The 6th International Workshop on Future Tau Charm Facilities

FTCF, 2024, Guangzhou

TOPOLOGICAL DIAGRAMS & CHARMED BARYON DECAYS

- FANRONG XU
- JINAN UNIVERSITY
- in collaboration with Hai-Yang Cheng & Huiling Zhong
 - November 19, 2024

Topological Diagram Approach (TDA) Charmed meson two-body decays can be expressed in terms of six distinct topological diagrams [Chau (1980, 1983); Chau, Cheng(1986)] L. –L. Chau in Proceedings of 1980 Guangzhou Conference on Theoretical Particle Physics

both magnitude and strong phase of each tree diagram can be determined

Its Triumph in Meson Sector

Hadronic Weak Decays of Charmed Mesons

Hai-Yang Cheng (鄭海揚) Academia Sinica, Taipei

Branching fractions

2024 BESIII Workshop on Charm Hadron Physics

May 11, 2024

Direct CPV

Th: the only predictions of O(10⁻³)

CC: topological approach + QCDF Cheng, Chiang, 2012 LLY: factorization-assisted topology (FAT) Li, Lu, **FSY**, 2012

Exp: LHCb, PRL122, 211803 (2019)

Topological diagrammatic approach successfully predicted the charm CPV !!!

PHYSICAL REVIEW LETTERS 122, 211803 (2019)

Editors' Suggestion Featured in Physics

Observation of CP Violation in Charm Decays

R. Aaij et al." (LHCb Collaboration)

(Received 21 March 2019; revised manuscript received 2 May 2019; published 29 May 2019)

A search for charge-parity (CP) violation in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays is reported, using pp collision data corresponding to an integrated luminosity of 5.9 fb⁻¹ collected at a center-of-mass energy of 13 TeV with the LHCb detector. The flavor of the charm meson is inferred from the charge of the pion in $D^*(2010)^+ \rightarrow D^0 \pi^+$ decays or from the charge of the muon in $\bar{B} \rightarrow D^0 \mu^- \bar{\nu}_{\mu} X$ decays. The difference between the CP asymmetries in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays is measured to be $\Delta A_{CP} =$ $[-18.2 \pm 3.2(\text{stat}) \pm 0.9(\text{syst})] \times 10^{-4}$ for π -tagged and $\Delta A_{CP} = [-9 \pm 8(\text{stat}) \pm 5(\text{syst})] \times 10^{-4}$ for μ tagged D^0 mesons. Combining these with previous LHCb results leads $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$, where the uncertainty includes both statistical and systematic contributions. The from zero by more than 5 standard deviations. This is the first observation of CP violation in the decay of charm hadrons.

DOI: 10.1103/PhysRevLett.122.211803

Early TDA Seeking for Baryon

baryon wave function

 $\mathcal{A} = a\overline{B}^{3[ab]}B_{[ab]}M_2^1 + b\overline{B}^{1[ab]}B_{[ab]}M_2^3 + c\overline{B}^{b[13]}B_{[ab]}M_2^3$ $+d_{3}\overline{B}^{a}{}^{[3b]}B_{[2b]}M_{a}^{1}+d_{4}\overline{B}^{b}{}^{[3a]}B_{[2b]}M_{a}^{1}+e\overline{B}^{a}{}^{[13]}B$

 $|\tilde{\mathcal{B}}^{m,k}(8)\rangle = \alpha |\chi^m(1/2)_{A_{12}}\rangle |\psi^k(8)_{A_{12}}\rangle + \beta |\chi^m(1/2)_{A_{23}}\rangle |\psi^k(8)_{A_{23}}\rangle$

for octet baryon wave function

$$|\mathcal{B}^{m,k}(8)\rangle = a|\chi^m(1/2)_{A_{12}}\rangle|\psi^k(8)_{A_{12}}\rangle$$

Kohara (1997): physics is independent of the chosen convention

Kohara (1991): parameterize by antisymmetric (12) and (23) for octet

$$M_{2}^{a} + d_{1}\overline{B}^{a[1b]}B_{[2b]}M_{a}^{3} + d_{2}\overline{B}^{b[1a]}B_{[2b]}M_{a}^{3}$$
$$B_{[2b]}M_{a}^{b} + h\overline{B}^{b[13]}B_{[2b]}M_{a}^{a},$$

· Chau, Cheng, Tseng(1996): parameterize symmetric and antisymmetric (12)

 $|\psi_{12}\rangle + b|\chi^m(1/2)_{S_{12}}\rangle|\psi^k(8)$

Recent Baryon TDA Attempt

- He, She, Wang(2019): a general TDA description
- Zhao, Wang, Hsiao, Yu(2020);
- · Wang, Luo(2024): independent parametrization, penguin included

Unlike IRA, proper global fits to the measured rates and decay asymmetries in TDA were still absent

TDA: more intuitive, graphic and easier to implement model calculations

Hsiao, Wang, Zhao (2022): followed Kohara, parity violation terms absent

hairpin diagram contributing to singlet η_1

$$\begin{aligned} TDA &= T(\mathcal{B}_{c})^{ij}H_{l}^{km}M_{m}^{l}\left[b_{1}\left(\mathcal{B}_{8}\right)_{ijk}+b_{2}\left(\mathcal{B}_{8}\right)_{ikj}+b_{3}\left(\mathcal{B}_{8}\right)_{jki}\right] \\ &+ C(\mathcal{B}_{c})^{ij}H_{k}^{ml}M_{m}^{k}\left[b_{4}\left(\mathcal{B}_{8}\right)_{ijl}+b_{5}\left(\mathcal{B}_{8}\right)_{ilj}+b_{6}\left(\mathcal{B}_{8}\right)_{jli}\right] \\ &+ C'(\mathcal{B}_{c})^{ij}H_{m}^{kl}M_{i}^{m}\left[b_{7}\left(\mathcal{B}_{8}\right)_{klj}+b_{8}\left(\mathcal{B}_{8}\right)_{kjl}+b_{9}\left(\mathcal{B}_{8}\right)_{ljk}\right] \\ &+ E_{1}(\mathcal{B}_{c})^{ij}H_{i}^{kl}M_{l}^{m}\left[b_{10}\left(\mathcal{B}_{8}\right)_{jkm}+b_{11}\left(\mathcal{B}_{8}\right)_{jmk}+b_{12}\left(\mathcal{B}_{8}\right)_{kmj}\right] \\ &+ E_{2}(\mathcal{B}_{c})^{ij}H_{i}^{kl}M_{k}^{m}\left[b_{13}\left(\mathcal{B}_{8}\right)_{jlm}+b_{14}\left(\mathcal{B}_{8}\right)_{jml}+b_{15}\left(\mathcal{B}_{8}\right)_{lmj}\right] \\ &+ E_{3}(\mathcal{B}_{c})^{ij}H_{i}^{kl}M_{j}^{m}\left[b_{16}\left(\mathcal{B}_{8}\right)_{klm}+b_{17}\left(\mathcal{B}_{8}\right)_{kml}+b_{18}\left(\mathcal{B}_{8}\right)_{lmk}\right] \\ &+ E_{h}(\mathcal{B}_{c})^{ij}H_{i}^{kl}M_{m}^{m}\left[b_{19}\left(\mathcal{B}_{8}\right)_{jkl}+b_{20}\left(\mathcal{B}_{8}\right)_{jlk}+b_{21}\left(\mathcal{B}_{8}\right)_{klj}\right],
\end{aligned}$$

$$ij = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix}$$
$$M_j^i = \begin{pmatrix} \frac{1}{\sqrt{6}}\Lambda^0 + \frac{1}{\sqrt{2}}\Sigma^0 & \Sigma^+ & p \\ \Sigma^- & \frac{1}{\sqrt{6}}\Lambda^0 - \frac{1}{\sqrt{2}}\Sigma^0 & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}}\Lambda^0 \end{pmatrix}$$
$$(\mathcal{B}_8)_{ijk} = \epsilon_{ijl}(A_1) + \frac{1}{\sqrt{6}} + \frac{1}{\sqrt{6}}$$

 $H_2^{31} = V_{cs}^* V_{ud}, \quad H_3^{31} = V_{cs}^* V_{us}, \quad H_2^{21} = V_{cd}^* V_{ud}, \quad H_3^{21} = V_{cd}^* V_{us}.$

 $\mathcal{A}_{\text{TDA}} = T(\mathcal{B}_c)^{ij} H_l^{km} M_m^l \left| b_1 \left(\mathcal{B}_8 \right)_{ijk} + b_2 \left(\mathcal{B}_8 \right)_{ijk} \right|$ $+ C(\mathcal{B}_c)^{ij} H_k^{ml} M_m^k \left[b_4 \left(\mathcal{B}_8 \right)_{ijl} + b_5 \left(\mathcal{B}_8 \right)_{ijl} \right] \right]$ $+ C'(\mathcal{B}_c)^{ij} H_m^{kl} M_i^m \left[b_7 \left(\mathcal{B}_8 \right)_{klj} + b_8 \left(\mathcal{B}_8 \right)_{klj} \right] + b_8 \left(\mathcal{B}_8 \right)_{klj} \right]$ $+ E_1(\mathcal{B}_c)^{ij} H_i^{kl} M_l^m \left[b_{10} \left(\mathcal{B}_8 \right)_{jkm} + b_1 \right]$ $+E_2(\mathcal{B}_c)^{ij}H_i^{kl}M_k^m \left[b_{13}(\mathcal{B}_8)_{jlm}+b_{14}\right]$ $+ E_3(\mathcal{B}_c)^{ij} H_i^{kl} M_j^m [b_{16} (\mathcal{B}_8)_{klm} + b_{17}]$ $+ E_h(\mathcal{B}_c)^{ij} H_i^{kl} M_m^m \left[b_{19} \left(\mathcal{B}_8 \right)_{jkl} + b_{20} \right]$

$$\begin{array}{l}
 B_{8}_{ikj} + b_{3} \left(\mathcal{B}_{8}\right)_{jki} \\
 B_{8}_{ilj} + b_{6} \left(\mathcal{B}_{8}\right)_{jli} \\
 B_{8}_{ilj} + b_{6} \left(\mathcal{B}_{8}\right)_{jli} \\
 B_{8}_{kjl} + b_{9} \left(\mathcal{B}_{8}\right)_{ljk} \\
 11 \left(\mathcal{B}_{8}\right)_{jmk} + b_{12} \left(\mathcal{B}_{8}\right)_{kmj} \\
 4 \left(\mathcal{B}_{8}\right)_{jml} + b_{15} \left(\mathcal{B}_{8}\right)_{lmj} \\
 7 \left(\mathcal{B}_{8}\right)_{kml} + b_{18} \left(\mathcal{B}_{8}\right)_{lmk} \\
 0 \left(\mathcal{B}_{8}\right)_{jlk} + b_{21} \left(\mathcal{B}_{8}\right)_{klj} \\
 ,
 \end{array}$$

$$\epsilon_{k} = \epsilon_{ijl} (\mathcal{B}_{8}^{^{T}})_k^l$$

8

Korner-Pati-Woo theorem: quark pair in a baryon produced by weak interactions is required to be antisymmetric in flavor -> [1, k] asymmetric

$$\begin{array}{c}
 b_{3} = -b_{2} \\
 b_{3} = -b_{2} \\
 b_{6} = -b_{5} \\
 b_{8} \\
 b_{1j} + b_{6} (\mathcal{B}_{8})_{jli} \\
 b_{8} \\
 b_{1j} + b_{9} (\mathcal{B}_{8})_{ljk} \\
 b_{11} (\mathcal{B}_{8})_{jmk} + b_{12} (\mathcal{B}_{8})_{kmj} \\
 d_{4} (\mathcal{B}_{8})_{jml} + b_{15} (\mathcal{B}_{8})_{lmj} \\
 d_{4} (\mathcal{B}_{8})_{jml} + b_{18} (\mathcal{B}_{8})_{lmk} \\
 d_{5} (\mathcal{B}_{8})_{jlk} + b_{21} (\mathcal{B}_{8})_{klj} \\
 d_{5} (\mathcal{B}_{8})_{jlk} \\
 d_{5} (\mathcal{B}_{8})_{jlk} + b_{21} (\mathcal{B}_{8})_{klj} \\
 d_{5} (\mathcal{B}_{8})_{jlk} \\$$

$$\mathcal{A}_{\text{TDA}} = T(\mathcal{B}_{c})^{ij}H_{l}^{km}M_{m}^{l} \left[b_{1}(\mathcal{B}_{8})_{ijk} + b_{2}(\mathcal{B}_{8})_{ikj} + b_{3}(\mathcal{B}_{8})_{jki}\right] \qquad b_{3} = -b_{2}$$

$$+ C(\mathcal{B}_{c})^{ij}H_{k}^{km}M_{m}^{k} \left[b_{4}(\mathcal{B}_{8})_{ijl} + b_{5}(\mathcal{B}_{8})_{ilj} + b_{6}(\mathcal{B}_{8})_{jki}\right] \qquad b_{6} = -b_{5}$$

$$+ C'(\mathcal{B}_{c})^{ij}H_{m}^{kl}M_{i}^{m} \left[b_{7}(\mathcal{B}_{8})_{klj} + b_{8}(\mathcal{B}_{8})_{kjl} + b_{9}(\mathcal{B}_{8})_{ljk}\right] \qquad b_{9} = -b_{8}$$

$$+ E_{1}(\mathcal{B}_{c})^{ij}H_{k}^{kl}M_{l}^{m} \left[b_{10}(\mathcal{B}_{8})_{jkm} + b_{11}(\mathcal{B}_{8})_{jmk} + b_{12}(\mathcal{B}_{8})_{kmj}\right] \qquad b_{12} = b_{11}$$

$$+ E_{2}(\mathcal{B}_{c})^{ij}H_{k}^{kl}M_{m}^{m} \left[b_{13}(\mathcal{B}_{8})_{jlm} + b_{14}(\mathcal{B}_{8})_{jml} + b_{15}(\mathcal{B}_{8})_{lmj}\right] \qquad b_{15} = b_{14}$$

$$+ E_{3}(\mathcal{B}_{c})^{ij}H_{k}^{kl}M_{m}^{m} \left[b_{16}(\mathcal{B}_{8})_{klm} + b_{17}(\mathcal{B}_{8})_{kml} + b_{18}(\mathcal{B}_{8})_{lmk}\right] \qquad b_{18} = -b_{17}$$

$$+ E_{h}(\mathcal{B}_{c})^{ij}H_{k}^{kl}M_{m}^{m} \left[b_{19}(\mathcal{B}_{8})_{jkl} + b_{20}(\mathcal{B}_{8})_{jlk} + b_{21}(\mathcal{B}_{8})_{klj}\right], \qquad b_{20} = -b_{19}$$

$$= \frac{\mathcal{B}_{10}^{ij}\mathcal{B}_{10}$$

A further simplification

 $\begin{aligned} \mathcal{A}_{\text{TDA}} &= T(\mathcal{B}_{c})^{ij} H_{l}^{km} \left(\mathcal{B}_{8}\right)_{ijk} M_{m}^{l} + C(\mathcal{B}_{c})^{ij} H_{k}^{ml} \left(\mathcal{B}_{8}\right)_{ijl} M_{m}^{k} + C' \\ &+ E_{1A} (\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\mathcal{B}_{8}\right)_{jkm} M_{l}^{m} + E_{1S} (\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{l}^{m} \left[(\mathcal{B}_{8})_{jm} \\ &+ E_{2A} (\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\mathcal{B}_{8}\right)_{jlm} M_{k}^{m} + E_{2S} (\mathcal{B}_{c})^{ij} H_{i}^{kl} M_{k}^{m} \left[(\mathcal{B}_{8})_{jm} \\ &+ E_{3} (\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\mathcal{B}_{8}\right)_{klm} M_{j}^{m} + E_{h} (\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\mathcal{B}_{8}\right)_{klj} M_{m}^{m}, \end{aligned}$

$$E_{2A} = -E_{1A}, \quad E_{2S} = -E_{1S}.$$

$$\# \text{ diagrams: } 7$$

$$\tilde{T} = T - E_{1S}, \quad \tilde{C} = C + E_{1S}, \quad \tilde{C}' = C' - 2E_{1S}, \\ \tilde{E}_1 = E_{1A} + E_{1S} - E_3, \quad \tilde{E}_h = E_h + 2E_{1S}.$$

$$\# \text{ diagrams: } 5; \text{ parameters: } 19$$

$$\left(\left(\mathcal{B}_{c} \right)^{ij} H_{m}^{kl} \left(\mathcal{B}_{8} \right)_{klj} M_{i}^{m} \right)_{nk} + \left(\left(\mathcal{B}_{8} \right)_{kmj} \right]$$
$$+ \left(\left(\left(\mathcal{B}_{8} \right)_{lmj} \right)_{lmj} \right) \right)$$

W theorem

Chau-Cheng-Tseng, 1996

 $| ilde{T}|_S e^{i\delta_S^{ ilde{T}}}, \ | ilde{C}|_S e^{i\delta_S^{ ilde{C}}}, \ \cdots, \ | ilde{T}|_P e^{i\delta_P^{ ilde{T}}}, \ \cdots, \ | ilde{E}_h|_P e^{i\delta_P^{ ilde{E}_h}}$

Amplitudes and their relatio

Channel	TDA	TDA
$\Lambda_c^+\to\Lambda\pi^+$	$\frac{1}{\sqrt{6}}(-4T+C'+E_{1A}+3E_{1S}-E_3)$	$\frac{1}{\sqrt{6}}(-4\tilde{T}+\tilde{C}'+\tilde{E}$
$\Lambda_c^+\to \Sigma^0\pi^+$	$\frac{1}{\sqrt{2}}(-C' - E_{1A} + E_{1S} + E_3)$	$\frac{1}{\sqrt{2}}(-\tilde{C}'-\tilde{E}_1)$
$\Lambda_c^+\to \Sigma^+\pi^0$	$\frac{1}{\sqrt{2}}(C' + E_{1A} - E_{1S} - E_3)$	$\frac{1}{\sqrt{2}}(\tilde{C}'+\tilde{E_1})$
$\Lambda_c^+ \to \Sigma^+ \eta_8$	$\frac{1}{\sqrt{6}}(-C'+E_{1A}+3E_{1S}-E_3)$	$\frac{1}{\sqrt{6}}(-\tilde{C}'+\tilde{E}_1)$
$\Lambda_c^+ \to \Sigma^+ \eta_1$	$\frac{1}{\sqrt{3}}(-C'+E_{1A}-3E_{1S}-E_3-3E_h)$	$\frac{1}{\sqrt{3}}(- ilde{C}' + ilde{E}_1 - 3E)$
$\Lambda_c^+\to \Xi^0 K^+$	$E_{1A} + E_{1S} - E_3$	$ ilde{E_1}$
$\Lambda_c^+ o p \bar{K}^0$	$2C + 2E_{1S}$	$2 ilde{C}$
$\Xi_c^0\to\Lambda\bar{K}^0$	$\frac{1}{\sqrt{6}}(2C - C' - E_{1A} + 3E_{1S} + E_3)$	$\frac{1}{\sqrt{6}}(2\tilde{C}-\tilde{C}'-\tilde{E}_1)$
$\Xi_c^0\to \Sigma^0 \bar K^0$	$\frac{1}{\sqrt{2}}(2C+C'+E_{1A}+E_{1S}-E_3)$	$\frac{1}{\sqrt{2}}(2\tilde{C}+\tilde{C'}+\tilde{E_1})$
$\Xi_c^0\to \Sigma^+ K^-$	$-E_{1A} - E_{1S} + E_3$	$- ilde{E_1}$
$\Xi_c^0\to \Xi^0\pi^0$	$\frac{1}{\sqrt{2}}(-C'+2E_{1S})$	$\frac{1}{\sqrt{2}}(-\tilde{C}')$
$\Xi_c^0 \to \Xi^0 \eta_8$	$\frac{1}{\sqrt{6}}(C'+2E_{1A}-2E_3)$	$\frac{1}{\sqrt{6}}(ilde{C'}+2 ilde{E_1})$
$\Xi_c^0 ightarrow \Xi^0 \eta_1$	$\frac{1}{\sqrt{3}}(C'+3E_{1S}-E_{1A}+E_3+3E_h)$	$\frac{1}{\sqrt{3}}(\tilde{C}'-\tilde{E_1}+3\tilde{E_h})$
$\Xi_c^0 ightarrow \Xi^- \pi^+$	$2T - 2E_{1S}$	$2 ilde{T}$
$\Xi_c^+\to \Sigma^+ \bar K^0$	-2C-C'	$-2\tilde{C}-\tilde{C}'$
$\Xi_c^+\to \Xi^0\pi^+$	-2T+C'	$-2\tilde{T}+\tilde{C'}$

H

$$\begin{aligned}
A(\Lambda_{c}^{+} \to \Lambda \pi^{+}) &= \frac{1}{3}(-a - c - d_{3} + d_{4} + e) & \text{Kohara} ('91) \\
&= \frac{1}{2\sqrt{6}}(2A_{A} + B_{A} - C_{1A} + C_{2A}) - \frac{1}{2\sqrt{2}}C_{2S}. & \text{CCT} ('96) \\
&= \frac{1}{\sqrt{6}}(-T + C' + E_{1A} + 3E_{1S} - E_{3}) & \text{This work} ('24) \\
&= \frac{1}{\sqrt{6}}(-4\overline{T} + \overline{C}' + \overline{E}_{1}) & \text{This work} ('24) \\
\end{aligned}$$

$$\begin{aligned}
\tilde{L} \quad \tilde{T} : \quad \Xi_{c}^{0} \to \Xi^{-}\pi^{+}, \Sigma^{-}\pi^{+}, \Xi^{-}K^{+}, \Sigma^{-}K^{+}; \quad \Xi_{c}^{+} \to \Xi^{0}K^{+}. \\
2. \quad \tilde{C} : \quad \Lambda_{c}^{+} \to p\overline{K}^{0}; \quad \Xi_{c}^{0} \to \Xi^{0}K^{0}; \quad \Xi_{c}^{+} \to \Sigma^{+}K^{0}. \\
3. \quad \tilde{C}' : \quad \Lambda_{c}^{+} \to \Sigma^{+}K^{0}, \Sigma^{0}K^{+}; \quad \Xi_{c}^{+} \to p\overline{K}^{0}. \\
4. \quad \underline{\tilde{E}}_{1} : \quad \Lambda_{c}^{+} \to \Xi^{0}K^{+}; \quad \Xi_{c}^{0} \to \Sigma^{+}K^{-}, \Sigma^{+}\pi^{-}, pK^{-}, p\pi^{-}, n\pi^{0}; \quad \Xi_{c}^{+} \to p\pi^{0}, n\pi^{+} \\
\hline
\tilde{T}_{\Xi_{c}^{0}}^{\pm} \mathcal{B}(\Xi_{c}^{0} \to \Xi^{-}\pi^{+}) &= 3\mathcal{B}(\Lambda_{c}^{+} \to \Lambda\pi^{+}) + \mathcal{B}(\Lambda_{c}^{+} \to \Sigma^{0}\pi^{+}) - \frac{1}{\sin^{2}\theta_{C}}\mathcal{B}(\Lambda_{c}^{+} \to \pi^{0}) \\
\hline
\tilde{T}_{\Lambda_{c}^{\pm}}^{\pm} \mathcal{B}(\Lambda_{c}^{+} \to p\overline{K}^{0}) &= 3\mathcal{B}(\Xi_{c}^{0} \to \Lambda\overline{K}^{0}) + \mathcal{B}(\Xi_{c}^{0} \to \Sigma^{0}\overline{K}^{0}) - \frac{1}{\sin^{2}\theta_{C}}\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-}\pi^{+}) \\
\tilde{T}_{\Lambda_{c}^{\pm}}^{\pm} \mathcal{B}(\Lambda_{c}^{+} \to p\overline{K}^{0}) &= 3\mathcal{B}(\Xi_{c}^{0} \to \Lambda\overline{K}^{0}) + \mathcal{B}(\Xi_{c}^{0} \to \Sigma^{0}\overline{K}^{0}) - \frac{1}{\sin^{2}\theta_{C}}\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-}\pi^{+}) \\
\tilde{T}_{\Lambda_{c}^{\pm}}^{\pm} \mathcal{B}(\Lambda_{c}^{+} \to p\overline{K}^{0}) &= 3\mathcal{B}(\Xi_{c}^{0} \to \Lambda\overline{K}^{0}) + \mathcal{B}(\Xi_{c}^{0} \to \Sigma^{0}\overline{K}^{0}) - \frac{1}{\sin^{2}\theta_{C}}\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-}\pi^{+}) \\
\tilde{T}_{\Lambda_{c}^{\pm}}^{\pm} \mathcal{B}(\Lambda_{c}^{+} \to p\overline{K}^{0}) &= 3\mathcal{B}(\Xi_{c}^{0} \to \Lambda\overline{K}^{0}) + \mathcal{B}(\Xi_{c}^{0} \to \Sigma^{0}\overline{K}^{0}) - \frac{1}{\sin^{2}\theta_{C}}\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-}\pi^{+}) \\
\tilde{T}_{\Lambda_{c}^{\pm}}^{\pm} \mathcal{B}(\Lambda_{c}^{\pm} \to p\overline{K}^{0}) &= 3\mathcal{B}(\Xi_{c}^{0} \to \Lambda\overline{K}^{0}) + \mathcal{B}(\Xi_{c}^{0} \to \Sigma^{0}\overline{K}^{0}) + \mathcal{B}(\Xi_{c}^$$

$$A(\mathcal{B}_c \to \mathcal{B}K_S^0) = -\frac{1}{\sqrt{2}} [A(\mathcal{B}_c \to \mathcal{B}\overline{K}^0) - A(\mathcal{B}_c \to \mathcal{B}K^0) \\ A(\mathcal{B}_c \to \mathcal{B}K_L^0) = \frac{1}{\sqrt{2}} [A(\mathcal{B}_c \to \mathcal{B}\overline{K}^0) + A(\mathcal{B}_c \to \mathcal{B}K^0)]$$

12

Incorporation of Penguin

$$\begin{aligned} \mathcal{A}_{\text{TDA}} &= T(\mathcal{B}_{c})^{ij} H_{l}^{km} \left(\mathcal{B}_{8}\right)_{ijk} \left(M\right)_{m}^{l} \\ &+ C(\mathcal{B}_{c})^{ij} H_{k}^{ml} \left(\mathcal{B}_{8}\right)_{ijl} \left(M\right)_{m}^{k} + C'(\mathcal{B}_{c})^{ij} H_{m}^{kl} \left(\mathcal{B}_{8}\right)_{klj} \left(M\right)_{i}^{m} \\ &+ E_{1A}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\mathcal{B}_{8}\right)_{jkm} \left(M\right)_{l}^{m} + E_{1S}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(M\right)_{l}^{m} \left[\left(\mathcal{B}_{8}\right)_{jmk} + \left(\mathcal{B}_{8}\right)_{kmj}\right] \\ &+ E_{2A}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\mathcal{B}_{8}\right)_{jlm} \left(M\right)_{k}^{m} + E_{2S}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\mathcal{B}_{8}\right)_{jml} + \left(\mathcal{B}_{8}\right)_{lmj}\right] \\ &+ E_{3}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\mathcal{B}_{8}\right)_{klm} \left(M\right)_{j}^{m} + E_{h}(\mathcal{B}_{c})^{ij} H_{i}^{kl} \left(\mathcal{B}_{8}\right)_{klj} \left(M\right)_{m}^{m} \\ &+ P_{h}(\mathcal{B}_{c})^{ij} H_{m}^{mk} \left(\mathcal{B}_{8}\right)_{ijk} \left(M\right)_{l}^{l} + P_{1}(\mathcal{B}_{c})^{ij} H_{m}^{mk} \left(\mathcal{B}_{8}\right)_{ijl} \left(M\right)_{k}^{l} \\ &+ P_{2A}(\mathcal{B}_{c})^{ij} H_{m}^{mk} \left(\mathcal{B}_{8}\right)_{ijk} \left(M\right)_{l}^{l} + P_{2}'(\mathcal{B}_{c})^{ij} H_{m}^{mk} \left(\mathcal{B}_{8}\right)_{ijl} \left(M\right)_{k}^{l} \\ &+ P_{2A}(\mathcal{B}_{c})^{ij} H_{m}^{mk} \left(\mathcal{B}_{8}\right)_{ijk} \left(M\right)_{l}^{l} + P_{2}'(\mathcal{B}_{c})^{ij} H_{m}^{km} \left(\mathcal{B}_{8}\right)_{ijl} \left(M\right)_{k}^{l} \\ &+ P_{2A}(\mathcal{B}_{c})^{ij} H_{m}^{km} \left(\mathcal{B}_{8}\right)_{kil} \left(M\right)_{l}^{l} + P_{2}'(\mathcal{B}_{c})^{ij} H_{m}^{km} \left(\mathcal{B}_{8}\right)_{ijl} \left(M\right)_{k}^{l} \\ &+ P_{2}'(\mathcal{B}_{c})^{ij} H_{m}^{km} \left(\mathcal{B}_{8}\right)_{kil} \left(M\right)_{j}^{l} + P_{2}'(\mathcal{B}_{c})^{ij} H_{m}^{km} \left(M\right)_{j}^{l} \left[\left(\mathcal{B}_{8}\right)_{kli} + \left(\mathcal{B}_{8}\right)_{ilk}\right], \end{aligned}$$

$$\begin{aligned} \mathcal{A}_{\text{TDA}} &= (2T - C' - 2E_{1S})(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{j}^{i}H_{m}^{jl}M_{l}^{m} + (2C + C' + 2E_{1S})(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{j}^{i}H_{m}^{ll}M_{l}^{m} \\ &+ C'(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{j}^{l}(H_{m}^{ji} - H_{m}^{ij})M_{l}^{m} + (E_{1A} - E_{1S} - E_{3})(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{m}^{j}(H_{j}^{il} - H_{j}^{li})M_{l}^{m} \\ &+ 2E_{1S}(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{j}^{m}(H_{m}^{jl} - H_{m}^{lj})M_{l}^{i} - E_{h}(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{j}^{l}(H_{l}^{ij} - H_{l}^{ji})M_{m}^{m} \\ &+ (E_{1S} - E_{1A} + E_{3} + 2P_{1} - P_{2A} - P_{2S})(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{m}^{i}H_{j}^{jl}M_{l}^{m} \\ &+ (-E_{1S} + E_{1A} - E_{3} + 2P_{1}' - P_{2A}' - P_{2S}')(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{m}^{i}H_{j}^{lj}M_{l}^{m} \\ &+ (-E_{3} + P_{2A} + P_{2S})(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{m}^{l}H_{j}^{ji}M_{l}^{m} + (E_{3} + P_{2A}' + P_{2S}')(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{m}^{l}H_{j}^{ij} \\ &+ (E_{h} + 2P_{h} + 2P_{2S})(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{j}^{i}H_{l}^{lj}M_{m}^{m} + (-E_{h} + 2P_{h}' + 2P_{2S}')(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{j}^{i}H_{l}^{ij} \\ &- 2P_{2S}(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{j}^{l}H_{m}^{mj}M_{l}^{i} - 2P_{2S}'(\mathcal{B}_{c})_{i}(\mathcal{B}_{8})_{j}^{l}H_{m}^{jm}M_{l}^{i}, \end{aligned}$$

 $\begin{aligned} \mathcal{A}_{\text{IRAa}} &= a_1 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^j M_l^l + a_2 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^l M_l^j + a_3 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_j^{ik} \left(\mathcal{B}_8 \right)_l^j M_k^l \\ &+ a_4 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^i M_k^l + a_5 \left(\mathcal{B}_c \right)_i \left(H_{\overline{6}} \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^l M_k^i + a_6 \left(\mathcal{B}_c \right)_i \left(H_{15} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^j M_l^l \\ &+ a_7 \left(\mathcal{B}_c \right)_i \left(H_{15} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^l M_l^j + a_8 \left(\mathcal{B}_c \right)_i \left(H_{15} \right)_j^{ik} \left(\mathcal{B}_8 \right)_l^j M_k^l + a_9 \left(\mathcal{B}_c \right)_i \left(H_{15} \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^i M_k^l \\ &+ a_{10} \left(\mathcal{B}_c \right)_i \left(H_{15} \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^l M_k^i + b_1 \left(\mathcal{B}_c \right)_i \left(H_3 \right)^j \left(\mathcal{B}_8 \right)_j^i M_l^l + b_2 \left(\mathcal{B}_c \right)_i \left(H_3 \right)^j \left(\mathcal{B}_8 \right)_j^l M_l^i \\ &+ b_3 \left(\mathcal{B}_c \right)_i \left(H_3 \right)^i \left(\mathcal{B}_8 \right)_j^l M_l^j + b_4 \left(\mathcal{B}_c \right)_i \left(H_3 \right)^l \left(\mathcal{B}_8 \right)_j^i M_l^j \right) \end{aligned}$

$$\begin{aligned} \mathcal{A}_{\text{IRAa}} &= a_1 \left(\mathcal{B}_c \right)_i \left(H_6 \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^j M_l^l + a_2 \left(\mathcal{B}_c \right)_i \left(H_6 \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^l M_l^j + a_3 \left(\mathcal{B}_c \right)_i \left(H_6 \right)_j^{ik} \left(\mathcal{B}_8 \right)_l^j M_k^l \\ &+ a_4 \left(\mathcal{B}_c \right)_i \left(H_6 \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^i M_k^l + a_5 \left(\mathcal{B}_c \right)_i \left(H_6 \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^l M_k^i \\ &+ a_6 \left(\mathcal{B}_c \right)_i \left(H_{15} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^j M_l^l + a_7 \left(\mathcal{B}_c \right)_i \left(H_{15} \right)_j^{ik} \left(\mathcal{B}_8 \right)_k^l M_l^j + a_8 \left(\mathcal{B}_c \right)_i \left(H_{15} \right)_j^{ik} \left(\mathcal{B}_8 \right)_l^j M_k^l \\ &+ a_9 \left(\mathcal{B}_c \right)_i \left(H_{\overline{15}} \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^i M_k^l + a_{10} \left(\mathcal{B}_c \right)_i \left(H_{\overline{15}} \right)_l^{jk} \left(\mathcal{B}_8 \right)_j^l M_k^i. \end{aligned}$$

redundant dof:

 $a_1' = a_1 - a_5, \quad a_2' = a_2 + a_5, \quad a_3' = a_3 + a_5, \quad a_4' = a_4 + a_5,$

KPW theorem:

$$a_6 = a_7 = a_8 = a_{10} = 0$$

$$\begin{aligned} \mathcal{H}_{\text{eff}} = & \frac{G_F}{\sqrt{2}} \sum_{q_1, q_2}^{d, s} V_{cq_1} V_{uq_2} (c_1 O_1^{q_1 q_2} + c_2 O_2^{q_1 q_2}) + h.c. \\ = & \frac{G_F}{\sqrt{2}} \sum_{q_1, q_2}^{d, s} V_{cq_1} V_{uq_2} (c_+ O_+^{q_1 q_2} + c_- O_-^{q_1 q_2}) + h.c., \end{aligned}$$

 $\mathcal{A}_{\mathrm{IRAb}}^{\mathrm{tree}} = \tilde{f}^{a} \left(\mathcal{B}_{c}\right)^{ik} \left(H_{\overline{6}}\right)_{ij} \left(\mathcal{B}_{8}\right)_{k}^{j} M_{l}^{l} + \tilde{f}^{b} \left(\mathcal{B}_{c}\right)^{ik} \left(H_{\overline{6}}\right)_{ij} \left(\mathcal{B}_{8}\right)_{k}^{l} M_{l}^{j} + \tilde{f}^{c} \left(\mathcal{B}_{c}\right)^{ik} \left(H_{\overline{6}}\right)_{ij} \left(\mathcal{B}_{8}\right)_{l}^{i} M_{k}^{l} + \tilde{f}^{e} \left(\mathcal{B}_{c}\right)_{j} \left(H_{15}\right)_{l}^{ik} \left(\mathcal{B}_{8}\right)_{i}^{j} M_{k}^{l}.$

Geng-He-Jin-Liu-Yang, 2024

$$\begin{split} \tilde{T} &= \frac{1}{2} (\tilde{f}^b + \tilde{f}^e), \qquad \tilde{C} = \frac{1}{2} (-\tilde{f}^b + \tilde{f}^e), \\ \tilde{C}' &= \tilde{f}^b - \tilde{f}^d, \qquad \tilde{E}_1 = -\tilde{f}^c, \qquad \tilde{E}_h = \tilde{f}^a, \end{split}$$

All available charmed baryon data in 2024

Observable	PDG	BESIII	Belle	LHCb	Average						
$10^2 \mathcal{B}(\Lambda_c^+ o \Lambda^0 \pi^+)$	1.29 ± 0.05				1.29 ± 0.05	$\alpha(\Lambda^+ \rightarrow \Lambda^0 \pi^+)$	-0.755 ± 0.006			-0.782 ± 0.010) = 0.762 -
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.27 ± 0.06				1.27 ± 0.06	$\alpha(\Lambda_c^+ \to \Sigma^0 - \pm)$	0.100 ± 0.000			0.102 ± 0.010	0.102
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.24 ± 0.09				1.24 ± 0.09	$\alpha(\Lambda_c^+ \to \Sigma^* \pi^+)$	-0.400 ± 0.018			0 - 4 4 9 0 0 1	-0.400 =
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	0.32 ± 0.05				0.32 ± 0.05	$\alpha(\Lambda_c^+ \to pK_S)$	0.18 ± 0.45			-0.744 ± 0.015) -0.743 =
$10^2 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	0.41 ± 0.08				0.41 ± 0.08	$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	-0.484 ± 0.027				-0.484 =
$10^2 \mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	0.55 ± 0.07				0.55 ± 0.07	$\alpha(\Lambda_c^+ \to \Sigma^+ \eta)$	-0.99 ± 0.06				-0.99 =
$10^4 \mathcal{B}(\Lambda_c^+ \to \Lambda^0 K^+)$	6.42 ± 0.31				6.42 ± 0.31	$\alpha(\Lambda_c^+ \to \Sigma^+ \eta')$	-0.46 ± 0.07				-0.46 =
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	3.70 ± 0.31				3.70 ± 0.31	$\alpha(\Lambda^+ \to \Lambda^0 K^+)$	-0.585 ± 0.052			-0.569 ± 0.065	i −0.579 =
$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S)$	4.7 ± 1.4				4.7 ± 1.4	$\alpha(\Lambda^+ \to \Sigma^0 K^+)$	-0.54 ± 0.20			0.000 - 0.000	-0.54 -
$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)$	6.6 ± 1.3				6.6 ± 1.3	$\alpha(\mathbf{A}_c^+ \to \Xi^0 K^+)$	0.04 ± 0.20	$ \perp 0.16$ [22]			0.01
$10^4 \mathcal{B}(\Lambda_c^+ \to p \pi^0)$	< 0.8	$1.56^{+0.75}_{-0.61}$ [40]			$1.56\substack{+0.75 \\ -0.61}$	$\alpha(\Lambda_c^{-} \to \Xi^+ \Lambda^+)$	0.01	1 ± 0.10 [33]			0.01 ±
$10^2 \mathcal{B}(\Lambda_c^+ o pK_S)$	1.59 ± 0.07				1.59 ± 0.07	$\alpha(\Xi_c^0 \to \Xi^- \pi^+)$	-0.64 ± 0.05				-0.64 =
$10^3 \mathcal{B}(\Lambda_c^+ o p\eta)$	1.57 ± 0.12	1.63 ± 0.33 [40]			1.58 ± 0.11	$\alpha(\Xi_c^0\to\Xi^0\pi^0)$		-0.9	0 ± 0.27 [20]		-0.90 =
$10^4 \mathcal{B}(\Lambda_c^+ \to p\eta')$	4.8 ± 0.9				4.8 ± 0.9	$eta(\Lambda_c^+ o \Lambda^0 \pi^+)$				0.368 ± 0.021	$0.368 \pm$
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	1.43 ± 0.27		1.80 ± 0.52 [35]		1.80 ± 0.52	$\beta(\Lambda_c^+ \to \Lambda^0 K^+)$				0.35 ± 0.13	$0.35 \pm$
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Xi^- K^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	2.75 ± 0.57				2.75 ± 0.57	$\gamma(\Lambda_c^+ \to \Lambda^0 \pi^+)$	LUCH	2024		0.502 ± 0.017	$0.502 \pm$
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Lambda K_S^0)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	22.5 ± 1.3				22.5 ± 1.3	$\gamma(\Lambda^+ \to \Lambda^0 K^+)$		2024		-0.743 ± 0.071	-0.743 -
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Sigma^0 K_S^0)}{\mathcal{B}(\Xi^0 \to \Xi^- \pi^+)}$	3.8 ± 0.7				3.8 ± 0.7					01110 1 01011	
$10^2 \frac{\mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	12.3 ± 1.2				12.3 ± 1.2					THEORETICAL PRED	
$10^3 \mathcal{B}(\Xi^0_c \to \Xi^0 \pi^0)$			6.9 ± 1.6 [20]		6.9 ± 1.6			^{10°}		90°, ¹² C +	C ELASTIC SCAT
$10^3 \mathcal{B}(\Xi^0_c \to \Xi^0 \eta)$			1.6 ± 0.5 [20]		1.6 ± 0.5			10-1			IOVEMBER 73
$10^3 \mathcal{B}(\Xi^0_c o \Xi^0 \eta')$			1.2 ± 0.4 [20]		1.2 ± 0.4	100	THEORETICAL FITS	2 40 ⁻²	<u>}</u>		
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)$	1.6 ± 0.8				1.6 ± 0.8		90°, 12C + 12C ELASTIC SCA NOVEMBER 73		101	TATA	DA

Belle 2024

to interpret data

#2

Fitted parameters

Jan. 2024

Oct. 2024

scheme I.

	$ X_i _S$	$ X_i _P$	$\delta_S^{X_i}$	$\delta_P^{X_i}$
	$(10^{-2}G)$	$_{\rm F}~{ m GeV^2})$	(in ra	dian)
\tilde{T}	2.37 ± 0.41	16.56 ± 0.69	—	2.76 ± 0.32
\tilde{C}	1.04 ± 1.08	13.82 ± 0.58	-1.97 ± 0.79	-0.37 ± 0.44
\tilde{C}'	2.59 ± 0.95	24.97 ± 1.67	0.29 ± 0.19	2.86 ± 0.36
\tilde{E}_1	4.10 ± 0.20	2.56 ± 2.21	1.18 ± 0.38	-0.96 ± 0.43
$\tilde{E_h}$	1.54 ± 1.22	19.16 ± 3.00	-1.35 ± 0.60	0.37 ± 0.41
\tilde{f}^a	0.81 ± 1.89	23.02 ± 4.04	—	2.12 ± 1.03
\tilde{f}^b	2.89 ± 1.50	30.56 ± 1.30	2.03 ± 0.61	-1.78 ± 0.98
\tilde{f}^c	4.20 ± 0.18	1.95 ± 2.21	-0.06 ± 1.03	-2.68 ± 1.16
\tilde{f}^d	0.98 ± 0.90	7.25 ± 2.07	2.72 ± 1.29	-2.55 ± 1.00
\tilde{f}^e	2.06 ± 0.62	4.73 ± 2.11	1.09 ± 0.99	-0.94 ± 0.99

	$ X_i _S$	$ X_i _P$	$\delta^{X_i}_S$	$\delta_P^{X_i}$
	$(10^{-2}G)$	$_{F}~{ m GeV}^{2})$	(in ra	dian)
\tilde{T}	4.25 ± 0.11	12.43 ± 0.30	_	2.40 ± 0.04
\tilde{C}	3.08 ± 0.52	11.57 ± 1.00	3.02 ± 0.12	-0.77 ± 0.20
\tilde{C}'	5.39 ± 0.38	18.79 ± 0.86	-0.03 ± 0.05	2.23 ± 0.11
\tilde{E}_1	2.90 ± 0.19	10.22 ± 0.50	-2.80 ± 0.05	1.86 ± 0.10
\tilde{E}_h	4.06 ± 0.53	13.82 ± 1.93	2.66 ± 0.12	-1.90 ± 0.20
\tilde{f}^a	4.10 ± 0.52	16.18 ± 2.34	_	1.72 ± 0.12
\tilde{f}^b	7.00 ± 1.36	24.52 ± 1.72	-2.78 ± 0.11	-0.30 ± 0.19
\tilde{f}^{c}	2.91 ± 0.19	10.26 ± 0.49	-2.36 ± 0.11	2.29 ± 0.14
\tilde{f}^d	1.59 ± 1.19	7.50 ± 3.87	-2.89 ± 0.40	0.25 ± 0.40
\tilde{f}^e	1.57 ± 1.39	0.71 ± 2.92	-2.44 ± 0.22	-1.64 ± 3.55

 $\chi^2_{\rm min}/{\rm dof} \sim 2$

scheme I: without Belle/Belle-II 2024; scheme II: all 38 data included

scheme II.

	$ X_i _S$	$ X_i _P$	$\delta_S^{X_i}$	δ_P^X
	$(10^{-2}G)$	$_{F}~{ m GeV^2})$	(in ra	dian)
\tilde{T}	4.22 ± 0.10	12.50 ± 0.28	—	2.42 ± 0
\tilde{C}	2.40 ± 0.66	12.70 ± 0.71	2.88 ± 0.59	-0.57 ± 0
\tilde{C}'	5.26 ± 0.35	19.04 ± 0.85	-0.02 ± 0.05	2.32 ± 0
\tilde{E}_1	2.86 ± 0.19	10.20 ± 0.50	-2.80 ± 0.05	1.83 ± 0
\tilde{E}_h	3.07 ± 0.47	11.80 ± 1.42	2.87 ± 0.09	-1.75 ± 0
\tilde{f}^a	3.16 ± 0.43	10.74 ± 1.73	_	1.68 ± 0
\tilde{f}^b	7.52 ± 0.30	23.27 ± 0.69	-2.98 ± 0.09	-0.56 ± 0
\tilde{f}^c	2.86 ± 0.19	10.19 ± 0.49	-2.51 ± 0.09	2.13 ± 0
\tilde{f}^d	2.34 ± 0.20	4.30 ± 0.65	3.02 ± 0.21	-0.75 ± 0
\tilde{f}^e	1.48 ± 0.32	3.82 ± 1.04	-2.05 ± 0.17	0.60 ± 0

	Scheme	I	Scheme	II
	TDA	IRA	TDA	IRA
χ^2	34.31	33.21	59.17	57.08
$\chi^2/d.o.f.$	2.29	2.21	3.11	3.00

Part of predictions: January

Channel	$10^2 \mathcal{B}$	α	A	B	$\delta_P - \delta_S$	$10^2 \mathcal{B}_{exp}$	$lpha_{ m exp}$
$\Lambda_c^+ \to \Lambda^0 \pi^+$	1.31 ± 0.05	-0.76 ± 0.01	2.76 ± 0.24	16.97 ± 0.38	0.21 ± 0.30	1.29 ± 0.05	-0.76 ± 0.01 [19, 26]
$\Lambda_c^+ \to \Sigma^0 \pi^+$	1.26 ± 0.05	-0.48 ± 0.02	4.09 ± 0.86	15.42 ± 2.32	-1.07 ± 0.04	1.27 ± 0.06	-0.47 ± 0.03 [19, 26]
$\Lambda_c^+ \to \Sigma^+ \pi^0$	1.27 ± 0.05	-0.48 ± 0.02	4.09 ± 0.86	15.42 ± 2.32	-1.07 ± 0.04	1.25 ± 0.09	-0.49 ± 0.03 [19, 25]
$\Lambda_c^+ \to \Sigma^+ \eta$	0.33 ± 0.04	-0.93 ± 0.05	2.30 ± 0.35	9.50 ± 1.16	0.34 ± 0.16	$0.32 \pm 0.04 \; [19, 25]$	-0.99 ± 0.06 [25]
$\Lambda_c^+ \to \Sigma^+ \eta'$	0.39 ± 0.12	-0.45 ± 0.07	3.83 ± 1.44	23.00 ± 3.85	2.03 ± 0.08	$0.44 \pm 0.15 \; [19, 25]$	-0.46 ± 0.07 [25]
$\Lambda_c^+ \to \Xi^0 K^+$	0.41 ± 0.03	-0.16 ± 0.13	3.89 ± 0.19	2.49 ± 2.13	-2.14 ± 0.63	0.55 ± 0.07	0.01 ± 0.16 [7]
$\Lambda_c^+ \to \Lambda^0 K^+$	0.0639 ± 0.0030	-0.56 ± 0.05	1.09 ± 0.18	3.30 ± 0.59	-0.97 ± 0.06	$0.0635 \pm 0.0031 \; [19, 26]$	-0.585 ± 0.052 [26]
$\Lambda_c^+ \to \Sigma^0 K^+$	0.0377 ± 0.0032	-0.54 ± 0.08	0.40 ± 0.15	3.86 ± 0.26	-0.59 ± 0.43	$0.0382 \pm 0.0051 \; [19, 26]$	-0.55 ± 0.20 [26]
$\Lambda_c^+ \to \Sigma^+ K_S$	0.038 ± 0.003	-0.54 ± 0.08	0.57 ± 0.21	5.46 ± 0.37	-0.59 ± 0.43	0.047 ± 0.014	
$\Lambda_c^+ \to n\pi^+$	0.063 ± 0.009	-0.78 ± 0.13	1.00 ± 0.14	2.44 ± 0.39	0.67 ± 0.21	0.066 ± 0.013	
$\Lambda_c^+ \to p \pi^0$	0.0174 ± 0.0034	-0.12 ± 0.75	0.63 ± 0.14	0.96 ± 0.68	-1.70 ± 0.87	$0.0156^{+0.0075}_{-0.0061}$ [20]	
$\Lambda_c^+ \to pK_S$	1.55 ± 0.07	0.00 ± 0.30	2.08 ± 2.10	26.21 ± 1.18	-1.56 ± 0.77	1.59 ± 0.07	0.18 ± 0.45
$\Lambda_c^+ \to p\eta$	0.151 ± 0.007	0.08 ± 0.37	1.04 ± 0.54	5.42 ± 0.70	-1.67 ± 1.28	0.149 ± 0.008 [19, 20, 27]	
$\Lambda_c^+ \to p\eta'$	0.052 ± 0.009	-0.54 ± 0.19	0.76 ± 0.30	4.73 ± 0.73	2.28 ± 0.14	0.049 ± 0.009	
$\Xi_c^0 \to \Xi^- \pi^+$	2.83 ± 0.10	-0.72 ± 0.03	4.53 ± 0.81	31.46 ± 1.34	-0.39 ± 0.32	1.80 ± 0.52 [21]	-0.64 ± 0.05
$\Xi_c^+ \to \Xi^0 \pi^+$	0.9 ± 0.2	-0.93 ± 0.07	2.27 ± 0.30	8.18 ± 1.17	-0.36 ± 0.23	1.6 ± 0.8	
Channel	$10^2 \mathcal{R}_X$	α	A	B	$\delta_P - \delta_S$	$10^2 (\mathcal{R}_X)_{\mathrm{exp}}$	$lpha_{ m exp}$
$\Xi_c^0 \to \Xi^- K^+$	4.10 ± 0.05	-0.76 ± 0.03	1.04 ± 0.19	7.25 ± 0.31	-0.39 ± 0.32	2.75 ± 0.57	
$\Xi_c^0 \to \Lambda K_S^0$	24.1 ± 1.0	-0.24 ± 0.18	3.18 ± 1.25	19.54 ± 1.76	-1.24 ± 0.29	22.9 ± 1.4 [22]	
$\Xi_c^0 \to \Sigma^0 K_S^0$	3.9 ± 0.7	-0.11 ± 0.67	2.74 ± 0.59	4.17 ± 2.93	-1.70 ± 0.87	$3.8 \pm 0.7 \; [22]$	
$\Xi_c^0 \to \Sigma^+ K^-$	13.0 ± 1.1	-0.21 ± 0.17	3.89 ± 0.19	2.49 ± 2.13	-2.14 ± 0.63	12.3 ± 1.2 [22]	

if phase shift vanishes, global fit $\rightarrow \alpha \sim 1$; non-unity $\alpha \rightarrow$ non-vanishing phase shift

Part of predictions: October

#

Channel	$10^2 B$	α	β	γ	A	B	$\delta_P - \delta_S$	$10^2 \mathcal{B}_{exp}$	$lpha_{ m exp}$	β_{exp} γ_{exp}
$\Lambda^+ \rightarrow \Lambda^0 \pi^+$	1.30 ± 0.04	-0.76 ± 0.01	0.39 ± 0.02	0.51 ± 0.01	5.57 ± 0.10	9.24 ± 0.20	2.67 ± 0.19	1.29 ± 0.05	-0.762 ± 0.006	0.368 ± 0.021
n _c / n n	1.30 ± 0.05	-0.76 ± 0.01	0.39 ± 0.02	0.51 ± 0.01	5.57 ± 0.10	9.23 ± 0.20	2.67 ± 0.02	1.25 ± 0.05	0.102 ± 0.000	0.502 ± 0.017
$\Lambda^+ \rightarrow \Sigma^0 \pi^+$	1.25 ± 0.05	-0.47 ± 0.01	0.35 ± 0.10	-0.81 ± 0.04	1.94 ± 0.22	19.20 ± 0.46	2.50 ± 0.14	1.27 ± 0.06	-0.466 ± 0.018	
n_c / Δ /	1.25 ± 0.05	-0.47 ± 0.01	0.36 ± 0.10	-0.80 ± 0.05	1.97 ± 0.23	19.14 ± 0.47	2.48 ± 0.13	1.27 ± 0.00	0.400 ± 0.010	
$\Lambda^+ \rightarrow \Sigma^+ \pi^0$	1.26 ± 0.05	-0.47 ± 0.01	0.35 ± 0.10	-0.81 ± 0.04	1.94 ± 0.22	19.20 ± 0.46	2.50 ± 0.14	1.24 ± 0.09	-0.484 ± 0.027	
\mathbf{n}_c , $\mathbf{\Delta}$,	1.26 ± 0.05	-0.47 ± 0.01	0.36 ± 0.10	-0.81 ± 0.05	1.97 ± 0.23	19.14 ± 0.47	2.48 ± 0.13	1.21 ± 0.00	0.101 ± 0.021	
$\Lambda^+ \rightarrow \Sigma^+ n$	0.33 ± 0.04	-0.92 ± 0.04	-0.01 ± 0.15	0.40 ± 0.10	2.94 ± 0.21	6.98 ± 0.73	-3.13 ± 0.21	0.32 ± 0.05	-0.99 ± 0.06	
n_c , $\Delta \eta$	0.32 ± 0.04	-0.92 ± 0.04	-0.15 ± 0.16	0.36 ± 0.12 :	2.87 ± 0.20	7.15 ± 0.83	-2.98 ± 0.17	0.02 ± 0.00	0.55 ± 0.00	
$\Lambda^+ \rightarrow \Sigma^+ n'$	0.39 ± 0.07	-0.44 ± 0.07	0.88 ± 0.06	0.16 ± 0.28 \star	4.03 ± 0.78	21.52 ± 2.63	2.03 ± 0.08	0.41 ± 0.08	-0.46 ± 0.07	
n_c , $\Delta \eta$	0.43 ± 0.07	-0.45 ± 0.07	0.90 ± 0.03	-0.02 ± 0.3 3	3.91 ± 0.80	24.80 ± 3.35	2.03 ± 0.08	0.41 ± 0.00	0.40 ± 0.01	
$\Lambda^+ \rightarrow \Xi^0 K^+$	0.34 ± 0.03	-0.04 ± 0.12	-0.98 ± 0.02	0.19 ± 0.09	2.76 ± 0.18	9.71 ± 0.47	-1.61 ± 0.12	0.55 ± 0.07	0.01 ± 0.16	
$n_c / - n$	0.34 ± 0.03	-0.06 ± 0.12	-0.98 ± 0.02	0.19 ± 0.09 2	2.77 ± 0.18	9.75 ± 0.46	-1.63 ± 0.12	0.00 ± 0.01	0.01 ± 0.10	
$\Lambda^+ \rightarrow nK_c$	1.56 ± 0.06	-0.74 ± 0.03	0.56 ± 0.16	-0.37 ± 0.23	4.17 ± 0.74	15.70 ± 1.43	2.50 ± 0.14	1.59 ± 0.07	-0.743 ± 0.028	
$n_c \neq pn_S$	1.59 ± 0.06	-0.74 ± 0.03	0.44 ± 0.54	-0.51 ± 0.47 3	3.73 ± 1.76	16.60 ± 2.62	2.61 ± 0.49	1.05 ± 0.01	0.149 ± 0.020	
$\Xi^0 \rightarrow \Xi^- \pi^+$	2.97 ± 0.09	-0.73 ± 0.03	0.67 ± 0.03	0.13 ± 0.04	8.07 ± 0.21	23.63 ± 0.57	2.40 ± 0.04	1.80 ± 0.52	-0.64 ± 0.05	
	2.96 ± 0.09	-0.72 ± 0.03	0.68 ± 0.03	0.13 ± 0.04	8.08 ± 0.21	23.47 ± 0.58	2.38 ± 0.04	1.00 ± 0.02	0.01 ± 0.00	
$\Xi^0 \rightarrow \Xi^0 \pi^0$	0.72 ± 0.04	-0.64 ± 0.07	0.77 ± 0.07	-0.06 ± 0.10 3	3.62 ± 0.26	12.63 ± 0.58	2.26 ± 0.10	$0.69 \pm 0.16^{*}$	$-0.90 \pm 0.27^{*}$	
	0.71 ± 0.04	-0.61 ± 0.08	0.79 ± 0.06	-0.04 ± 0.10 3	3.65 ± 0.25	12.49 ± 0.58	2.22 ± 0.10	0.00 ± 0.10	0.00 ± 0.21	
$\Xi^0 \rightarrow \Xi^0 n$	0.26 ± 0.04	0.23 ± 0.15	-0.09 ± 0.15	-0.97 ± 0.04	0.43 ± 0.27	12.58 ± 1.07	-0.36 ± 0.56	$0.16 \pm 0.05^{*}$		
\Box_c $\prime \Box \eta$	0.23 ± 0.04	0.23 ± 0.15	-0.15 ± 0.15	-0.96 ± 0.05	0.45 ± 0.26	11.75 ± 0.97	-0.57 ± 0.35	0.10 ± 0.00		
$\Xi^0 \rightarrow \Xi^0 n'$	0.43 ± 0.06	-0.70 ± 0.06	0.71 ± 0.06	-0.07 ± 0.27 3	3.91 ± 0.75	23.72 ± 2.55	2.35 ± 0.08	$0.12 \pm 0.04*$		
$\Box_c \rightarrow \Box \eta$	0.49 ± 0.07	-0.67 ± 0.06	0.70 ± 0.09	-0.25 ± 0.28 3	3.73 ± 0.77	27.17 ± 3.32	2.33 ± 0.09	0.12 ± 0.04		
$\Xi^+ \rightarrow \Xi^0 \pi^+$	1.0 ± 0.1	-0.88 ± 0.08	0.31 ± 0.10	0.36 ± 0.13	2.95 ± 0.23	6.67 ± 0.86	2.80 ± 0.45	1.6 ± 0.8		
	1.0 ± 0.1	-0.90 ± 0.07	0.29 ± 0.10	0.32 ± 0.13	2.93 ± 0.22	6.94 ± 0.85	2.83 ± 0.12	1.0 ± 0.0		
Channel	$10^2 \mathcal{R}_X$	α	β	γ	A	B	$\delta_P - \delta_S$	$10^2(\mathcal{R}_X)_{\mathrm{exp}}$	$\alpha_{ m exp}$	β_{exp}
-0 . A 1/0	23.0 ± 0.8	-0.62 ± 0.03	0.53 ± 0.11	-0.58 ± 0.11 2	2.47 ± 0.34	14.07 ± 0.50	2.43 ± 0.10	00 5 1 1 2		
$\Xi_c^{\circ} \to \Lambda K_S^{\circ}$	23.1 ± 0.8	-0.61 ± 0.03	0.47 ± 0.32 \cdot	-0.64 ± 0.22 2	2.31 ± 0.72	14.28 ± 0.71	2.49 ± 0.35	22.5 ± 1.3		
D 0 . D 0 C 0	3.8 ± 0.6	-0.40 ± 0.61 -	-0.92 ± 0.05	$0.35\pm0.58~1$	$.80\pm0.46$	3.84 ± 1.65	-2.02 ± 0.62	20107		
$\Xi_c^\circ \to \Sigma^\circ K_S^\circ$	3.6 ± 0.7	-0.63 ± 0.17 -	-0.86 ± 0.26	-0.06 ± 1.59 1	$.47 \pm 1.33$	4.79 ± 3.35	-2.26 ± 0.28	3.8 ± 0.7		
$\nabla 0$, $\nabla + W =$	13.9 ± 1.0	-0.04 ± 0.12 -	-0.99 ± 0.01 ·	-0.14 ± 0.09 2	2.76 ± 0.18	9.71 ± 0.47	-1.61 ± 0.12	10.0 + 1.0		
$\Xi_c^\circ \to \Sigma^+ K$	14.0 ± 0.9	-0.06 ± 0.12 -	-0.99 ± 0.02	-0.14 ± 0.09 2	2.77 ± 0.18	9.75 ± 0.46	-1.63 ± 0.12	12.3 ± 1.2		
	4.39 ± 0.02	-0.72 ± 0.03	0.66 ± 0.03	0.21 ± 0.04 1	$.86 \pm 0.05$	5.44 ± 0.13	2.40 ± 0.04			
$\Xi_c^{\circ} \rightarrow \Xi^{-}K^{+}$	4.39 ± 0.02	-0.71 ± 0.03	0.67 ± 0.03	$0.22\pm0.04~1$	$.86 \pm 0.05$	5.41 ± 0.13	2.38 ± 0.04	2.75 ± 0.57		

scheme I.

Part of predictions: October

罪

Channel	$10^2 \mathcal{B}$	α	β	γ	A	B	$\delta_P - \delta_S$	$10^2 \mathcal{B}_{\mathrm{exp}}$	$lpha_{ m exp}$	$egin{array}{c} eta_{\mathrm{exp}} \ \gamma_{\mathrm{exp}} \end{array}$
$\Lambda_c^+\to\Lambda^0\pi^+$	$1.30 \pm 0.05 \\ 1.30 \pm 0.04$	$\begin{array}{c} -0.76 \pm 0.01 \\ -0.76 \pm 0.01 \end{array}$	$\begin{array}{c} 0.39 \pm 0.02 \\ 0.39 \pm 0.02 \end{array}$	$0.51 \pm 0.01 \ 50000000000000000000000000000000000$	5.57 ± 0.10 5.58 ± 0.10	9.23 ± 0.20 9.26 ± 0.20	$\begin{array}{c} 2.67 \pm 0.02 \\ 2.67 \pm 0.02 \end{array}$	1.29 ± 0.05	-0.762 ± 0.006	$\begin{array}{c} 0.368 \pm 0.021 \\ 0.502 \pm 0.017 \end{array}$
$\Lambda_c^+\to \Sigma^0\pi^+$	$\begin{array}{c} 1.24 \pm 0.05 \\ 1.24 \pm 0.05 \end{array}$	$\begin{array}{c} -0.47 \pm 0.01 \\ -0.47 \pm 0.01 \end{array}$	$\begin{array}{c} 0.32 \pm 0.10 \\ 0.33 \pm 0.10 \end{array}$	-0.82 ± 0.04 1 -0.82 ± 0.04 1	1.86 ± 0.20 1.88 ± 0.20	19.13 ± 0.44 19.12 ± 0.44	$\begin{array}{c} 2.54 \pm 0.14 \\ 2.53 \pm 0.14 \end{array}$	1.27 ± 0.06	-0.466 ± 0.018	
$\Lambda_c^+\to \Sigma^+\pi^0$	$\begin{array}{c} 1.25 \pm 0.05 \\ 1.25 \pm 0.05 \end{array}$	$\begin{array}{c} -0.47 \pm 0.01 \\ -0.47 \pm 0.01 \end{array}$	$\begin{array}{c} 0.32 \pm 0.10 \\ 0.33 \pm 0.10 \end{array}$	-0.82 ± 0.04 1 -0.82 ± 0.04 1	1.86 ± 0.20 1.88 ± 0.20	19.13 ± 0.44 19.12 ± 0.44	2.54 ± 0.14 2.53 ± 0.44	1.24 ± 0.09	-0.484 ± 0.027	
$\Lambda_c^+\to \Sigma^+\eta$	$\begin{array}{c} 0.33 \pm 0.04 \\ 0.33 \pm 0.04 \end{array}$	$\begin{array}{c} -0.90 \pm 0.04 \\ -0.89 \pm 0.04 \end{array}$	$-0.14 \pm 0.12 \\ -0.08 \pm 0.12$	$0.42 \pm 0.10 \pm 0.44 \pm 0.09 \pm 0.000 \pm 0.000 \pm 0.0000 \pm 0.0000000000$	2.96 ± 0.19 2.97 ± 0.19	$6.83 \pm 0.69 \\ 6.68 \pm 0.69$	$\begin{array}{c} -2.99 \pm 0.13 \\ -3.06 \pm 0.13 \end{array}$	0.32 ± 0.05	-0.99 ± 0.06	
$\Lambda_c^+\to \Sigma^+\eta'$	$\begin{array}{c} 0.18 \pm 0.03 \\ 0.17 \pm 0.04 \end{array}$	$\begin{array}{c} -0.44 \pm 0.07 \\ -0.44 \pm 0.07 \end{array}$	$\begin{array}{c} 0.84\pm0.14\\ 0.88\pm0.08\end{array}$	$-0.32 \pm 0.34 \pm 0.000$ -0.16 ± 0.0000	2.12 ± 0.67 2.28 ± 0.67	18.43 ± 1.92 16.85 ± 2.41	$2.05 \pm 0.10 \\ 2.03 \pm 0.08$	0.41 ± 0.08	-0.46 ± 0.07	
$\Lambda_c^+\to \Xi^0 K^+$	$0.33 \pm 0.03 \\ 0.33 \pm 0.03$	-0.08 ± 0.11 -0.07 ± 0.11	-0.98 ± 0.02 -0.98 ± 0.02	$0.18 \pm 0.09 \ 2$ $0.18 \pm 0.09 \ 2$	2.72 ± 0.18 2.72 ± 0.18	9.69 ± 0.47 9.69 ± 0.46	-1.65 ± 0.12 -1.64 ± 0.11	0.55 ± 0.07	0.01 ± 0.16	
$\Lambda_c^+ \to p K_S$	$1.59 \pm 0.06 \\ 1.56 \pm 0.06$	-0.74 ± 0.03 -0.74 ± 0.03	$\begin{array}{c} 0.21 \pm 0.59 \\ 0.63 \pm 0.05 \end{array}$	$-0.63 \pm 0.20 \ 3 -0.24 \pm 0.10 \ 4$	$3.22 \pm 0.91 \\ 4.60 \pm 0.31$	$17.31 \pm 1.02 \\ 14.92 \pm 0.67$	$2.86 \pm 0.74 \\ 2.44 \pm 0.05$	1.59 ± 0.07	-0.743 ± 0.028	
$\Xi_c^0\to \Xi^-\pi^+$	2.97 ± 0.08 2.99 ± 0.08	-0.74 ± 0.03 -0.75 ± 0.03	$\begin{array}{c} 0.66 \pm 0.03 \\ 0.66 \pm 0.03 \end{array}$	$0.11 \pm 0.04 \ 8 \ 0.12 \pm 0.04 \ 8$	8.02 ± 0.20 8.06 ± 0.20	23.76 ± 0.53 23.80 ± 0.52	2.42 ± 0.04 2.42 ± 0.04	1.80 ± 0.52	-0.64 ± 0.05	
$\Xi_c^0\to \Xi^0\pi^0$	$0.71 \pm 0.04 \\ 0.72 \pm 0.04$	-0.69 ± 0.07 -0.69 ± 0.06	0.72 ± 0.07 0.71 ± 0.06	$-0.09 \pm 0.10 \ddagger -0.09 \pm 0.10 \ddagger$	3.53 ± 0.24 3.57 ± 0.24	12.80 ± 0.57 12.81 ± 0.56	$\begin{array}{c} 2.34 \pm 0.10 \\ 2.34 \pm 0.09 \end{array}$	$0.69\pm0.16^*$	$-0.90 \pm 0.27^{*}$	
$\Xi_c^0\to \Xi^0\eta$	0.25 ± 0.03 0.26 ± 0.03	-0.03 ± 0.14 -0.01 ± 0.13	-0.19 ± 0.13 -0.17 ± 0.13	-0.98 ± 0.03 (-0.99 ± 0.02 (0.33 ± 0.22 0.29 ± 0.24	12.38 ± 0.76 12.62 ± 0.62	-1.73 ± 0.72 -1.63 ± 0.74	$0.16\pm0.05^*$		
$\Xi_c^0\to \Xi^0\eta'$	0.23 ± 0.03 0.22 ± 0.03	-0.71 ± 0.07 -0.74 ± 0.07	$0.46 \pm 0.22 \\ 0.53 \pm 0.19$	$-0.53 \pm 0.23 \pm 0.23 \pm 0.24 \pm 0.29 \pm$	2.03 ± 0.54 2.18 ± 0.59	20.86 ± 1.91 19.25 ± 2.40	$\begin{array}{c} 2.56 \pm 0.20 \\ 0.25 \pm 0.02 \end{array}$	$0.12\pm0.04^*$		
$\Xi_c^+\to \Xi^0\pi^+$	$\begin{array}{c} 1.0\pm0.1\\ 1.0\pm0.1 \end{array}$	$-0.80 \pm 0.09 \\ -0.79 \pm 0.08$	$\begin{array}{c} 0.38 \pm 0.11 \\ 0.39 \pm 0.10 \end{array}$	$0.46 \pm 0.11 \pm 0.46 \pm 0.10 \pm $	3.02 ± 0.22 3.01 ± 0.21	$\begin{array}{c} 6.05 \pm 0.71 \\ 6.03 \pm 0.63 \end{array}$	$\begin{array}{c} 2.70 \pm 0.15 \\ 2.68 \pm 0.13 \end{array}$	1.6 ± 0.8		
Channel	$10^2 \mathcal{R}_X$	α	β	γ	A	B	$\delta_P - \delta_S$	$10^2(\mathcal{R}_X)_{\mathrm{exp}}$	α_{exp}	$\beta_{\rm exp}$
$\Xi_c^0 \to \Lambda K_S^0$	$22.8 \pm 0.9 \\ 23.0 \pm 0.8$	$-0.63 \pm 0.07 \\ -0.67 \pm 0.02$	$0.32 \pm 0.34 \\ 0.53 \pm 0.07$	$-0.71 \pm 0.10 \pm 0.07 \pm 0.07 \pm 0.07 \pm 0.07$	2.06 ± 0.37 2.64 ± 0.19	$\begin{array}{c} 14.46 \pm 0.33 \\ 13.84 \pm 0.38 \end{array}$	2.67 ± 0.48 2.47 ± 0.07	22.5 ± 1.3		-
$\Xi_c^0 \to \Sigma^0 K_S^0$	$3.6\pm0.6\ 3.8\pm0.6$	$-0.45 \pm 1.02 \\ 0.58 \pm 0.28$	-0.82 ± 0.11 -0.44 ± 0.30	-0.46 ± 0.81 0.72 ± 0.10	1.11 ± 0.85 2.05 ± 0.17	5.61 ± 1.56 2.53 ± 0.55	-2.10 ± 1.06 -0.57 ± 0.59	3.8 ± 0.7		
$\Xi_c^0\to \Sigma^+ K^-$	13.7 ± 0.9 13.6 ± 0.9	-0.08 ± 0.11 -0.07 ± 0.11	-0.99 ± 0.02 -0.99 ± 0.02	-0.15 ± 0.09 -0.15 ± 0.09	2.72 ± 0.18 2.72 ± 0.18	9.69 ± 0.47 9.69 ± 0.46	-1.65 ± 0.12 -1.64 ± 0.11	12.3 ± 1.2		
$\Xi_c^0 \to \Xi^- K^+$	4.38 ± 0.01 4.38 ± 0.01	-0.73 ± 0.03 -0.74 ± 0.03	$0.65 \pm 0.03 \\ 0.65 \pm 0.03$	$0.20 \pm 0.04 \\ 0.20 \pm 0.04$	$1.85 \pm 0.05 \\ 1.86 \pm 0.05$	5.47 ± 0.12 5.48 ± 0.12	2.42 ± 0.04 2.42 ± 0.04	2.75 ± 0.57		

scheme II.

A brief history of $\Lambda_c^+ \to \Xi^0 K^+$ 2. BF was measured, not that small, $\mathscr{B}(\Lambda_c^+ \to \Xi^0 K^+) = (0.55 \pm 0.07) \%$ 3. Recently both in SU(3) fit or dynamic model calculation, $\alpha \sim 1$ 4. The puzzle with α was resolved by BESIII $\alpha_{\Xi^0 K^+} = 0.01 \pm 0.16(\text{stat}) \pm 0.03(\text{syst})$

5. The smallness α can be accmmodated recently in both IRA and TDA

1. Theory in 1990s, small BF & zero α , due to smallness of S-wave amplitude

- PRL, 132, 031801 (2024)
- $\delta_p \delta_s = -1.55 \pm 0.25 (\text{stat}) \pm 0.05 (\text{syst})$ rad

 $1.59 \pm 0.25(\text{stat}) \pm 0.05(\text{syst})$ rad.

IRA: Geng et al. 2310.05491

TDA: Zhong et al. 2401.15926, 2404.01359

$$I. \Lambda_{c}^{+} \rightarrow \Xi^{0}K^{+} : \text{remaining product}$$

$$(1) \text{ two sets for amplitudes}$$

$$I. \begin{cases} |A| = 1.6^{+1.9}_{-1.6} \pm 0.4, \\ |B| = 18.3 \pm 2.8 \pm 0.7, \end{cases} \qquad II. \begin{cases} |A| = 4.3^{+0.7}_{-0.2} \pm \\ |B| = 6.7^{+8.3}_{-8.7} \pm 0.4 \end{cases}$$

$$(2) \text{ ambiguity in sign of phase-shift}$$

$$(\delta_{S}^{X_{i}}, \delta_{P}^{X_{i}}) \rightarrow (-\delta_{S}^{X_{i}}, -\delta_{P}^{X_{i}})$$

$$\delta_{P} - \delta_{S} = -1.55 \pm 0.25 \pm 0.05 \text{ or } 1.59 \pm 0.25 \pm 0.05$$

$$\Gamma = \frac{p_{c}}{8\pi} \frac{(m_{i} + m_{f})^{2} - m_{P}^{2}}{m_{i}^{2}} (|A|^{2} + \kappa^{2}|B|^{2})$$

$$\alpha = \frac{2\kappa|A^{*}B|\cos(\delta_{P} - \delta_{S})}{|A|^{2} + \kappa^{2}|B|^{2}}, \qquad \text{We only had BF}$$

roblems from BESIII

0.4,1.6,

ť

 $\gamma = \frac{|A|^2 - \kappa^2 |B|^2}{|A|^2 + \kappa^2 |B|^2},$

 γ : relative size of partial waves

 $\beta = \frac{2\kappa |A^*B| \sin(\delta_P - \delta_S)}{|A|^2 + \kappa^2 |B|^2}$

5 rad.

 β : relative sign of phase-shift

and α in January, so could not solve the problems.

I. $\Lambda_c^+ \rightarrow \Xi^0 K^+$: BESIII problem has been solved by LHCb

Decay	α	β	γ	Δ (radian)
$\Lambda_c^+\to\Lambda\pi^+$	$-0.782\pm0.009\pm0.004$	$0.368 \pm 0.019 \pm 0.008$	$0.502 \pm 0.016 \pm 0.006$	$0.633 \pm 0.036 \pm 0.036$
$\Lambda_c^+ \to \Lambda K^+$	$-0.569 \pm 0.059 \pm 0.028$	$0.35 \pm 0.12 \pm 0.04$	$-0.743 \pm 0.067 \pm 0.024$	$2.70\pm0.17\pm0.17$
$\Lambda_c^+ \to p K^0_S$	$-0.744 \pm 0.012 \pm 0.009$	-	-	_

LHCb, 2409.02759

Fit 10/2024

 $|A| = 2.76 \pm 0.18, |B| = 9.71 \pm 0.47,$

 $\alpha_{\Xi^0K^+} = -0.04 \pm 0.12,$

 $\beta_{\Xi^0 K^+} = -0.98 \pm 0.02$

 $\delta_P - \delta_S = -1.61 \pm 0.12$ rad

3. $\Xi_c^0 \rightarrow \Xi^- \pi^+$ PDG [42] Observable Belle $1.80 \pm 0.52^{*}$ [46] $10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = 1.43 \pm 0.32$ Our fit $10^2 \mathcal{B}$ Channel α $\Xi_c^0 \to \Xi^- \pi^+$ 2.97 ± 0.08 $2.99 \pm 0.08 \quad -0.75 \pm 0.03 \quad 0.66 \pm 0.03 \quad 0.12 \pm 0.04 \quad 8.06 \pm 0.20 \quad 23.80 \pm 0.52 \quad 2.42 \pm 0.04$

Other support:

$\frac{\tau_{\Lambda_c^+}}{\tau_{\Xi_c^0}} \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	= 3	$\mathcal{B}(\Lambda_c^+ \to \Lambda \pi$	(⁺) +	$\mathcal{B}(\Lambda_c^+$ –
$\tau(\Lambda_c^+) = (202.9 \pm 1.1)$ fs,		1.31 ± 0.05		$1.26 \pm$
$\tau(\Xi_c^0) = (150.5 \pm 1.9)$ fs.		1.29 ± 0.05		$1.27 \pm$

$$\begin{split} & \Gamma(\ \Xi_c^0 \rightarrow pK^-\overline{K}^*(892)^0 \ , \overline{K}^{*0} \rightarrow K^-\pi^+ \)/\Gamma(\ \Xi_c^0 \rightarrow \\ & \Gamma(\ \Xi_c^0 \rightarrow pK^-K^-\pi^+ \ (\text{no}\ \overline{K}^{*0}) \)/\Gamma(\ \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \\ \hline & \Gamma(\ \Xi_c^0 \rightarrow AK^0_S \)/\Gamma(\ \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \\ \hline & \Gamma(\ \Xi_c^0 \rightarrow A\overline{K}^*(892)^0 \)/\Gamma(\ \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \\ \hline & \Gamma(\ \Xi_c^0 \rightarrow \\ & \Sigma^0\overline{K}^S \)/\Gamma(\ \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \\ \hline & \Gamma(\ \Xi_c^0 \rightarrow \\ & \Sigma^0\overline{K}^*(892)^0 \)/\Gamma(\ \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \\ \hline & \Gamma(\ \Xi_c^0 \rightarrow \\ & \Sigma^+K^*(892)^- \)/\Gamma(\ \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \\ \hline & \Gamma(\ \Xi_c^0 \rightarrow \\ & \Sigma^-\pi^+ \)/\Gamma(\ \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \\ \hline & \Gamma(\ \Xi_c^0 \rightarrow \\ & \Sigma^0\overline{K}^*(N^+)/\Gamma(\ \\ & \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \\ \hline & \Gamma(\ \Xi_c^0 \rightarrow \\ & \Xi^0\overline{K}^+K^- \ \text{nonresonant})/\Gamma(\ \\ & \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \\ \hline & \Gamma(\ \\ & \Xi_c^0 \rightarrow \\ & \Xi^-\mu^+\nu_\mu \)/\Gamma(\ \\ & \Xi_c^0 \rightarrow \\ & \Xi^-\pi^+ \) \end{aligned}$$

$$\Sigma^{0}\pi^{+}) - \frac{1}{\sin^{2}\theta_{C}} \mathcal{B}(\Lambda_{c}^{+} \rightarrow n\pi^{+})$$

$$0.05 \qquad 0.063 \pm 0.009 \qquad \text{fitted results} \\ 0.066 \pm 0.013 \qquad \text{measured values}$$

$$\mathcal{B}(\Xi_{c}^{0} \rightarrow \Xi^{-}\pi^{+}) = (2.85 \pm 0.30)\%$$

3.
$$\Xi_c^0 \to \Xi^- K^+$$

Channel $10^2 \mathcal{R}_X \qquad \alpha$
 $\Xi_c^0 \to \Xi^- K^+ \qquad 4.10 \pm 0.05 \qquad -0.76 \pm 0.03 \ 1.04$

Channel	TDA	TDA	
$\Xi_c^0 ightarrow \Xi^- \pi^+ 27$	$T - 2E_{1S}$	$2 ilde{T}$	
$\Xi_c^0 \rightarrow \Xi^- K^+ 2T$	$7 - 2E_{1S}$	$2 ilde{T}$	

measurement of $\Xi_c^0 \to \Xi^- \pi^+$ needs to be improved!

罪

A	B	$\delta_P-\delta_S$	$10^2 (\mathcal{R}_X)_{\mathrm{exp}}$
± 0.18	7.25 ± 0.30	2.76 ± 0.32	2.75 ± 0.57

$\mathcal{R}_{\Xi^-K^+} = \sin^2 \theta_C$ 0.045

Mode	e (*)	Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P(MeV/c)					
Γ_{13} Ξ_c^0 -	$ ightarrow arepsilon^-\pi^+$	0.0143 ± 0.0032	S=1.1	875					
Category: No absolute branching fractions have been measured. The following are branching <i>ratios</i> relative to $\Xi^-\pi^+$. The following data is related to the above value: • expand all datablocks									
$\Gamma(arepsilon_c^{0} ightarrow$	$pK^-\overline{K}^*(892)^0$, $\overline{K}^{*0} o K^-\pi^+$ $)/\Gamma$) $(arepsilon_c^0 o arepsilon^- \pi^+$)		Γ_2/Γ_{13}	+				
$\ \ \Gamma(\ \Xi_c^0 \rightarrow$	$pK^{\!-}K^{\!-}\pi^+$ (no \overline{K}^{*0}) $)/\Gamma(~{arepsilon}_c^0 oarepsilon)$	${ar c}^-\pi^+$)		Γ_3/Γ_{13}	+				
$\Gamma(arepsilon_c^0 ightarrow$	$\Lambda K^0_S \)/\Gamma(\ \Xi^0_c o \Xi^- \pi^+ \)$			Γ_4/Γ_{13}	+				
$\Gamma(\Xi_c^0 ightarrow$	$\Lambda K^{\!-}\pi^+)/\Gamma(arepsilon_c^0 o arepsilon^-\pi^+$)			Γ_5/Γ_{13}	+				
$\begin{tabular}{c} \Gamma(\varXi^0_c\rightarrow$	$A\overline{K}^{*}\!\left(892 ight)^{0}\left. ight)/\Gamma(\left.arepsilon_{c}^{0} ightarrowarepsilon^{-}\pi^{+}\left. ight) ight)$			Γ_6/Γ_{13}	+				
$\begin{tabular}{c} \Gamma(\varXi^0_c\rightarrow$	$\Sigma^0 K^0_S)/\Gamma(~\Xi^0_c o \Xi^- \pi^+$)			Γ_9/Γ_{13}	+				
$\Gamma(~\Xi_c^0 \rightarrow$	$\Sigma^+ K^-)/\Gamma(arepsilon_c^0 o arepsilon^- \pi^+)$			Γ_{10}/Γ_{13}	+				
$\Gamma(arepsilon_c^0 ightarrow$	$\Sigma^0 \overline{K}^*(892)^0 \)/\Gamma(\ \Xi^0_c o \Xi^- \pi^+ \)$			Γ_{11}/Γ_{13}	+				
$\Gamma(~\Xi_c^0 \rightarrow$	$\varSigma^+ K^*(892)^-)/\Gamma(~\varXi^0_c o \varXi^- \pi^+)$)		Γ_{12}/Γ_{13}	+				
$ \Gamma(\Xi_c^0\rightarrow$	$\Xi^-\pi^+$)/ $\Gamma_{ m total}$			Γ_{13}/Γ	+				

24

SUMMARY

- TDA approach to charmed baryon is established.
 The proper fits can be carried out.
 The unification of TDA & IRA is demonstrated.
 All the kinematic measurements: BF, alpha, beta, gamma play their roles as expected.
- Time to explore the underlying dynamics in charm system.

