The superconducting magnets of SuperKEKB

Y. Arimoto The 6th International Workshop on Future Tau Charm Facilities, 2024 (FTCF2024-Guangzhou) <u>https://indico.pnp.ustc.edu.cn/event/1948/</u>

- De

Contents

- SuperKEKB •
- Superconducting final focus magnets (QCS)
 - Quadrupole magnets
 - Cancel magnets
 - Compensation solenoids
- Operations
 - Quench events on beam operation
 - Time decay of quadrupole magnet
- Summary

SuperKEKB accelerator

- Linac
 - Electron and positron beams are accelerated to 7 GeV and 4 GeV, respectively.
- Damping ring
 - Lower emittance for positron of 1.1 GeV.
- Main ring

e-e+Beam energy7 GeV4 GeVStored energy2.6 A3.6 AVertical beam size at IP62 nm48 nm

Target luminosity : 6x10³⁵ s⁻¹ cm⁻²

Superconducting final focus magnets (QCS)

Superconducting final focus magnet system (QCS)

SuperKEKB uses superconducting magnets only in IR for final focus

Superconducting quadrupole magnets

Main parameters of quadrupole magnets

Quadrupole magnet mechanical design

- Coil
 - NbTi Rutherford cable with keystone angle
 - Double pancake / $\cos 2\theta$ winding
- Stainless collars to suppress Lorentz force
- Magnetic yoke: Reduce leak field. Made of permendur at high magnetic field.

Cross sections of quads.

- QCS quads has five types of cross • section.
- The red areas indicate conductors.
- The QC1LP/RP has the smallest • inner diameter of 25 mm.
- The QC2LE/RE has the biggest inner diameter of 59.3 mm.
- QC2RE has the compensation • solenoid at outside of quadrupole magnet (blue area).
- Corrector magnets are equipped • inside quads. except for octupole corrector of QC1LP/RP.

Main Quadrupole Magnets

N. Ohuchi, et.al. Nucl. Instr. and Meth. A 1021 (2022) 165930.

N. Ohuchi, et.al. Nucl. Instr. and Meth. A 1021 (2022) 165930.

N. Ohuchi, et.al. Nucl. Instr. and Meth. A 1021 (2022) 165930.

Cancel magnets

Cancel magnets

- Cancels leakage fields from the main quadrupole magnet to the opposing ring
- Cancels leakage fields from sextupole, octupole, decupole, and dodecupole magnets
- Fabricated by Brookhaven National Laboratory

Sextupole components of Leak field on electron beam line

Sextupole components are reduced by the cancel magnet.

The energized current is optimized so that integral of B3 become to zero.

Compensation solenoids

The compensation solenoids cancel

- The compensation solenoids cancel the B-field of the Belle II detector solenoid magnet (B=1.5T) by the integral magnetic field BzL.
- Number of solenoid magnet: 4
- Type of superconducting wire

ESL consists of 12 coil blocks.

ESR1 consists of 15 coil blocks.

• 0.93 mm x 1.38 mm NbTi monolithic cable (rectangular cross section) ESR23

ESR23 consists of one solenoid on each beamline

Axial B-field Profile of Belle II + Compensation Solenoid

Parameters of Compensation Solenoids

	ESL	ESR1	ESR2, 3	ESL
Number of coil blocks	12	15	1	
Nominal operating current	404 A	450 A	151 A	
Stored energy	118 kJ	244 kJ	1.6 kJ	1 m
Inductance	2.53 H	8.81 H	0.14 H	ESR1
Maximum field in the coil	3.53 T	3.2 T	0.48 T	
Load line ratio	0.53	0.51	0.11	1.5 m

Magnet center measurement with single stretched wire

SSW measurement: setup

Magnet center for each magnet wrt design position

- Magnet field centers are varied, with the solenoid field turned on/ off.
 - dx ~ 0.1 mm, dy~0.3 mm
- The maximum offset from the beamline is 0.7 mm for QC1RP in the x-direction.
- The maximum offset from the beamline is -0.6 mm for QC2LP in the y-direction.
- These offsets can be corrected with dipole correctors and normal conducting magnets near QCS.

QCS Operation

One week stability of power supply for quadrupole magnets

Current stability of eight-quadrupole magnets (one week)

We achieved good stability of 2 ppm per 1 week by digital feedback.

主四極8台の1週間の計測値(1 ppm/div)

- Output current
- Correction value by digital feedback

Accidental power shutdown of QCS magnets during beam operation

- Causes:
 - -Quench induced by beam (~1-10 mJ)
 - over the threshold of a quench detector
 - -Others: Power supply trouble (fixing every event and frequency is reducing), supply water trouble
- If a collimator in a ring is damaged, the frequency of the beam induced quench events increase.
- Recovery time from quench: $1 \sim 10$ hours (depend on quenched magnet)

-Earthquake: not quench but induced voltage by change of coupling B-field between Belle solenoid and QCS solenoid

Long term drift of vertical model tune

- We observed that the vertical-setting (model) tune changed after powering off / on the quadrupole magnet in SuperKEKB operation.
- It corresponds to the variation of 10-4 of the quadrupole field of QCS in a few hours.

Drift of strength of quadrupole magnet

- is varied by 3x10⁻⁴ in 8 hours.
- We deduced that it is caused by flux creep in superconductor cable.
- We avoid this by changing the ramping pattern of the magnet.

We performed measurements with the QC1P R&D magnet and found that the quadrupole field

Summary

- solenoids.
- Field quality •
 - structure inlet.
- Magnet center measurement (alignment measurement) •
 - The magnetic field center was measured by SSW at the accelerator ring.
- Operation
 - We have many quenches induced by the beam.
 - Induced voltage by earthquake sometimes over the threshold of the quench detector.
 - - We avoid this by modifying the ramping pattern.

QCS consists of 8 SC quadrupole magnets, 43 sc correctors / cancel magnets, and 4 SC compensation

Multipoles: unexpected multipoles were measured for QC2RE. Caused by irregular shape at iron

• We found that the strength of QC1 varied by 3x10⁻⁴ in 8 hours after we energized the QCS magnet.