

FCC-ee monochromatization issues

Z. Zhang (IJCLab & IHEP), A. Faus-Golfe (IJCLab) H. Jiang (Lancaster U.), B. Bai (HIT), F. Zimmermann (CERN) P. Raimondi (FNAL), K. Oide (UGE & KEK)

FTCF2024 - Guangzhou

21st November 2024

FUTURE

Innovation Stud

CIRCULAR

COLLIDER

Outline

- > Monochromatization concept in e^+e^- colliders
 - Low-energy
 - High-energy: FCC-ee
- FCC-ee monochromatization physics motivation and parametric studies
- FCC-ee monochromatization schemes and implementation studies
- Conclusions and Perspectives

CM Energy Resolution in Colliders

Reducing the spread of the centre-of mass (CM) energies (σ_W) of colliding beams is a way to increase the collision energy resolution, that is of particular interest when operating the collider on a narrow particle resonance or at the threshold of its pair production.

Monochromatization Principle

Monochromatization Principle

betatronic beam sizes at the IP

 $\sigma_{x,y}^* = \sqrt{\beta_{x,y}^* \varepsilon_{x,y} + \left(D_{x,y}^* \sigma_{\delta}\right)^2}$

FTCF2024 - Guangzhou

dispersive beam size at the IP

21st November 2024

increase of the relative frequency of the events at the

centre of of the distribution but luminosity loss !!!!

Monochromatization in Low-energy Colliders

At low-energy e^+e^- colliders, with flat beam schemes ($\sigma_y^* <<< \sigma_x^*$) and where the energy spread is meanly due to SR ("beamstrahlung"(BS) is not important), we could optimize this scheme by playing with the beam-beam parameters and the emittances to avoid luminosity losses:

we could gain in energy resolution keeping the luminosity constant and the beambeam in the standard limits !!!!!

Monochromatization Design Studies for low-energy e⁺e⁻ colliders:

- VEPP4: one ring, electrostatic quads (*τ* charm)
- SPEAR: one ring, electrostatic quads, $\lambda \sim 8$
- LEP: one ring, electrostatic quads (limited strength) and alternative RF magnetic quads, λ~3 (optics limitations)
- B-factory: Superconducting RF resonators
- τ charm factory: two rings, vertical dipoles, λ ~7.5

with low-horizontal emittance

 τ – charm factory with monochromatization scheme

A. Faus-Golfe, J. Le Duff, Versatile DBA and TBA lattices for a tau charm factory with and without beam monochromatization. Nucl. Instrum. Methods A 372, 6–18 (1996)

FTCF2024 - Guangzhou

21st November 2024

Monochromatization in High-energy Colliders (I)

The new generation of circular e^+e^- colliders use the "crab-waist" collision scheme. Recent studies have revisited and extended the concept of monochromatization in the context of e^+e^- colliders in crossing-angle collision configuration.

A. Bogomyagkov, E. Levichev, Collision monochromatization in e+e- colliders, Phys. Rev. Accel. Beams 20.5 (2017). [Erratum: Phys. Rev. Accel. Beams 21, 029902(2018)], p. 051001. doi:10.1103/PhysRevAccelBeams.20.051001. arXiv:1702.03634[physics.acc-ph].

FTCF2024 - Guangzhou

21st November 2024

FUTURE CIRCULAR

Monochromatization in High-energy Colliders (II)

In the previous case for low-energy circular e^+e^- colliders, the **relative energy spread** is mainly given by **SR** in the collider arcs ($\sigma_{\delta} = \sigma_{\delta,SR}$). Alternatively in **high-energy circular** e^+e^- colliders, we must consider also the **SR** created by the strong opposing EM field during collision or "**beamstrahlung**"(**BS**) ($N_{\gamma} \propto 1/\sigma_z(\sigma_x^* + \sigma_y^*)$), with σ_z the bunch length).

Coupled system to be solved numerically

M. A. Valdivia García, F. Zimmermann, Beam blow up due to Beamstrahlung in circular e+e- colliders, Eur. Phys. J. Plus 136.5 (2021), p. 501. doi:10.1140/epjp/s13360-021-01485-x. arXiv:1911.03420 [physics.acc-ph] FTCF2024 - Guangzhou 21st November 2024

FCC-ee MonochroM Physics Motivation

> Physics motivation: measuring the electron Yukawa couplings.

- Impossible to measure at hadron colliders: tiny branching fraction of the $H \rightarrow e^+e^-$ decay: $\mathcal{B}(H \rightarrow e^+e^-) = 5.22 \times 10^{-9}$, swamped by the Drell-Yan dielectron continuum.
- Integrated luminosity (*L_{int}*) of ~10 ab⁻¹ per year, achievable at the future high-energy circular e⁺e⁻ collider FCC-ee, at a CM energy of ~125 GeV.
- Potential to observe the resonant s-channel Higgs production: e⁺e⁻ → H.
 S. Jadach, R.A. Kycia, Phys. Lett. B 755, 58 (2016. DOI: 10.1016/j.physletb.2016.01.065

Theoretical studies: measurement of resonant s-channel Higgs production

D. d'Enterria, A. Poldaru, G. Wojcik, Measuring the electron Yukawa coupling via resonant *s*-channel Higgs production at FCCee, arXiv:2107.02686v1 [hep-ex] 6 Jul 2021

> Accelerator studies: renewed interest in monochromatization

- Much facilitated if the CM energy spread can be reduced to a level comparable with the natural width of the Higgs boson Γ_H = 4.1 MeV.
- In a conventional collision scheme, the natural CM energy spread at 125 GeV is ~50 MeV (~70 MeV with BS).
- Monochromatization implementation at FCC-ee first proposed in 2016.
- Two possible FCC-ee monochromatization schemes: Crab Crossing (CC) scheme with crab cavities and Integrated Resonances Scan (IRS) scheme without crab cavities.

CC scheme with crab cavities (head-on collision configuration)

M. A. Valdivia García, A. Faus-Golfe, F. Zimmermann, Towards a Monochromatization Scheme for Direct Higgs Production at FCC-ee, in: Proc. 7th International Particle Accelerator Conference, Busan, South Korea, 2016, p. WEPMW009. doi:10.18429/JACoW -IPAC2016-WEPMW009.

- **Beamstrahlung** impact: **considered** advanced scripts developed in Python to for optimizing all the beam parameter in **self-consistent coupled system**.
- Hourglass effect: not considered $R_{hg} \sim 0.3$ optimization feasibility: $\beta_{\gamma}^* \rightarrow 4 \text{ mm}, R_{hg} \rightarrow 0.8$
- **Preliminary Target** IP beam parameters for monochromatization optics design consider only the horizontal plane.

 $\beta_{x,y}^* = 90, 1 \text{ mm}, D_x^* = 0.105 \text{ m}$

A. Faus-Golfe, M. Valdivia Garcia, F. Zimmermann, The challenge of monochromatization Direct *s*-channel Higgs production: $e+e- \rightarrow H$, Eur. Phys. J. Plus (2022) 137:31, DOI: 10.1140/epjp/s13360-021-02151-y

> Associated upper limits contours (95% CL) on the electron Yukawa coupling (y_e) has been calculated.

Red curves show the range of parameters presently reached in selfparametric FCC-ee monochromatization studies. The red star indicates the best signal strength monochromatization point in the plane (the pink star over the $\delta_{\sqrt{s}} = \Gamma_{\rm H} = 4.1 \,\text{MeV}$ dashed line, indicates the ideal baseline point assumed in default analysis). All results are given per IP and per year.

D. d'Enterria, A. Poldaru, G. Wojcik, Measuring the electron Yukawa coupling via resonant *s*-channel Higgs production at FCC-ee, arXiv:2107.02686v1 [hep-ex] 6 Jul 2021

Parameters	Unit	Value
CM energy W	[GeV]	125
Horizontal, vertical RMS emittance with (without) BS $\mathcal{E}_{x,y}$	[nm]	2.5 (0.51), 0.002
Relative RMS beam energy spread σ_{δ}	%	0.052
RMS bunch length σ_z	[mm]	3.3
Horizontal dispersion at the IP D_x^*	[m]	0.105
Betaron function at the IP $\beta^*_{x,y}$	[mm]	90, 1
RMS beam size at the IP $\sigma_{x,y}^*$	[µm]	55, 0.045
Full crossing angle θ_c	[mrad]	30
Vertical beam-beam tune shift ξ_y		0.106
Beam current I	[mA]	395
Bunch population N _b	$[10^{10}]$	6
Bunches per beam n_b		13420
Luminosity (without crab cavities) per IP \mathcal{L}	[10 ³⁴ cm ⁻² s ⁻¹]	26 (23)
RMS CM energy spread (without crab cavities) σ_W	[MeV]	13 (25)

plane for $\sigma_{ee \to H}$ cross section at $\sqrt{s} = m_{\rm H}$.

Upper limits contours (95% CL) on the y_e .

The FCC-ee GHC Standard Lattice & Performances

(Global Hybrid Correction)

GX (m)

4 operation modes: Z, WW, ZH, ttbar

FCC-ee GHC Version 2022 (V22) Performance Table

Beam energy	[GeV]	45.6	80	120	182.5	
Layout		PA31-1.0				
# of IPs		4				
Circumference	[km]	91.17	4117	91.17	4107	
Bending radius of arc dipole	[km]		9.9	37		
Energy loss / turn	[GeV]	0.0391	0.370	1.869	10.0	
SR power / beam	[MW]		5()		
Beam current	[mA]	1280	135	26.7	5.00	
Bunches / beam		10000	880	248	40	
Bunch population	[10 ¹¹]	2.43	2.91	2.04	2.37	
Horizontal emittance ε_x	[nm]	0.71	2.16	0.64	1.49	
Vertical emittance ε_{y}	[pm]	1.42	4.32	1.29	2.98	
Arc cell		Long	90/90	90,	/90	
Momentum compaction α_p	$[10^{-6}]$	28	.5	7.	33	
Arc sextupole families	. ,	7	5	146		
$\beta_{r/n}^*$	[mm]	100 / 0.8	200 / 1.0	300 / 1.0	1000 / 1.6	
Transverse tunes/IP $Q_{\pi/\eta}$		53.563 /	53.600	100.565	/ 98.595	
Energy spread (SR/BS) σ_{δ}	[%]	0.038 / 0.132	0.069 / 0.154	0.103 / 0.185	0.157 / 0.221	
Bunch length (SR/BS) σ_z	[mm]	4.38 / 15.4	3.55 / 8.01	3.34 / 6.00	1.95 / 2.75	
RF voltage 400/800 MHz	GV	0.120 / 0	1.0 / 0	2.08 / 0	2.5 / 8.8	
Harmonic number for 400 MHz	. ,		1210	648	,	
RF freuquency (400 MHz)	MHz	399.99	4581	399.9	94627	
Synchrotron tune Q_s		0.0370	0.0801	0.0328	0.0826	
Long. damping time	[turns]	1168	217	64.5	18.5	
RF acceptance	[%]	1.6	3.4	1.9	3.0	
Energy acceptance (DA)	[%]	± 1.3	± 1.3	± 1.7	-2.8 + 2.5	
Beam-beam ξ_x/ξ_y^a		0.0023 / 0.135	0.011 / 0.125	0.014 / 0.131	0.093 / 0.140	
Luminosity / IP	$[10^{34}/cm^{2}s]$	182	19.4	7.26	1.25	
Lifetime $(q + BS + lattice)$	[sec]	840	-	< 1065	< 4062	
Lifetime (lum)	[sec]	1129	1070	596	744	

^aincl. hourglass.

21st November 2024

FCC-ee GHC V22 Standard Optics

Two types: Z mode lattice and ttbar mode lattice

IR Lattice with Crab waist transformation: PA, PD, PG, PJ

Highly asymmetric IR lattice around the IP to mitigate the SR impact

Global Hybrid Correction:

- Local chromaticity correction only in vertical plane
- Global chromaticity correction for the both plane.

Technical site: PB, PF, PH, PL

Arc: FODO cell with a transverse phase advance of 90°

Z mode: E_0 =45.6 GeV Long 90/90 arc cell: 100 m ε_x =0.71 nm, ε_y =1.42 pm

ttbar mode: E_0 =182.5 GeV 90/90 arc cell: 50 m ε_x =1.49 nm, ε_y =2.98 pm

J. Keintzel, A. Abramov, M. Benedikt, M.Hofer, K.Oide et al. "FCC-ee lattice design", eeFACT2022, doi:10.18429/JACoW-eeFACT2022-TUYAT0102

MonochroM Implementation in FCC-ee GHC IR

Despite the **simplicity** of the **monochromatization concept**, the **creation** and the **contro**l of the necessary **H/V dispersion** function of opposite signs at the IP could be **rather difficult to implement**.

IR GHC: Local Chromaticity Correction Section (LCCS) with Crab Sextupoles (CS) in the vertical to produce a crab waist collision

$P D_x^* \neq 0$ generation at the IP

In FCC-ee IR region, the **large crossing angle of 30 mrad** in the H-plane and the **LCCS** is made possible with **H-dipoles** at the two sides of the IP creating some **H-dispersion** D_x^* ($D_x \neq 0$ in the LCCS and $D_x = 0$ close to the IP for high-luminosity). $D_x^* \neq 0$ could be generated (~10 cm) by mismatching D_x in the LCCS.

$P D_y^* \neq 0$ generation at the IP

Because $\sigma_{y\beta}^* \ll \sigma_{x\beta}^*$, about **100 times smaller** D_y^* (~mm) is needed to get the same monochromatization factor. Therefore $D_y^* \neq 0$ could be generated by implementing **skew quadrupoles** around IP. These quadrupoles could be located where the CS pairs are located in the LCCS.

FUTURE CIRCULAR COLLIDER Innovation Study

Step 1: All LCCS H-dipoles (blue) are cut into three pieces and quadrupoles (red) are inserted between them for matching flexibility. Additional chicanes are implemented in each upstream and downstream LCCS H-dipole to create the dispersion at the IP while keeping the orbit.

Step 2: To mitigate the horizontal emittance blowup, two long chicanes are implemented to each upstream and downstream. And each angle of chicane is equally distributed to all the three pieces of each LCCS H-dipole.

Step 3: The IP beam parameters are matched to FCC-ee MonochroM self-consistent parameters* while keeping the beam parameters at the entrance and exit of the IR similar to those of standard mode, including phase advances between sextupoles and crab sextupoles.

* A. Faus-Golfe, M. Valdivia Garcia, F. Zimmermann, The challenge of monochromatization Direct s-channel Higgs production: $e^+e^- \rightarrow H$, Eur. Phys. J. Plus (2022) 137:31, https://doi.org/10.1140/epjp/s13360-021-02151-y

H-MonochroM Implementation in FCC-ee GHC IR (II)

Step 5: IR MonochroM is implemented in the four IPs and global matching:

- LCCS chromaticity correction
- Global arc chromaticity correction
- Tune correction

N2P3

- Emittance checks and SR-RF strategy compensation
- Preliminary Tracking and DA calculations

 D_{v}^{*} could be generated by Step 1: Nonzero implementing skew quadrupoles around IP. These quadrupoles could be located where the CS pairs are located in the LCC system.

Inspired in FCC-ee **Local Chromaticity Correction** (LCC) optics detector solenoid compensation scheme

Step 2: Mitigation of vertical emittance blow-up due to BS: $\varepsilon_{y,\text{tot}} = \varepsilon_{y,\text{SR}} + \frac{2V\mathcal{H}_y^*}{\sigma_{\delta,\text{tot}}^2 \sigma_{x,\text{tot}}^{*3}} \qquad \lambda = \sqrt{1 + \sigma_\delta^2 \left(\frac{D_x^{*2}}{\sigma_{x\beta}^*} + \frac{D_y^{*2}}{\sigma_{y\beta}^*}\right)} \sim 1$ Vertical emittance blow-up IP betatronic beam size increases $(\sim 5 \text{ pm} \rightarrow \sim 800 \text{ pm})$

FTCF2024 - Guangzhou

Step 3: MonochroM IR optics design:

- Matching the increased β_x^* using all the quadrupoles in the IR
- Matching the required nonzero D_{ν}^{*} with the newly implemented skew quadrupoles.

Compatibility: simpler than the H-MonochroM scheme without alerting the orbit.

Step 4: IR MonochroM is implemented in the four IPs and global matching:

- LCCS chromaticity correction
- Global arc chromaticity correction ٠
- **Tune correction** ٠
- Emittance checks and SR-RF strategy compensation
- Preliminary Tracking and DA calculations

LIDER

 D_{x}^{*}

 D_y^*

HV-MonochroM Implementation in FCC-ee GHC IR

Step 1: All LCCS H-dipoles (blue) are cut into three pieces and quadrupoles (red) are inserted between them for matching flexibility. Additional chicanes are implemented in each upstream and downstream LCCS H-dipole to create the dispersion at the IP while keeping the orbit.

Step 2: To mitigate the horizontal emittance blowup, two long chicanes are implemented to each upstream and downstream. And each angle of chicane is equally distributed to all the three pieces of each LCCS H-dipole.

Step 3: The IP beam parameters are matched to FCC-ee MonochroM self-consistent parameters* while keeping the beam parameters at the entrance and exit of the IR <u>similar to</u> those of standard mode, including phase advances between sextupoles and crab sextupoles.

★ A. Faus-Golfe, M. Valdivia Garcia, F. Zimmermann, The challenge of nonochromatization Direct s-channel Higgs production: e+e- → H, Eur. Phys. J. Plus 2022) 137:31, https://doi.org/10.1140/epjp/s13360-021-02151-y

Step 1: Nonzero D_y^* could be generated by implementing **skew quadrupoles** around IP. These quadrupoles could be located where the CS pairs are located in the LCC system.

Step 2: Mitigation of vertical emittance blow-up due to BS:

Incorporating skew quadrupoles into the monochromatization IR with nonzero D_x^*

21st November 2024

FCC-ee GHC MonochroM Lattices

7 kinds of **FCC-ee GHC V22 MonochroM** optics design based on **Z mode** and 7 lattices based on **ttbar mode** has been completed with different possible combination of **H**, **V**, **H/V** dispersions and number of **IPs**.

FCC-ee GHC	Orbit changed or not	D_{x}^{*}	D [*] _y
Standard ZES	No	0	0
MonochroM ZH4IP	Yes	0.105 m	0
MonochroM ZH2IP	Yes	0.105 m	0
MonochroM ZHS	Yes	0	0
MonochroM ZV0.5	No	0	0.5 mm
MonochroM ZV1	No	0	1 mm
MonochroM ZHV	Yes	0.105 m	1 mm

All transferred from MAD-X version to Xsuite version for further studies.

MAD-X - Methodical Accelerator Design. <u>http://madx.web.cern.ch/madx/</u> Xsuite. <u>https://xsuite.readthedocs.io/</u>

Not part of the baseline collision scheme for FCC-ee!!

For comparison and further simulation in Guinea-Pig

CC scheme with crab cavities (head-on collision configuration)

IRS scheme without crab cavities (crossing-angle collision configuration)

FCC-ee GHC MonochroM Optical Performance based on Z mode lattice (IRS) (with or w/o BS effect)

Parameters	Units	Standard ZES	MonochroM ZH4IP	MonochroM ZH2IP	MonochroM ZHS	MonochroM ZV0.5	MonochroM ZV1	MonochroM ZHV
Beam Energy <i>E</i> 0	GeV	62.5	62.5	62.5	62.5	62.5	62.5	62.5
# of IPs n _{IP}		4	4	4	4	4	4	4
Circumference <i>C</i>	km	91	91	91	91	91	91	91
Energy Loss/turn U ₀	MeV	138	143	140	143	138	138	143
SR power loss P _{SR}	MW	50	50	49	50	50	50	50
Beam current <i>I</i>	mA	360	350	350	350	360	360	350
Bunches/beam n_b		12000	12000	12000	12000	12000	12000	12000
Bunch population N _b	1011	0.57	0.55	0.55	0.55	0.57	0.57	0.55
Horizontal emittance (SR/BS) ε_x	nm	1.33 / 1.33	2.09 / 7.78	1.71 / 3.56	1.66 / 1.66	1.34 / 1.34	1.34 / 1.34	2.03 / 7.72
Vertical emittance (SR/BS) $arepsilon_y$	pm	2.65 / 2.65	4.17 / 4.17	3.42 / 3.42	3.33 / 3.33	2.67 / 13.84	2.67 / 47.32	4.06 / 50.55
Momentum compaction α_c	10-6	28.0	27.4	27.7	27.6	27.9	27.9	27.4
$\beta_{x/y}^*$	mm	100 / 0.8	90 / 1	90 / 1	100 / 0.8	5000 / 0.8	5000 / 0.8	90 / 1
$D_{x/y}^*$	m	0 / 0	0.105 / 0	0.105 / 0	0 / 0	0 / 0.0005	0 / 0.001	0.105 / 0.001
Energy Spread (SR/BS) σ_δ	%	0.054 / 0.078	0.055 / 0.057	0.054 / 0.064	0.055 / 0.075	0.054 / 0.055	0.054 / 0.055	0.055 / 0.057
Bunch length (SR/BS) σ_z	mm	4.09 / 5.82	4.15 / 4.23	4.12 / 4.74	4.17 / 5.59	4.10 / 4.14	4.10 / 4.14	4.15 / 4.23
Sychrotron tune <i>Q_s</i>		0.054	0.053	0.054	0.054	0.054	0.054	0.053
Longitudinal damping time	turns	453	438	446	438	454	454	438
CM energy spread (SR/BS) σ_W	MeV	47.47 / 68.78	15.83 / 26.42	14.52 / 20.19	48.46 / 66.15	8.06 / 17.38	4.07 / 16.22	5.30 / 15.87
Luminosity (SR/BS) L	$10^{34} \text{cm}^{-2} \text{ s}^{-1}$	35.4 / 25.1	17.3 / 16.4	19.3 / 16.6	29.2 / 22.0	3.56 / 3.35	1.85 / 1.69	2.03 / 1.73

FUTURE

Innovation Stud

JLAR

DER

CIR

COI

FCC-ee GHC MonochroM Optical Performance based on ttbar mode lattice (IRS) (with or w/o BS effect)

Parameters	Units	Standard TES	MonochroM TH4IP	MonochroM TH2IP	MonochroM THS	MonochroM TV0.5	MonochroM TV1	MonochroM THV
Beam Energy <i>E</i> 0	GeV	62.5	62.5	62.5	62.5	62.5	62.5	62.5
# of IPs n _{IP}		4	4	4	4	4	4	4
Circumference <i>C</i>	km	91	91	91	91	91	91	91
Energy Loss/turn U ₀	MeV	138	143	141	143	138	138	143
SR power loss P _{SR}	MW	50	50	49	50	50	50	50
Beam current <i>I</i>	mA	360	350	350	350	360	360	350
Bunches/beam n_b		12000	12000	12000	12000	12000	12000	12000
Bunch population N _b	1011	0.57	0.55	0.55	0.55	0.57	0.57	0.55
Horizontal emittance (SR/BS) ε_{χ}	nm	0.17 / 0.17	1.48 / 7.27	0.84 / 4.23	0.35 / 0.35	0.19 / 0.19	0.19 / 0.19	1.48 / 7.26
Vertical emittance (SR/BS) ε_y	pm	0.35 / 0.35	2.96 / 2.96	1.68 / 1.68	0.71 / 0.71	0.37 / 4.49	0.37 / 18.8	2.96 / 50.18
Momentum compaction α_c	10-6	7.31	6.93	7.12	7.06	7.31	7.31	6.92
$eta_{x/y}^*$	mm	1000 / 1.6	90 / 1	90 / 1	1000 / 1.6	50000 / 1.6	50000 / 1.6	90 / 1
$D_{x/y}^*$	m	0 / 0	0.105 / 0	0.105 / 0	0 / 0	0 / 0.0005	0 / 0.001	0.105 / 0.001
Energy Spread (SR/BS) σ_δ	%	0.054 / 0.076	0.055 / 0.057	0.054 / 0.057	0.055 / 0.068	0.054 / 0.055	0.054 / 0.055	0.055 / 0.057
Bunch length (SR/BS) σ_z	mm	3.86 / 5.49	4.05 / 4.20	3.95 / 4.12	4.09 / 5.07	3.86 / 3.95	3.86 / 3.95	4.05 / 4.20
Sychrotron tune <i>Q_s</i>		0.015	0.014	0.014	0.014	0.015	0.015	0.014
Longitudinal damping time	turns	454	436	445	436	454	454	436
CM energy spread (SR/BS) σ_W	MeV	47.45 / 67.58	13.41 / 25.75	10.25 / 20.95	48.80 / 60.47	4.30 / 15.02	2.16 / 14.63	4.52 / 15.69
Luminosity (SR/BS) L	$10^{34} \text{cm}^{-2} \text{ s}^{-1}$	72.8 / 51.9	20.9 / 19.5	28.3 / 26.6	44.6 / 36.6	3.36 / 3.11	1.68 / 1.56	2.05 / 1.72

21st November 2024

FUTURE

Innovation Stud

COL

CIRCULAR

IDER

FCC-ee GHC MonochroM Physics Performance (I)

> Luminosity and CM energy spread calculation in Guinea-Pig

- Two key indicators of the physics performance in collider experiments: CM energy spread σ_W and integrated luminosity \mathcal{L}_{int} .
- σ_W and \mathcal{L} calculated using **Guinea-Pig**, particle distribution modeled as an ideal Gaussian distribution comprising 40000 particles (Z = N(0,1)):

$$E_{\pm} = (Z\sigma_{\delta} + 1)E_{0}$$

$$x_{\pm} = \left(Z\sqrt{\varepsilon_{x}\beta_{x}^{*}} + Z\sigma_{\delta}D_{x\pm}^{*}\right) \sqrt{1 + \tan\frac{\theta_{c}}{2}\frac{\sigma_{z}}{\sqrt{\varepsilon_{x}\beta_{x}^{*}} + \sigma_{\delta}^{2}D_{x\pm}^{*2}}}$$

$$y_{\pm} = Z\sqrt{\varepsilon_{y}\beta_{y}^{*}} + Z\sigma_{\delta}D_{y\pm}^{*}$$

$$z_{\pm} = Z\sigma_{z}$$

$$x_{\pm}' = Z\sqrt{\frac{\varepsilon_{x}}{\beta_{x}^{*}} - \frac{\theta_{c}}{2}}$$

$$y_{\pm}' = Z\sqrt{\frac{\varepsilon_{y}}{\beta_{y}^{*}}}$$

 N_b needs to be adjusted so that the head-on luminosity is align with the analytical result.

FCC-ee GHC MonochroM Physics Performance (II)

> Energy distribution calculated using Guinea-Pig

21st November 2024

$\succ \sigma_W$, \mathcal{L} and \mathcal{L}_{int} of the monochromatization IR optics based on Z mode lattice (CC/IRS)

Parameters	Units	Standard ZES	MonochroM ZH4IF	MonochroM ZH2IP	MonochroM ZHS	MonochroM ZV0.5	MonochroM ZV1	MonochroM ZHV
CM energy spread (CC/IRS) σ_W	MeV	99.77 / 69.52	20.53 / 26.80	11.97 / 24.40	91.57 / 66.87	25.86 / 27.03	23.96 / 25.25	16.43 / 20.58
Luminosity (CC/IRS) L	$10^{34} \text{cm}^{-2} \text{ s}^{-1}$	195 / 44.8	23.1 / 15.0	18.4 / 18.5	147 / 37.7	4.32 / 2.92	2.18 / 1.46	2.46 / 1.42
Integrated luminosity (CC/IRS) \mathcal{L}_{int}	ab-1	23.4 / 5.38	2.77 / 1.80	2.21 / 2.21	17.6 / 4.52	0.52 / 0.35	0.26 / 0.18	0.30 / 0.17

$\succ \sigma_W$, \mathcal{L} and \mathcal{L}_{int} of the monochromatization IR optics based on ttbar mode lattice (CC/IRS)

Parameters	Units	Standard TES	MonochroM TH4IP	MonochroM TH2IP	MonochroM THS	MonochroM TV0.5	MonochroM TV1	MonochroM THV
CM energy spread (CC/IRS) σ_W	MeV	95.32 / 67.20	19.05 / 27.10	15.46 / 23.16	74.81 / 61.14	17.44 / 20.41	16.65 / 20.23	15.99 / 21.24
Luminosity (CC/IRS) L	$10^{34} \text{cm}^{-2} \text{ s}^{-1}$	334 / 71.2	27.4 / 17.9	37.6 / 24.5	155 / 44.3	3.78 / 2.72	1.89 / 1.37	2.45 / 1.42
Integrated luminosity (CC/IRS) <i>L_{int}</i>	ab ⁻¹	40.1 / 8.54	3.29 / 2.15	4.51 / 2.94	18.6 / 5.32	0.45 / 0.33	0.23 / 0.16	0.29 / 0.17

 \mathcal{L}_{int} assumption in FCC-ee CDR (184 physics day and 75% physics efficiency): 10^{35} cm⁻²s⁻¹ \rightarrow 1.2 ab⁻¹ per IP per year.

> Physics performance

Physics performance evaluated by establishing the $\delta_{\sqrt{s}}$ - \mathcal{L}_{int} benchmarks in the upper limit contours (95% CL) for y_e couplings.

• Physics performance of the monochromatization IR optics (CC scheme).

• Physics performance of the monochromatization IR optics (IRS scheme).

Pink star: baseline point assumed in the original physics simulation analysis. Red star: FCC-ee self-consistent parameters.

Conclusions and Perspectives

- Monochromatization is a simple conceptual idea but its practical implementation in a collider is challenging, especially when it is not integrated into the initial IR optics design as a dedicated operational mode.
- Research on monochromatization has never reached the stage for full implementation and experimental validation. A flexible lattice with two modes of operation with/without monochromatization is mandatory.
- Different FCC-ee GHC MonochroM "realistic" optics lattices has been completed for V22 featuring very promising performances.
- Further studies on FCC-ee GHC MonochroM lattices are needed: to simulate the impact of the **beam-beam** with $D_{x,y}^* \neq 0$ after optimizing the dynamic aperture for these new type of operation mode.
- Implementation and comparison with the FCC-ee LCC optics with more symmetric IRs will be carried out.
- > MonochroM optics design for CEPC is ongoing (IR more symmetric).
- Experimental proof of monochromatization concept in running e^+e^- low energy colliders are under study for BEPCII (IHEP China), DAFNE and maybe in SuperKEKB.

THE BRAVE COLLABORATORS MonochroM team

A. Faus-Golfe, Z. Zhang, B. Bai, H. Jiang, M. A. Valdivia García, J. Jowett,
F. Zimmermann, K. Oide, A. Blondel, P. Raimondi, D. Shatilov, D. d'Enterria, P. Janot, U. Bassler
A. Zholents, J. Keintzel, G. Wilkinson, C. Milardi, A. Ciarma

FUTURE CIRCULAR COLLIDER

Innovation Study

Monochromatization could be obtained by operating with a **residual nonzero local vertical chromaticity** (RLC). This enables the focal length of the final quadrupoles to change with the momentum deviation of a beam particle, and establishes a dependence between the vertical beam size waist and momentum offset. An effective monochromatization could be obtained, without adding any new hardware. The resulting monochromatization factor will be enhanced for smaller β_y^* , but limited λ possible.

Waist location for beam 1 with momentum offset δ , can be made to coincide with the waist location for beam 2 with momentum offset $-\delta$, leading to an effective monochromatization, without adding any new hardware.

P. Raimondi, F. Zimmermann, private communication

Monochromatization with **dispersion inside the deflecting RF cavities (SCRF-D)** on either side of the collision point.

$$E_{s} = -E_{s0} \sin k_{x} x \cdot \cos k_{z} z \cdot \cos(\omega t + \phi),$$

$$H_{x} = \frac{k_{z}}{k} E_{s0} \sin k_{x} x \cdot \sin k_{z} z \cdot \sin(\omega t + \phi),$$

$$H_{z} = -\frac{k_{x}}{k} E_{s0} \cos k_{x} x \cdot \cos k_{z} z \cdot \sin(\omega t + \phi),$$

(1)

where E_{s0} is the amplitude of electric field; ω , ϕ are the frequency and phase of oscillations; $k_x = 2\pi/a_x$, $k_z = \pi/a_z$, $k^2 = k_x^2 + k_z^2$.

A.A. Zholents, Sophisticated accelerator techniques for colliding beam experiments. Nucl. Instrum. Methods A 265, 179–185 (1988)

Fig. 6. a) The trajectories of the head and the tail of the bunch in the region between AS. b) The behaviour of β_z -function.

FTCF2024 - Guangzhou

21st November 2024

Monochromatization IR Global Implementation

- Local Chromaticity Correction
- Load monochromatization ring lattice, and extract sequence from IP to crab sextupoles.
- Turned off all the sextupoles including crab sextupoles SY2.
- Match the vertical chromaticity from IP to crab sextupoles to 0 using the sextupoles SY1.
- Calculate the strength of crab sextupoles (SY2) with the following formula:

 $K2SY2 = K2SY1 \pm crab_{factor} \cdot crab_{strength}$

The crab strength is given by:

$$crab_{strength} = \frac{1}{L_{SY2} * \theta_{CROSS} * BY_{IP} * BY_{CS}} * \sqrt{\frac{BX_{IP}}{BX_{CS}}}$$

The crab factor is determined from Beam-beam studies, at Z it's 97%, W 87%, so ~90% for Higgs mode seems a good starting guess.

K. Oide, M. Aiba, S. Aumon, M. Benedikt, A. Blondel et al. "Design of beam optics for the future circular collider e⁺e⁻ collider rings", Physical Review Accelerators and Beams, 19, 111005 (2016)

FTCF2024 - Guangzhou

21st November 2024

Monochromatization IR Global Implementation

Global Chromaticity Correction

With the matched strength of the SY1 and the strength of SY2 calculated by the formula, the global chromaticity correction is done by matching the strength of all the sextupoles in the arc.

There are two kinds of sextupoles in the arc, focus sextupoles and defocus sextupoles. The strength of all the focus sextupoles is multiplied by the coefficient kn_sf, while the strength of all the defocus sextupoles is multiplied by the coefficient kn_sf.

The horizontal chromaticity (DQ1) and vertical chromaticity (DQ2) are matched to 5 with the two coefficient, because positive chromaticity is benefit for the beam stability.

• Tune Correction

By varying the strength of quadrupoles around the RF cavities in the arc, the horizontal tune Q1 and vertical tune Q2 are matched to be same with the standard mode while keeping the beam parameters at the IRs.

• Emittance Check

Switching on the RF cavities and considering the energy loss due to synchrotron radiation, the longitudinal energy difference (*pt*) are matched to zero by varying the voltage and the phase of the RF cavities in tapering twiss model.