

Y. Funakoshi, Y. Ohnishi, K. Ohmi, R. Ueki, Y. Yamamoto, D. Zhou 2024.11.19

The 6th International Workshop on Future Tau Charm Facilities

Inter-University Research Institute Corporation High Energy Accelerator Research Organization (KEK) 大学共同利用機関法人 高エネルギー加速器研究機構 (KEK)

2024/November 19th

Machine performance of SuperKEKB

IPAC2020

IPAC2022

	KEKB achieved		SuperKEKB 2020 May 1 st		SuperKEKB 2022 June 8 th		SuperKEKB design	
	LER	HER	LER	HER	LER	HER	LER	HER
I _{beam} [A]	1.637	1.188	0.438	0.517	1.321	1.099	3.6	2.6
# of bunches	15	85	783		2249		2500	
I _{bunch} [mA]	1.033	0.7495	0.5593	0.6603	0.5873	0.4887	1.440	1.040
β y* [mm]	5.9	5.9	1.0	1.0	1.0	1.0	0.27	0.30
ξγ	0.129	0.090	0.0236	0.0219	0.0407 (0.0565)ª	0.0279 (0.0434)ª	0.0881	0.0807
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.11		1.57		4.65		80	
Integrated Luminosity [ab ⁻¹]	1.	04	0.	03 doubl	ed 0.4	40	5	0

a) High bunch current collision study

Beam operation after Long Shutdown 1 (LS1) (2024 Feb. ~ June), we couldn't make a new luminosity record.

- Crab waist
- Specific luminosity and beam-beam parameters
- Beam injection
- Effect of bunch-by-bunch feedback system
- Tune survey <- skip
- Luminosity tuning <- covered by D. Zhou's talk

Crab waist

Crab waist scheme

- Introduction of crab waist at SuperKEKB
 - Motivations
 - The beam-beam performance was poor in spite of all of knob tunings for improving it.
 - Method
 - FCC-ee type scheme: use of imbalance sextupoles in the vertical local chromaticity correction section.
 - Time table
 - 2020 March 16th : LER crab waist (40%)
 - 2020 March 24th : LER crab waist (60%)
 - 2020 April 24th : HER crab waist (40%)
 - 2020 June 1st : LER crab waist (80%)
 - 2024 June 5th : HER crab waist (60%)

- Benefits of use of crab waist scheme
 - Suppression of beam-beam blowup
 - Specific luminosity was improved by ~15%.
 - Increase of the bunch currents of both beams
 - W/o crab waist, beam injections was limited due to poor injection efficiency.
- Beam lifetime issue
 - Dynamic aperture shrinks w/ crab waist and the lifetime decrease w/ crab waist was expected.
 - But in βy*= 1mm case, no lifetime decrease was observed in LER and HER, since the collimator physical aperture is already very narrow.
 - On July 1st 2021, the lifetime of LER increased with wider collimators and so lifetime seems to be determined by physical aperture.
 - In case of lower βy^* , the lifetime w/ crab waist will be an issue.

Specific luminosity and beam-beam parameters

Bunch current of opposite beam

Vertical beam-beam parameter (ξ_y) of HER is saturated around 0.03.

With smaller number of bunches (31 bunches), which allowed us to switch FB off, ξ_y of HER reached ~0.043. This is the highest value achieved ever at SuperKEKB.

Specific luminosity

1.2

0.8

What is the cause of discrepancy btw simulation and experiment?

- Observed luminosity performance is much lower than simulations with BBSS (Beam-Beam Strong-Strong). This has been and will be challenges for us.
- Candidates of causes
 - Machine imperfections: Non-zero coupling and dispersions at IP, beam-current dependent optics distortion due to orbit change at QCS* and SLY* etc. Imperfect crab waist scheme
 - Beam-beam + lattice nonlinearity, Beam-beam + impedance, Beam-beam + space charge
 - BBSS simulation with PIC gives ~5% lower values than simulation with soft Gaussian model at $I_{b+}I_{b-} = 0.8 \text{mA}^2$.
 - Effects of FB system

Operation parameter set for BBSS simulation					
	2022.04.05		Commonts		
	HER	LER	Comments		
I _{bunch} (mA)	le	1.25*le			
# bunch	393		Assumed value		
ε _x (nm)	4.6	4.0	w/ IBS		
ε _y (pm)	35	30	Estimated from XRM data		
β _x (mm)	60	80	Calculated from lattice		
β _y (mm)	I	I	Calculated from lattice		
σ _{z0} (mm)	5.05	4.60	Natural bunch length (w/o MWI)		
Vx	45.532	44.524	Measured tune of pilot bunch		
Vy	43.572	46.589	Measured tune of pilot bunch		
Vs	0.0272	0.0233	Calculated from lattice		
Crab waist	40%	80%	Lattice design		

Beam-beam parameter from simulation

- The achieved specific luminosity at a higher bunch current product (~> 1 mA²) is about a half of the strong-strong simulation (w/ longitudinal wake).
- Vertical beam-beam parameters (ξ_y) of HER and LER seems to be saturated around 0.03 and 0.04, respectively.
- With FB off, the specific luminosity was improved and the vertical beam-beam parameters (ξ_y) of HER and LER reached 0.0434 and 0.0565, respectively.

Beam injection

Experiment on beam injection of LER

w/ beam-beam

(June 5th 2024)

- Beam lifetime increases w/ beam-beam blowup.
- Injection efficiency get worse seriously
 - → By optimizing working points, the injection efficiency is improved.

	Ibeam (LER)	lbeam (HER)	IncRate (L)	Life (L)	InjEff (L)
(1)	1395 mA	0 mA	1.68mA/s	7.3 min.	77.4%
(2)	1395mA	1100mA	0.42mA/s	8.9 min.	48.0%
(3)	1444mA	1100mA	1.02mA/s	8.0 min.	64.8%

 $Beam \ Lifetime[s] = \frac{DCCT \ Beam \ current \ [mA]}{DCCT \ decreasing \ rate \ (Loss \ rate)[\frac{mA}{s}]}$ $Injection \ Efficiency[\%] = \frac{DCCT \ increasing \ rate \ \left[\frac{mA}{s}\right] + DCCT \ decreasing \ rate \ \left[\frac{mA}{s}\right]}{BT \ end \ charge \ [nC] \times Revolution \ freq. \ [Hz] \times 1000 \times InjRepRate[Hz]} \times 100$

Summary of beam injection

2024/November 19th

Effect of bunch-by-bunch feedback system

- In May 2021, the luminosity increased by lowering gain of the bunch-by-bunch feedback system in HER.
- Noise mixed in FB system seemed to affect the luminosity.
 - The noise was caused by a troubled module. Since the noise frequency was near the betatron tune, its effect was large.

The luminosity increased (\sim 25%) by lowering HER vertical FB gain by 4dB + 4dB.

Specific Luminosity vs FB Gain

FB gain of the LER vertical affects the specific luminosity. The other gains (LER H, HER H/V) bring no effects.

- In some situation, the luminosity is increased by reducing the gain of the bunch-by-bunch feedback (FB).
- With FB off, the specific luminosity was increased by ~20 % at the bunch current product of ~ 1 mA² once in March 2022.
 - In this run, we will try to confirm this effect.

- To do list
 - Large discrepancy between strong-strong simulation and experiment
 - We have to study the following candidates.
 - Machine imperfections: Non-zero coupling and dispersions at IP, beam-current dependent optics distortion due to orbit change at QCS* and SLY* etc. Imperfect crab waist scheme
 - Beam-beam + lattice nonlinearity, Beam-beam + impedance, Beam-beam + space charge
 - BBSS simulation with PIC gives ~5% lower values than simulation with soft Gaussian model at $I_{b+}I_{b-} = 0.8 \text{mA}^2$.
 - Effects of FB system
 - Beam injection with beam-beam effects
 - Reduce amplitude of injection oscillation by enlarging βx at the injection point.
 - Reduce βx^* at the collision point
 - More tune survey

Thank you for your attention.

Inter-University Research Institute Corporation High Energy Accelerator Research Organization (KEK) 大学共同利用機関法人 高エネルギー加速器研究機構 (KEK)

Spare slides

Tune survey

LER vertical tune survey Recent beam-beam machine studies 2024-03-22 11:45:13 0.75 LER vertical tune scan compared 00+35 LER • 0.7 9.0e+34 - $\beta_v^*=1$ mm, w/o CW, 2024.03.12 Fractional v_y 8.0e+34 - $\beta_v^*=1$ mm, w/ CW, 2024.03.22 7.0e+34 0.55 6.0e+34 0.5 0.5 0.55 0.6 0.65 Fractional v_v 0.7 0.75 10 240 $\begin{array}{c|c} & \sigma_{y-}, \mbox{Tune scan experiment (Mar. 12, 2024) w/o CW} \\ & \sigma_{y+}, \mbox{Tune scan experiment (Mar. 12, 2024) w/o CW} \\ & \sigma_{y-}, \mbox{Tune scan experiment (Mar. 22, 2024) w/ CW} \\ & \sigma_{y-}, \mbox{Tune scan experiment (Mar. 22, 2024) w/ CW} \\ & CW \end{tabular} Off \end{tabular} by \end{tabular} = \end{tabular} 8mm, \end{tabular}$ $\sigma_{y_{+}}$, Tune scan experiment (Mar. 12, 2024) w/o CW $\sigma_{y_{+}}$, Tune scan experiment (Mar. 12, 2024) w/o CW $\sigma_{y_{-}}$, Tune scan experiment (Mar. 22, 2024) w/ CW $\sigma_{y_{+}}$, Tune scan experiment (Mar. 22, 2024) w/ CW 200 9 $_{160}$ | IbunchLER = 0.32 8 CW off by*=1mm, ε_x [nm] IbunchLER = 0.26mA[ш. 120 బ్లీ 120 6 80 5 40 0.55 0.55 0.56 0.57 0.58 0.59 0.61 0.56 0.57 0.58 0.59 0.6 0.6 0.61 Fractional v_{v+} (Measurement, pilot bunch) Fractional v_{v+} (Measurement, pilot bunch) D. Zhou Escaping from resonance $\nu_x + 4(\nu_y + \xi_y) = N$ 024/November 19th

^{••} Vertical tune scan in LER on May 22nd 2024

Recent beam-beam machine studies LER Horizontal tune survey

- LER horizontal tune scan compared
 - β_y^* =8 mm, w/o CW, 2024.02.26
 - $\beta_v^*=1$ mm, w/o CW, 2024.03.12
 - $\beta_v^*=1$ mm, w/ CW, 2024.03.22

2024/November 19th

- The present working points of $(v_x, v_y) = (.523, .580)$ (LER) and (.531, .575)(HER) at the end of 2024b run are near to the design value of $(v_x, v_y) = (.530, .570)$.
- To search for better working points for LER, which give a higher luminosity, a relatively wide-range (horizontal and vertical) tune survey was done. However, a better working point was not found.
- In the tune scan, the beam-beam and lattice resonance lines were clearly seen.
- At the present SuperKEKB, one of the most serious problem is that the total beam current of LER (and HER) (and the luminosity) is limited by the balance between beam injection and beam lifetime. Beam-beam effects affect beam injection efficiency and their effects depend on betatron tune. We need more tune survey in both simulations and experiment.

Luminosity tuning

Luminosity tuning

• Machine tuning routinely done even during physics run on machine parameters

Tuning parameters	Observables	Typical frequency
Beam offset at IP (orbit feedback)	Beam-beam kick (BPMs)	FB
Target of orbit feedback at IP (offset)	vertical size at SRM, luminosity	~1/2 day
Global closed orbit	BPMs	~ 20 s
Betatron tunes	tunes of non-colliding bunches	FB ~ 20 s
Relative RF phase	center of gravity of the vertex	~ 10 min
Global coupling, dispersion, beta-beat	orbit response to kicks, RF freq.	~ 14 days
Vertical waist position	vertical size at SRM, luminosity	~ 14 days
x-y coupling and dispersion at IP	vertical size at SRM, luminosity	~ 1/2 day
Chromaticity of x-y coupling at IP	vertical size at SRM, luminosity	~ 14 days

Tuning knob on X-Y coupling at IP

Calculation of beam-beam parameters

Definition

 $\xi_{y\pm} = \frac{r_e}{2\pi\gamma_{\pm}} \frac{\beta_{y\pm}^* N_{\mp}}{(\sigma_{z\mp}\phi)\sigma_{y\mp}^*}$

• Incoherent beam-beam parameters ($\xi_{yi}(LER), \xi_{yi}(HER)$)

 $\sigma_{y\mp}^*$: from X-ray monitor, $\sigma_{z\mp}$: nominal bunch length (LER: 4.6 mm, HER: 5.1 mm)

• Beam-beam parameters from luminosity($\xi_y(LER), \xi_y(HER)$)

Assume beam sizes at IP are equal for both beams

$$L = \frac{1}{4\pi} \frac{N_+ N_-}{\sigma_z \phi \sigma_y^*} N_b f_{rev} \implies \frac{N_-}{\sigma_z \phi \sigma_y^*} = L \frac{4\pi}{N_+ N_b f_{rev}} = L \frac{4\pi e}{I_{beam+}} \implies \xi_{y+} = \frac{r_e}{\gamma_+} L \frac{2\beta_{y+}^* e}{I_{beam+}}$$

If the difference in σ_y^* of the two beams are large, ξ_y from this calculation becomes much different from ξ_{yi} .

Another way for calculation

$$L = \frac{1}{2\pi} \frac{N_{+}N_{-}}{\sqrt{(\sigma_{z+}\phi)^{2} + (\sigma_{z-}\phi)^{2}} \sqrt{\sigma_{y+}^{2} + \sigma_{y-}^{2}}} N_{b}f_{rev} \qquad \begin{array}{l} \text{By using } r = (\sigma_{y+}^{*}/\sigma_{y-}^{*}) \text{ from X-ray monitor, } \sigma_{y+}^{*} \text{ and } \sigma_{y-}^{*} \\ \text{can be calculated from luminosity.} \\ \frac{1}{\sqrt{(\sigma_{z+}\phi)^{2} + (\sigma_{z-}\phi)^{2}} \sqrt{\sigma_{y+}^{2} + \sigma_{y-}^{2}}} N_{b}f_{rev} \\ \frac{1}{\sqrt{(\sigma_{z+}\phi)^{2} + (\sigma_{z-}\phi)^{2}} \sqrt{\sigma_{y+}^{2} + \sigma_{y-}^{2}}}} N_{b}f_{rev} \\ \frac{1}{\sqrt{(\sigma_{z+}\phi)^{2} + (\sigma_{z-}\phi)^{2}} \sqrt{\sigma_{y+}^{2} + \sigma_{y-}^{2}}} N_{b}f_{rev} \\ \frac{1}{\sqrt{(\sigma_{z+}\phi)^{2} + (\sigma_{z-}\phi)^{2} + (\sigma_{z-}\phi)^{2}} \sqrt{\sigma_{y+}^{2} + \sigma_{y-}^{2}}} N_{b}f_{rev} \\ \frac{1}{\sqrt{(\sigma_{z+}\phi)^{2} + (\sigma_{z-}\phi)^{2} + (\sigma_{z-}\phi)^{2}} N_{b}f_{rev} \\ \frac{1}{\sqrt{(\sigma_{z+}\phi)^{2} + (\sigma_{z-}\phi)^{2} + (\sigma_{z-}\phi)^{2} + (\sigma_{z-}\phi)^{2}} N_{b}f_{rev} \\ \frac{1}{\sqrt$$

Beam lifetime as function of total beam current with keeping the bunch current

· LER lifetime study

- Number of bunches is increased by keeping the bunch current to be 0.6 mA.
- measure the lifetime with 97, 393, 783, 1565, 2053, and 2346 bunches

Beam lifetime decreased with larger vertical emittance. Emittance was changed by using YaECK.

2024 June 27th $\beta y^* = 0.9mm$

The single beam blowup must be suppressed for a higher luminosity.

FIG. 10. The vertical beam emittance versus bunch current with $\beta_y^* = 1$ mm, before (green diamonds) and after (black circles) the event of collimator jaw damage with BxB feedback on. The data of purple triangles show the measurement with BxB feedback off.

Workshop on Future Tau Charm Facilities

44

Beam-Beam Study

Shift summary

Shift summary

Workshop on Future Tau Charm Facilities

