) imes10^7$	$(5.2+0.7) imes10^7$	1912.05983
KLOEII	$2.4 imes10^{10}$	$(3.1+0) imes10^8$	$(1.5+0) imes 10^6$	1904.12034

- BESIII is a driving force in η, η' (precision) physics \Rightarrow STCF \times 300 stat.
- SCTF potential of 10¹⁰ η, η' mesons (largest η' factory unless full REDTOP)
- Also future fixed-target experiments

JEF (approved) $\sim 10^8 \eta, \eta'/200$ days (PR12-14-004) REDTOP (proposal) $\sim 10^{13(11)} \eta^{(\prime)}$ (2203.07651)

Also $e^+e^-
ightarrow e^+e^-\gamma^*\gamma^*
ightarrow e^+e^-\eta^{(\prime)}$ (KLOE/BESIII/BaBar/Belle/STCF)

Section 1

η and η' transition form factors

_ The $\eta^{(\prime)}$ transition form factors: introduction

•
$$F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$$
 describe $\gamma^*(q_1)\gamma^*(q_2) \rightarrow \eta$

 $i \int d^4 x e^{i q_{\mathbf{1}} \times} \langle 0 | T\{j_{\mu}(x), j_{\nu}\} | \eta \rangle = \epsilon_{\mu \nu q_{\mathbf{1}} q_{\mathbf{2}}} F_{P \gamma^* \gamma^*}(q_1^2, q_2^2)$

• Relevant to $\eta - \eta'$ mixing via $F_{P\gamma^*\gamma^*}(0,0)$

• Essential input for computing HLbL to muon g-2 (low spacelike region $\sim Q^2 < 2~{\rm GeV}^2)$

• Exclusive processes in pQCD (Brodsky-Lepage '80 10.1103/PhysRevD.22.2157); access to ϕ_P

$$F_{P\gamma^*\gamma^*}(-Q_1^2,-Q_2^2) o 2F_P \operatorname{tr}(\mathcal{Q}^2\lambda^P) \int dx rac{\phi_P(x)}{xQ_1^2+ar{x}Q_2^2}$$

____ The $\eta - \eta'$ mixing _____

- The η,η' are an octet-singlet admixture due to $SU(3)_F$ -breaking $(m_s-\hat{m}
 eq 0)$
- Defining mixing in terms of $\eta_{8,0}$ requires Lagrangian with $\eta_{8,0}$ fields (i.e. large- $N_c \chi PT$)
- In practice, $\eta \eta'$ mixing refers to their decay constants (physical defined without \mathcal{L})

$$\langle 0 | A^{*}_{\mu} | P(q)
angle = i q_{\mu} F^{*}_{P}, \qquad A^{*}_{\mu} = \bar{q} \gamma_{\mu} \gamma^{5} rac{\lambda^{*}}{2} q$$

• Naive mixing suggests

$$\begin{pmatrix} F_{\eta}^{8} & F_{\eta}^{0} \\ F_{\eta'}^{8} & F_{\eta'}^{0} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} F_{8} & 0 \\ 0 & F_{0} \end{pmatrix} (3 \text{ pars}) \text{ and } \begin{pmatrix} F_{8} & 0 \\ 0 & F_{0} \end{pmatrix} \sim \langle 0 | A_{\mu}^{a} | \eta_{8,0} \rangle = F_{\eta_{8,0}}^{a}$$

• In real world, each F_P^a is independent

$$\begin{vmatrix} & \begin{pmatrix} F_{\eta}^{8} & F_{\eta}^{0} \\ F_{\eta'}^{8} & F_{\eta'}^{0} \end{pmatrix} = \begin{pmatrix} F_{8}\cos\theta_{8} & -F_{0}\sin\theta_{0} \\ F_{8}^{8}\sin\theta_{8} & F_{0}\cos\theta_{0} \end{pmatrix}$$

How to extract them? \Rightarrow Phenomenology (next)

__ The $\eta - \eta'$ mixing _

• $F_{P\gamma\gamma}(0,0)$ intimately related to the ABJ anomaly in the chiral limit

 $\partial^{\rho} \langle V_{\mu} V_{\nu} A_{\rho}^{a} \rangle \sim \frac{N_{c} \operatorname{tr}(\mathcal{Q}^{2} \lambda^{a})}{4\pi^{2}} \epsilon_{\mu\nu q_{1} q_{2}} \Rightarrow F_{\eta}^{a} F_{\eta\gamma^{*}\gamma^{*}}(0,0) + F_{\eta'}^{a} F_{\eta'\gamma^{*}\gamma^{*}}(0,0) = \frac{N_{c} \operatorname{tr}(\mathcal{Q}^{2} \lambda^{a})}{4\pi^{2}}$

• Which implies the solution
$$\begin{pmatrix}
F_{\eta\gamma\gamma} \\
F_{\eta'\gamma\gamma}
\end{pmatrix} = \begin{pmatrix}
F_{\eta}^{8} & F_{\eta}^{0} \\
F_{\eta'}^{8} & F_{\eta'}^{8}
\end{pmatrix}^{-1} \frac{N_{c}}{4\pi^{2}} \begin{pmatrix}
\operatorname{tr}(\mathcal{Q}^{2}\lambda^{8}) \\
\operatorname{tr}(\mathcal{Q}^{2}\lambda^{0})
\end{pmatrix} \Rightarrow F_{\eta\gamma\gamma}(0,0) = \frac{1}{4\pi^{2}} \frac{c_{8}F_{\eta'}^{0} - c_{0}F_{\eta'}^{8}}{F_{\eta'}^{0}F_{\eta}^{8} - F_{\eta'}^{8}F_{\eta}^{0}}$$

• In real world corrections [large- $N_c \ \chi PT$]: $c_8 = \frac{1 + \frac{K_2}{3}(7M_\pi^2 - 4M_K^2)}{\sqrt{3}}, \quad c_0 = \sqrt{\frac{8}{3}}[1 + \Lambda_3 + \frac{K_2}{3}(2M_\pi^2 + M_K^2)]$

• On the opposite regime $\lim_{Q^2 \to \infty} Q^2 F_{P\gamma\gamma} \to 2N_c[F_P^8 \operatorname{tr}(\mathcal{Q}^2 \lambda^8) + F_P^0 \operatorname{tr}(\mathcal{Q}^2 \lambda^0)]$

• Low+High regimes of $F_{\eta^{(\prime)}\gamma^*\gamma^*}$ access to $\eta - \eta'$ mixing! EMGS (1512.07520) (MeV units) $F_8 = 117(2), F_0 = 105(5), \theta_8 = -21(2)^\circ, \theta_0 = -7(2)^\circ$ $F_8 = 115(3), F_0 = 100(4), \theta_8 = -26(3)^\circ, \theta_0 = -8(2)^\circ$ Lattice (2106.05398)

•
$$(g-2)_{\mu}$$
 probe of new physics^a
 $a_{\mu}^{\rm th} = 116591810(43) \times 10^{-11}$ $a_{\mu}^{\rm exp} = 16592055(24) \times 10^{-11}$

• It's a 5σ tension. Errors dominated by HVP ($\sim7000\times10^{-11})$; then, HLbL ($\sim100\times10^{-11})$; theory must improve error for future $\pm16~(10^{-11}$ units) exp. uncertainty

• The leading HLbL contribution due to pseudoscalar poles and their TFFs (low spacelike region)

 $\bullet\,$ Next, the 2 approaches in the WP to outline how and necessities

 $\begin{aligned} a_{\mu}^{HLbL;P} &= \sum_{i} \int dQ_{1} dQ_{2} dc_{\theta} \ \frac{T_{i}(Q_{1}^{2},Q_{2}^{2},c_{\theta})}{Q_{12}^{2} + m_{\rho}^{2}} \\ &\times F_{P\gamma^{*}\gamma^{*}}(Q_{1}^{2},Q_{2}^{2})F_{P\gamma^{*}\gamma^{*}}(Q_{12}^{2},0) \end{aligned}$

^aAoyama et al, Phys.Rept.887 (2020), Muon g-2 Coll. Phys.Rev.Lett.131(2023)16

• One approach in WP: Canterbury/Padé approximants^a

 $P_{M}^{N}(x) = rac{Q_{N}(x)}{R_{M}(x)}, \ P_{1}^{0} = rac{a_{0}}{1+b_{1}x}, \ P_{2}^{1} = rac{a_{0}+a_{1}x}{1+b_{1}x+b_{2}x^{2}}$

coefficients to match Taylor series

 $C^0_1(x,y) = rac{a_{0,0}}{1+b_{1,0}(x+y)+b_{11}xy}$ pretty similar

• Use sequences $P_{N+1}^N(x)$; improves with $N \uparrow$ (as Taylor exp.)

• Taylor coeffs for $F_{P\gamma^*\gamma}(-Q^2,0)$ from data fitting

^aP. Masjuan, PSP, Phys.Rev.D95(2017)5

• One approach in WP: Canterbury/Padé approximants^a

 $P_{M}^{N}(x) = rac{Q_{N}(x)}{R_{M}(x)}, \ P_{1}^{0} = rac{a_{0}}{1+b_{1}x}, \ P_{2}^{1} = rac{a_{0}+a_{1}x}{1+b_{1}x+b_{2}x^{2}}$

coefficients to match Taylor series

 $C^0_1(x,y) = rac{a_{0,0}}{1+b_{1,0}(x+y)+b_{11}xy}$ pretty similar

• Use sequences $P_{N+1}^N(x)$; improves with $N \uparrow$ (as Taylor exp.)

• Taylor coeffs for $F_{P\gamma^*\gamma}(-Q^2,0)$ from data fitting

^aP. Masjuan, PSP, Phys.Rev.D95(2017)5

• One approach in WP: Canterbury/Padé approximants^a

 $P_{M}^{N}(x) = rac{Q_{N}(x)}{R_{M}(x)}, \ P_{1}^{0} = rac{a_{0}}{1+b_{1}x}, \ P_{2}^{1} = rac{a_{0}+a_{1}x}{1+b_{1}x+b_{2}x^{2}}$

coefficients to match Taylor series

 $C^0_1(x,y) = rac{a_{0,0}}{1+b_{1,0}(x+y)+b_{11}xy}$ pretty similar

• Use sequences $P_{N+1}^N(x)$; improves with $N \uparrow$ (as Taylor exp.)

- Taylor coeffs for $F_{P\gamma^*\gamma}(-Q^2,0)$ from data fitting
- Excellent prediction at low q^2 timelike (Dalitz decays)

^aP. Masjuan, PSP, Phys.Rev.D95(2017)5

• One approach in WP: Canterbury/Padé approximants^a

 $P_{M}^{N}(x) = rac{Q_{N}(x)}{R_{M}(x)}, \ P_{1}^{0} = rac{a_{0}}{1+b_{1}x}, \ P_{2}^{1} = rac{a_{0}+a_{1}x}{1+b_{1}x+b_{2}x^{2}}$

coefficients to match Taylor series

 $C^0_1(x,y) = rac{a_{0,0}}{1+b_{1,0}(x+y)+b_{11}xy}$ pretty similar

• Use sequences $P_{N+1}^N(x)$; improves with $N \uparrow$ (as Taylor exp.)

• Taylor coeffs for $F_{P\gamma^*\gamma}(-Q^2,0)$ from data fitting

• Excellent prediction at low q^2 timelike (Dalitz decays)

• $F_{P\gamma^*\gamma}(-Q_1^2,-Q_2^2)$ no data: pQCD asymptotics

 $F_{P\gamma^*\gamma}(-Q^2,-Q^2)=2\operatorname{tr}(\mathcal{Q}^2\lambda^a)F_P^aQ^{-2}+\ldots$

^aP. Masjuan, PSP, Phys.Rev.D95(2017)5

• Other approach in WP are dispersion relations

 $F_{P\gamma^*\gamma}(q^2,0) = rac{1}{\pi} \int rac{\operatorname{Im} F_{P\gamma^*\gamma}(s,0)}{s-q^2}$ (similar for $q_2^2 \neq 0$)

• Im $F_{P\gamma^*\gamma}(s,0)$ unknown but for lowest unitarity cuts $F_{P\gamma^*\gamma^*}(q_1^2,q_2^2)$ for low q_i^2 possible (1808.04823)

• Recently, also η 's (2411.08098) for lowest unitarity cuts $F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$ for low q_i^2 possible for I = 1

• Capture $\rho, \omega \phi$ -dominated processes. For singly virtual, $F_{P\gamma^*\gamma}(-Q^2, 0)$, use data and effective pole.

• Doubly-virtual not $\rho(\omega, \phi)$ -dominated. Again (different) use of pQCD.

Heavier states ~ VMD

• Other approach in WP are dispersion relations

 $F_{P\gamma^*\gamma}(q^2,0) = rac{1}{\pi} \int rac{\operatorname{Im} F_{P\gamma^*\gamma}(s,0)}{s-q^2}$ (similar for $q_2^2 \neq 0$)

• Im $F_{P\gamma^*\gamma}(s,0)$ unknown but for lowest unitarity cuts $F_{P\gamma^*\gamma^*}(q_1^2,q_2^2)$ for low q_i^2 possible (1808.04823)

• Recently, also η 's (2411.08098) for lowest unitarity cuts $F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$ for low q_i^2 possible for I = 1

• Capture $\rho, \omega \phi$ -dominated processes. For singly virtual, $F_{P\gamma^*\gamma}(-Q^2, 0)$, use data and effective pole.

• Doubly-virtual not $\rho(\omega, \phi)$ -dominated. Again (different) use of pQCD.

• Other approach in WP are dispersion relations

 $F_{P\gamma^*\gamma}(q^2,0) = rac{1}{\pi}\int rac{\operatorname{Im} F_{P\gamma^*\gamma}(s,0)}{s-q^2}$ (similar for $q_2^2 \neq 0$)

• Im $F_{P\gamma^*\gamma}(s,0)$ unknown but for lowest unitarity cuts $F_{P\gamma^*\gamma^*}(q_1^2,q_2^2)$ for low q_i^2 possible (1808.04823)

• Recently, also η 's (2411.08098) for lowest unitarity cuts $F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$ for low q_i^2 possible for I = 1

• Capture $\rho, \omega \phi$ -dominated processes. For singly virtual, $F_{P\gamma^*\gamma}(-Q^2, 0)$, use data and effective pole.

• Doubly-virtual not $\rho(\omega, \phi)$ -dominated. Again (different) use of pQCD.

 η and η' physics η and η' transition form factors

• How do they compare?

 π^{0} Fig. from (2006.04822); Canterbury lacks full syst. in the plot

 η and η' physics η and η' transition form factors

• How do they compare?

Figs. from S. Gonzalez-Solis (2409.10503); $R\chi T$ fit to data+lattice (DR: 7th g-2 conference, S. Holz) CAs without full systematic. Recall lattice smaller $\Gamma(\eta \rightarrow 2\gamma)$

Clearly exp. data necessary to improve our understanding!

 η and η' physics η and η' transition form factors

_ The HLbL contribution to the muon g-2

• How do they compare?

Note the exceptional BaBar η' data (1808.08038) too large Q^2 to offer insight; fig from (2006.04822)

Could STCF help in this respect?

• How do they compare?

• Preliminary BESIII results (B. Liu, Y. Ji at QNP24) (also EPJWebConf.303(2024)01001)

Data in relevant region; STCF could perform better!!

Final numbers for π^0, η, η' poles (10⁻¹¹ units)

CAs

 $a_{\mu}^{\pi^{0}}=63.6(1.3)(0.6)(2.3), \quad a_{\mu}^{\eta}=16.3(1.0)(0.5)(0.9), \quad a_{\mu}^{\eta'}=14.5(0.7)(0.4)(1.5)$

DRs

$$a^{\pi^{m 0}}_{\mu}=62.6(3.0), \quad a^{\eta}_{\mu}=14.7(9), \quad a^{\eta'}_{\mu}=13.5(7)$$

Lattice BMW (2305.04570)

$$a_{\mu}^{\pi^{0}} = 57.8(1.8)(0.9), \quad a_{\mu}^{\eta^{(*)}} = 11.6(1.6)(0.5)(1.1), \quad a_{\mu}^{\eta'} = 15.5(3.9)(1.1)(1.3)$$

^(*)note $F_{\eta\gamma\gamma}^{\text{BMW,ETM}} = 0.22(3) \text{ GeV}^{-1}$ vs. $F_{\eta\gamma\gamma}^{\text{PDG}} = 0.274(5) \text{ GeV}^{-1}$

Lattice ETM (2308.12458,2212.06704)Lattice Mainz (1903.09471) $a_{\mu}^{\pi^{0}} = 56.7(3.2), \quad a_{\mu}^{\eta(*)} = 13.8(5.2)(1.5)$ $a_{\mu}^{\pi^{0}} = 59.7(3.6) \Rightarrow a_{\mu}^{\pi^{0}latt+exp2\gamma} = 62.3(2.3)$

• We need DV measurements and $\Gamma(\eta \rightarrow 2\gamma)$ (tensions with lattice):

STCF can help in this respect

Section 2

$C\!P\text{-vioaltion}$ in η,η' decays

___ Motivation ____

• η, η' mesons are $I^G J^{PC} = 0^+ 0^{-+} C, P$ eigenstates \Rightarrow natural candidates for C, P tests. In addition, **almost SM background-free but** price to pay

C-even, P-odd case highly constrained by electric dipole moments (EDMs)¹

• Timely to assess how promising such cases *really* are to set priorities in experimental programmes (e.g. necessary statistics to be competitive).

_This talk: C-even, P-odd $\eta^{(\prime)}$ (semi)leptonic decays ____

How to link such decays to nEDM? Make use of the SMEFT (at LO D=6, C-even P-odd)

Links $\eta \to \{\mu^+\mu^-, \ \mu^+\mu^-\gamma, \ \mu^+\mu^-\bar{\ell}\ell, \ \pi^0\mu^+\mu^-, \ \pi^+\pi^-\mu^+\mu^-\}$ to nEDM

Most relevant effects in --essentially- only 3 Wilson Coefficients!

¹See 2212.07794, 2111.02417, 2307.02533, 1903.11617 for *C*-odd *P*-even.

___ The SMEFT ___

• Warsaw basis (JHEP 10 (2010) 085); focus on QCD+QED kind, not EW

X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\tilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu}^{I} \varphi)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

 $\ensuremath{\operatorname{Table}}\xspace$ 2: Dimension-six operators other than the four-fermion ones.

Hadronic CP quark EDMs CP QED CP

___ The SMEFT ___

• Warsaw basis (JHEP 10 (2010) 085); focus on QCD+QED kind, not EW

$(\overline{L}L)(\overline{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_\tau) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
Qledq	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$Q_{duq} = \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\alpha})^T C u_r^{\beta}\right]$		$\left[(q_s^{\gamma j})^T C l_t^k\right]$	
$Q_{quqd}^{(1)}$	$(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^TCq_\tau^{\beta k}\right]\left[(u_s^\gamma)^TCe_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\alpha})^T\right]$		$\left[Cu_r^{\beta}\right]\left[(u_s^{\gamma})^T Ce_t\right]$	
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$					

Hadronic CP lepton-quark CP

_ The SMEFT

Part 1: $\ensuremath{\mathcal{LP}}$ in η decays

- Compute the SM: EM matrix elements $\langle h_1...h_n | T\{j_{EM}^{\mu_1}...j_{EM}^{\mu_n}\} | \eta \rangle$
- Compute contributions from SMEFT *CP* operators (matrix elements!)

 \mathcal{CP} interference $|M_{SM} + \mathcal{M}_{BSM}^{\mathcal{CP}}|^2 = |M_{SM}|^2 + 2 \operatorname{Re} \mathcal{M}_{SM} \mathcal{M}_{BSM}^{\mathcal{CP}} + \dots$ Identify \mathcal{CP} observables and estimate exp. sensitivity to WCs (statistics!)

Part 2: Bounds from other processes

• Compute EDM contribution from SMEFT \mathcal{CP} operators \Rightarrow bounds!

Wilson Coefficients: \mathcal{P} in η vs. EDMs

$__\eta \rightarrow \mu^+ \mu^-$ decays: basics _

• Consider SM and *CP* SMEFT contributions (details later)

$__\eta \rightarrow \mu^+ \mu^-$ decays: basics _

• Consider SM and *CP* SMEFT contributions (details later)

• Checked that \mathcal{CP} in QED highly suppressed by μ EDM; hadronic ones:

$$F_{\eta\gamma\gamma}(\eta F\tilde{F}) + \epsilon_{\mathcal{F}}F_{\eta\gamma\gamma}(\eta FF)$$

$$\Rightarrow \text{ Looping yields } g_{SM}\bar{u}i\gamma^{5}v + g_{\mathcal{F}}\bar{u}v$$

$$\begin{split} & \stackrel{\eta}{\longrightarrow} \bigcirc_{i}^{q} \bigotimes_{\ell^{e}} \stackrel{\ell^{e}}{\longleftarrow} \\ & \mathcal{O}_{\ell equ}^{(1)} \Rightarrow - \operatorname{Im} c_{\ell equ}^{(1)2211} \frac{G_{F}}{\sqrt{2}} (\bar{\mu}\mu) (\bar{u}i\gamma^{5}u) \\ & \mathcal{O}_{\ell edq} \Rightarrow - \operatorname{Im} c_{\ell edq}^{22jj} \frac{G_{F}}{\sqrt{2}} (\bar{\mu}\mu) (\bar{d}_{j}i\gamma^{5}d_{j}) \\ & \Rightarrow \frac{G_{F}}{\sqrt{2}} c_{i} \langle 0 | \, \bar{q}i\gamma^{5}v \, | \eta \rangle \, \bar{u}v \sim g_{\mathcal{F}} \bar{u}v \end{split}$$

$__\eta \rightarrow \mu^+ \mu^-$ decays: basics _____

• After hadronization essentially

$$\mathcal{L}_{eff} = g_{SM} \eta \bar{\ell} i \gamma^5 \ell + g_{gf} \eta \bar{\ell} \ell$$
$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + |\mathcal{M}_{gf}|^2 + 2 \operatorname{Re} \mathcal{M}_{SM} \mathcal{M}_{gf}^*$$

$_$ $\eta \rightarrow \mu^+\mu^-$ decays: basics $_$

• After hadronization essentially

$$\mathcal{L}_{eff} = g_{SM} \eta \bar{\ell} i \gamma^5 \ell + g_{gs} \eta \bar{\ell} \ell$$
$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + |\mathcal{M}_{gs}|^2 + 2 \operatorname{Re} \mathcal{M}_{SM} \mathcal{M}_{gs}^*$$

• The \mathcal{A}^{p} violation in the interference term: vanishes if summing over spins $(n, \bar{n})!$

$$2\operatorname{Re}\mathcal{M}_{SM}\mathcal{M}_{\mathscr{A}}^{*} \Rightarrow \frac{m_{\eta}^{2}}{2} \Big[\operatorname{Re}(g_{SM}g_{\mathscr{A}}^{*})(\bar{\boldsymbol{n}}\times\boldsymbol{n})\cdot\boldsymbol{\beta}_{\ell} + \operatorname{Im}(g_{SM}g_{\mathscr{A}}^{*})\boldsymbol{\beta}_{\ell}\cdot(\boldsymbol{n}-\bar{\boldsymbol{n}})\Big]$$

 $\begin{array}{rcl} \hline \text{Solution} & \Rightarrow & \text{Account for spins: asymmetries (so far only REDTOP)} \\ \hline \text{How?} & \Rightarrow & \mu^{\pm} \text{ decay } (e^{\pm} \text{ preferentially along(against)} \ \mu^{\pm} \text{ spin}) \\ \\ A_L & = \frac{\beta_{\mu}}{3} \frac{\text{Im } A \tilde{g}_{\mathcal{G}}}{|A|^2}, \qquad \tilde{g}_{\mathcal{G}} & = -\frac{g_{\mathcal{G}}}{2m_{\mu}\alpha^2 F_{\eta\gamma\gamma}}, \quad A \sim \text{SM} \end{array}$

$$_$$
 $\eta \rightarrow \mu^+ \mu^-$ decays: basics

• After hadronization essentially

$$\mathcal{L}_{eff} = g_{SM} \eta \bar{\ell} i \gamma^5 \ell + g_{gf} \eta \bar{\ell} \ell$$
$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + |\mathcal{M}_{gf}|^2 + 2 \operatorname{Re} \mathcal{M}_{SM} \mathcal{M}_{gf}^*$$

$$A_L = 0.11 \epsilon_{arphi} - \mathrm{Im}[2.7(c_{\ell equ}^{(1)2211} + c_{\ell edq}^{(1)2211}) - 4.1c_{\ell edq}^{(1)2222}] imes 10^{-2}$$

Sensitivities: assume SM gaussian noise. At REDTOP ($2 \times 10^{12} \eta$)

$$\Delta \epsilon_{{\not \! \! CP}} = 10^{-3}, \Delta \, {\rm Im} \, c^{(1)2211}_{\ell equ} = \Delta \, {\rm Im} \, c^{(1)2211}_{\ell edq} = 0.007, \Delta \, {\rm Im} \, c^{(1)2222}_{\ell edq} = 0.005$$

Is it below nEDM/other bounds?

- $_$ $\eta \rightarrow \mu^+\mu^-$ decays: nEDM bounds
- QCD vs Quark-Lepton means 1-loop vs 2-loops

• We find, in absolute values, (note \mathcal{CP} in QCD potentially more stringent!)

 $\epsilon_{\ell equ} < 2 \times 10^{-7}, \qquad c_{\ell equ}^{(1)2211} < 0.001, \qquad c_{\ell edq}^{(1)2211} < 0.002, \qquad c_{\ell edq}^{(1)2222} < 0.02$

Recall previous section

$$\Delta \epsilon_{\mathcal{C}} = 10^{-3}, \Delta c_{\ell equ}^{(1)2211} = \Delta c_{\ell edq}^{(1)2211} = 0.007, \Delta c_{\ell edq}^{(1)2222} = 0.005$$

The strange does overcome nEDM! (and constraints from D_s decays) Note for $\ell = e$, yet stronger bounds from atomic physics **Takeout message: quark-lepton "direct" and most promising**

____ Dalitz and Double-Dalitz decays __

• Less promising since involve α suppressions (Dalitz: polarization; double-Dalitz: triple-product)

• One finds for SD/DD: $\Delta \epsilon_{CP} = 10^{-2}/10^{-3}$, $\Delta \, \text{Im} \, c_{\mathcal{O}}^{22st} = 1/40$

 η and η' physics *CP*-vioaltion in η, η' decays $\eta \to \pi^{\mathbf{0}} \mu^{+} \mu^{-}$ decays

$$__\eta o \pi^0 \mu^+ \mu^-$$
 decays .

• Proceed following previous section (JHEP 05 (2022) 147)

- Focus on SMEFT Quark-Lepton operators (same operators appear)
- Again, with 3 particles in final state, μ polarimetry required
- Hadronize corresponding $\langle \pi^0 | \bar{q}q | \eta \rangle$ matrix elements ($\bar{s}s$ isospin suppressed)

Process	Asymmetry	${\sf Im} c_{\ell edq}^{2222}$	${\sf Im}c_{\ell equ}^{(1)2211}$	${\sf Im}c^{2211}_{\ell edq}$
$\eta \to \pi^{\rm 0} \mu^+ \mu^-$	A_L	0.7	0.07	0.07
$\eta' ightarrow \pi^{0} \mu^{+} \mu^{-}$	A_L	11	2.4	2.5
$\eta' ightarrow \eta \mu^+ \mu^-$	A_L	5	68	79
$\eta ightarrow \mu^+ \mu^-$	A _T	0.005	0.007	0.007

 η and η' physics *CP*-vioaltion in η, η' decays $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decays

$_$ $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decays

• Proceed as previously (tensor quark-lepton operators EDM at 1 loop)

• \mathcal{LP} in QCD irrelevant from nEDM [Gan,Kubis,Passemar,Tulin '22] • NO polarimetry: A_{ϕ} ($\pi^+\pi^--\mu^+\mu^-$ plane angle)

$$\operatorname{\mathsf{Re}} \mathcal{M}_{\mathrm{SM}}^* \mathcal{M}_{\mathrm{BSM}} = \frac{4\sqrt{2}e^2 m_{\mu}G_{F}}{s_{\ell}} \epsilon_{\rho_{\mathbf{1}}\rho_{\mathbf{2}}\rho_{\mathbf{3}}\rho_{\mathbf{4}}} \operatorname{\mathsf{Re}} \left[\mathcal{F}_{\eta^{(\prime)}}^* \langle \pi^{+}\pi^{-} | \frac{1}{2} \operatorname{\mathsf{Im}} \left(c_{\ell equ}^{(\mathbf{1})2211} + c_{\ell edq}^{2211} \right) P^{q} + \operatorname{\mathsf{Im}} c_{\ell edq}^{2222} P^{s} | \eta^{(\prime)} \rangle \right]$$

$$\operatorname{We find} A_{\phi} \propto \sin \phi \text{ vs. } A_{\phi} \propto \sin 2\phi \text{ from } \mathcal{CP} \text{ in QCD}$$

$$\operatorname{Experiments should include this!}$$

¹M. Zillinger, B. Kubis, PSP, 2210.14925

 η and η' physics *CP*-vioaltion in η, η' decays $\eta^{(\prime)} \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decays

_ $\eta^{(\prime)} ightarrow \pi^+ \pi^- \mu^+ \mu^-$ decays .

• Proceed as previously (tensor quark-lepton operators EDM at 1 loop)

- *CP* in QCD irrelevant from nEDM [Gan,Kubis,Passemar,Tulin '22]
- NO polarimetry: $A_{\phi}~(\pi^+\pi^-$ - $\mu^+\mu^-$ plane angle)
- Relevant outcome for expt. (REDTOP: $N_\eta = 5 imes 10^{12}$, $N_{\eta'} = 4 imes 10^8$)

$$\begin{split} & \mathcal{A}_{\phi}^{\eta} = 47(14) \times 10^{-5} \big(\, \mathrm{Im} \, c_{\ell equ}^{(1)2211} + \mathrm{Im} \, c_{\ell edq}^{2211} \big) - 0.4(2.2) \times 10^{-5} \, \mathrm{Im} \, c_{\ell edq}^{2222} \, , \\ & \mathcal{A}_{\phi}^{\eta'} = 2.9(5) \times 10^{-5} \big(\, \mathrm{Im} \, c_{\ell equ}^{(1)2211} + \mathrm{Im} \, c_{\ell edq}^{2211} \big) - 1.4(5) \times 10^{-5} \, \mathrm{Im} \, c_{\ell edq}^{2222} \, , \end{split}$$

 $(\eta/\eta')\Delta \ln c_{\ell equ}^{(1)2211} = \Delta \ln c_{\ell edq}^{2211} = 12/36 \qquad \Delta \ln c_{\ell edq}^{2222} = 1584/77$

- Unfortuantely, well above nEDM bounds
 - ¹M. Zillinger, B. Kubis, PSP, 2210.14925

___ Outlook and summary ____

- STCF is a huge " η,η' factory"
- η,η' physics unique in different aspects: SM (QCD) and BSM
- Unique acces to the $U(1)_A$ QCD sector, $m_d m_u$, chiral symm. breaking, $\eta \eta'$ mixing
- One key point are transition form factors
 - Key ingredient for $(g-2)_{\mu} \Rightarrow$ doubly-virtual and $\Gamma(\eta^{(\prime)} \rightarrow 2\gamma)$ (tensions with lattice!)
 - Also relevant for $\eta-\eta'$ mixing (also relevant for $(g-2)_{\mu})$
 - Accessed via $\eta \to \ell^+ \ell^- \gamma$, $\eta \to \ell^+ \ell^- \ell^+ \ell^-$ and $e^+ e^- \to e^+ e^- \eta^{(\prime)}$ (colliders only!)
- Another interesting point is CP-violation (focused on C-even, P-odd)
 - If heavy physics, only through μ polarimetry in $\eta \to \mu^+ \mu^-$
 - Novel triple product asymmetries in $\eta \to \mu^+ \mu^- \pi^+ \pi^-$ (yet discarded from SMEFT)