

The 6th International Workshop on Future Tau Charm Facilities

FTCF, 2024, Guangzhou

Progress on physics design of the STCF Collider ring

Ye Zou

On behalf of the STCF collider ring accelerator physics group University of Science and Technology of China 2024.11.19

Outline

Introduction of STCF collider ring
Physics design of STCF collider ring
Summary

Super Tau Charm Facility (STCF)

Crab waist scheme at STCF

- STCF adopts crab waist scheme with crossing angle $2\theta = 60$ mrad
- Tune scan with beam-beam effect shows significant increase of luminosity with crab waist at STCF $L = \frac{\gamma n_b I_b}{2er_e \beta_v^*} \xi_y H$

Lattice evolution of STCF

Lattice and layout of STCF

(spin rotator)

٠

٠

٠

٠

٠

800

600

 $\sqrt{\beta_x}$

 $\sqrt{\beta_{v}}$

 η_x

Interaction region

□ Modular design : FFT、CCY、CCX、CS、MS

 \Box FFT : large crossing angle (θ =60 mrad), Flat beam collision, bunch size compression at IP (σ_y =

135 nm , $\sigma_x = 16 \,\mu\text{m}$) , β function at IP ($\beta_y^* = 0.6 \,\text{mm}$, $\beta_x^* = 40 \,\text{mm}$)

- **\Box** Local chromaticity correction (CCY/CCX): large β , large dispersion, appropriate phase advance
- □ Crab sextupole (CS) : appropriate phase advance and strength ($v_x = 12\pi$, $v_y = 11\pi$, $k_2 = 17.16 \text{ m}^{-3}$) □ MADX and SAD for design and optimization $K2L = \pm \frac{1}{2\theta\beta^*\beta} \int_{\beta}^{\frac{\pi}{2}}$

ARC

- Long arc section: 9×FODO cell, 6° bending angle, 90° phase advance, 4 pairs of sextupoles (2 SDs + 2 SFs), 180° phase advance (-I, non-interleaved)
- Short arc section: 4×FODO cell, 6° bending angle, 90° phase advance, 1 pairs of sextupoles (SD), 180° phase advance (-I, non-interleaved)

DW and Crossing section

- Normal conducting damping wiggler
- Triplet cell: flexible adjust β function
- Small β function in both Hor./Ver. planes

- Two pairs of bending magnets (bending angle: 6°)
- Separation in horizontal plane with 2 m

Nonlinear optimization: IR

0.0

0.0

50

150.

200.

1*0*0.

s (m)

See L. Zhang's talk for more details

0.0150

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.0

250

$$Q(\delta) = Q_0 + \frac{\mathrm{d}Q}{\mathrm{d}\delta}\delta + \frac{1}{2}\frac{\mathrm{d}^2 Q}{\mathrm{d}\delta^2}\delta^2 + \frac{1}{6}\frac{\mathrm{d}^3 Q}{\mathrm{d}\delta^3}\delta^3 + \frac{1}{24}\frac{\mathrm{d}^4 Q}{\mathrm{d}\delta^4}\delta^4 + \cdots$$

- Use sextupoles (SY1 and SX1) at CCY ٠ and CCX to correct 1st order Chromaticity
- Use the fine-tuning phase advance of ٠ SY1 and SX1 to IP to correct 2nd order Chromaticity
- Use SY3 and SX3 at the 1st and 2nd • image points of IP to correct 3rd order Chromaticity
- Tuning the phase advance between the ۲ crab sextupole and final quadrupole to minimizes the Montague function at crab to increase off-momentum DA

250.

0.0

0.0

50.

100.

s (m)

150.

200.

Nonlinear optimization: MOGA

- ATPY code developed by T. Liu
- MOGA (NSGAII) to do the nonlinear optimization
- Variables: sextupole strength, phases between IR and non-IR
- Constraints: Hor. / Ver. Chromaticity
- Targets: dynamic aperture and momentum bandwidth
- DA optimization goes very slow, firstly optimize $d\mu_x/dJ_x$, $d\mu_x/dJ_y$, $d\mu_y/dJ_y$
- Preliminary results, still ongoing

Dynamic aperture (6D)

- Dynamic aperture/Touschek lifetime varies greatly w/o crab sextupoles
- Strong nonlinear effect from crab sextupoles
- Possible solutions: extra sextupoles within crab sextupoles?

Key parameters (V3)

Parameters	Units	2 GeV	1 GeV	1.5 GeV	3.5 GeV	
Circumference, C	m		865.398			
Crossing angle, 2θ	mrad		60			
RF frequency, <i>f</i> _{rf}	MHz	499.7				
Hor. /Ver. beta function at IP, β_x^*/β_y^*	mm	40/0.6 60/0.8 (V4)				
L*	m		0.9			
Coupling, $\varepsilon_y/\varepsilon_x$	%	0.5				
Hor./Ver. betatron tune		32.555/34.570	32.555/36.570	32.555/34.570	33.555/34.570	
Beam current, /	А	2	1.5	1.7	2	
Emittance (DW, IBS) , Hor./Ver.	nm	4.57/0.023	12.46/0.06	7.12/0.035	29.35/0.15	
Energy loss per turn (SR+DW), U ₀	keV	541	106	266	1477	
SR power per beam (SR+DW), <i>P</i>	MW	1.082	0.159	0.452	2.954	
RF voltage	MV	3	1	2	6	
Synchrotron tune, v_s		0.0217	0.0173	0.0203	0.0232	
δ_{RF}	%	1.87	1.69	1.86	1.86	
Bunch length (0.1Ω, IBS)	mm	8.43	9.79	8.56	8.89	
Hor./Ver. beam-beam parameter, ξ_x/ξ_y		0.0037/0.105	0.0041/0.095	0.0041/0.108	0.0019/0.026	
Luminosity	cm ⁻² s ⁻¹	1.34E+35	4.19E+34	8.67E+34	4.69E+34	

Alternative lattice scheme

T. Liu

- L: $1.04 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ @ 2 GeV
- Touschek lifetime ~160 s (double ring)
- Optimization is still ongoing.

Parameters	Units	STCF
Optimal beam energy, E	GeV	2
Circumference, C	m	885.23
Crossing angle, 2θ	mrad	60
Revolution period, T	μs	2.953
Horizontal emittance, $\varepsilon_x/\varepsilon_y$	nm	5.93/0.030
Coupling, k		0.50%
Beta functions at IP, β_x/β_y	mm	40/0.6
Beam size at IP, σ_x/σ_y	μ m	15.41/0.133
Betatron tune, v_x / v_y		33.554/32.571
Momentum compaction factor, α_p	10 ⁻⁴	12.424
Energy spread, σ_e	10 ⁻⁴	9.68
Beam current, I	А	2
Number of bunches, n_b		738
Particles per bunch, N _b	10 ¹⁰	5.0
Single-bunch charge	nC	8.0
Energy loss per turn, U_0	keV	383.77
Damping time, $\tau_x/\tau_y/\tau_z$	ms	30.77/30.77/15.39
RF frequency, f_{RF}	MHz	499.3331295
Harmonic number, h		1476
RF voltage, V_{RF}	MV	1.8
Synchrotron tune, v_z		0.016
Bunch length, σ_z	mm	10.6
RF bucket height, δ_{RF}	%	1.47
Piwinski angle, ϕ_{pwi}	rad	20.6
Beam-beam parameter, ξ_x/ξ_y		0.0023/0.081
Hour-glass factor, <i>F</i> _h		0.886
Luminosity, L	cm ⁻² s ⁻¹	1.04×10^{35}

Beam-beam effect and luminosity optimization

- Studies of incoherent and coherent beambeam effects for STCF
- Optimizing ring parameters, adjusting beambeam tune shift, and finding stable operating points with high luminosity

- The luminosity remains stable at around 1.12e35 in the range of 0.551–0.558.
- The current design parameters of STCF are far from the beam-beam limit
- The impact of X-Z instability is relatively small in the STCF_V3 lattice.
- The current X-Z oscillation period is relatively large, $v_z = 0.0217 > 5 \xi_x (0.0037).$

See S. Li's talk for more details

Synchrotron beam dynamics

- STCF currently adopts the TM020 RF cavity, due to high quality factor (Q) and a relatively low R/Q value;
- Studies show the coupling beam instability caused by the fundamental mode can be fully suppressed by selecting appropriate low-level PI feedback parameters
- The growth rate of coupled beam instability caused by high-order modes exceeds the radiation damping rate, and longitudinal feedback is needed to suppress it
- The thermal power need to be absorbed of the high-order mode absorber.

Absorb power@[1f+1e]*685+72e

Beam injection

• Off-axis injection and swap-out injection

	Off-axis injection		Swap-out injection		
Beam lifetime[s]	200				
Lowest luminosity	95%	90%	95%	90%	
Bunch number	678(48%,bunch spacing 4 ns)				
Beam current [A]	2				
Circulating beam charge [nC]	8.5				
Injection beam charge [nC]	1.5		8.5		
Single-bunch charge [nC]	0.425	0.85	8.35	8.35	
Injection efficiency	> 29%	> 57%	> 98%		
Injection emittance [nmrad]	< 6		~ 20-40		
Injection time [s]	10.26	21.07	10.26	21.07	

- The equilibrium emittance is 3.68nmrad
- Setting the actual Septum as the physical aperture limit, about 1% of the particles are lost in the first turn, resulting in a final injection efficiency of 85% (Ideal case)
- The design and simulation of swap-out injection will be carried out in subsequent work

Damping wigger

- Damping wiggler can be used to reduce damping time, adjust emittance and energy spread
- Nonlinear effect of DW can be minimized by shimming or increasing the width of the polar

12 pairs of poles, field configuration: {+1/4, -3/4, +1, -1, ... +1, -1, +3/4,-1/4}

Value
16
4.8
0.8
6
1.6
50
2*(20x13)
40

采用垫补时情况(2GeV):No shimming and with shimming

在100mm宽的极 面两侧各加了一 个20mm×1.5mm 的矩形。

Error effect study

BPM、 corrector and skew quadrupole layout:

(1) Place BPMs and correctors next to quadrupoles; 402 BPM in each ring.

(2) QF: CORx; QD: CORy; Sextupole: double-plane corrector;

(3) Place skew quadrupoles in sextupoles and some multi-function magnets.

	Δx (µm)	Δ <i>y</i> (μm)	Δ <i>s</i> (μm)	$\Delta \theta_{\chi}(\mathrm{mrad})$	$\Delta \theta_y \text{ (mrad)}$	$\Delta \theta_s$ (mrad)	Field error
Dipole	75	75	100	0.1	0.1	0.1	0.02%
Quadrupole	75	75	100	0.1	0.1	0.1	0.02%
Sextupole	75	75	100	0.1	0.1	0.1	0.02%

Beam collimation

Collimator	Half Aperture /mm	Half Aperture /σ	Position/m	Space/m	Loss Rate/%
H1	8	24.27	75.25	3.4	2.55
H2	8	17.42	125.79	1.6	7.54
H3	7	20.27	232.63	0.8	14.37
H4	6	17.37	341.92	0.8	8.26
H5	20	12.38	437.21	2.8	10.19
H6	15	9.30	450.61	2.8	12.71
H7	8	26.84	756.40	2.2	3.66
H8	6	16.96	783.57	0.835	15.90
V1	10	262.44	68.45	3.4	2.73
V2	6	254.41	320.08	2.2	1.51
V3	8	349.94	372.47	0.8	2.02
V4	15	81.11	419.41	2	3.30
V5	12	41.39	465.11	2.8	7.51
V6	10	34.59	539.71	2.8	4.34
V7	8	43.43	582.21	2	2.19
				Total	98.79

Simulation Set:

800,000 particles , 1000 turns \pm 2% energy deviation (randomly) 8 scattering points (marked in green)

- Simulations were performed using AT (Accelerator Toolbox). The results are shown in the figure.
- About 99% of the lost particles are lost at collimators, and no particle loss occurs within \pm 37 m of IP.

Summary

- We have a good progress of lattice design for STCF collider ring since early this year.
- The nonlinear effect of the lattice is very challenging, in particular in the IR region.
- Studies on beam-beam effect, synchrotron dynamics, beam injection, beam collimation, and error effects are progressing gradually.

Backup slides

Beam injection

Progress in off-axis injection simulation

- > Stored bunch beam stay clear: $4\sigma_s = 4 \times 0.446$ mm
- > Injected bunch beam stay clear : $4\sigma_i = 4 \times 0.273$ mm
- > Septum width Ds: $1\sigma_s = 0.446 \text{ mm}$
- > The distance between Septum and center orbit: $4\sigma_s + Ds + 2 \times 4\sigma_i = 4.414$ mm
- Injection point Bump height: 2.63 mm, angle: -0.5 mrad
- ➤ Injected bunch angle: -0.47 mrad
- \blacktriangleright The center position of the injected bunch after bump fall: 3.322 mm

Instabilities

• Bunch lengthening due to impedance:

Zotter equation:

$$\left(\frac{\sigma_z}{\sigma_{z0}}\right)^3 - \frac{\sigma_z}{\sigma_{z0}} = -\frac{cI_b}{4\sqrt{\pi}\eta_p\omega_0\sigma_{z0}\sigma_{\delta 0}^2 E_0 / e} \operatorname{Im}\left(\frac{Z_{\parallel}}{n}\right)_{\text{eff}}$$

Effective impd 0.2 Ω , Ib=2.8 mA Vrf= 2MV $\rightarrow \sigma_z = 10.6$ mm Vrf= 3MV $\rightarrow \sigma_z = 8.9$ mm

Resistive-wall instability:

$$\frac{1}{\tau_{\min}} = \frac{I_0 ecC}{4\pi^2 v_y E_0 b^3} \sqrt{\frac{Z_0 c}{2\sigma\omega_0 \left(1 - \operatorname{frac}(v_y)\right)}}$$

Vacuum Material : Al, b=25 mm

growing time 1.6 ms can be suppressed by feedback

- CSR instability threshold = 2 mA @ 2 GeV
- Parallel-plates shielding steady-state model
- Gap : 2h=50 mm; $\rho = 10 \text{ m}$
- By particle tracking simulation

TMCI threshold:

SKEKB-type Collimation

Other studies on impdance modelling、e-cloud、impedance & beam-beam coupling are on going.

International collaboration

- BINP visit: A. Bogomyagkov, M. Skamorokha, K. Kariukina, and N.Chepurnoi.
- KEK: Demin Zhou, Omi, et al.

