

Progress on the MDC Track Reconstruction for STCF L1 Trigger Pre-Research

Zixuan Zhou , Changqing Feng, Yidi Hao, Wenhao Dong, Zhujun Fang

On behalf of STCF Trigger Working Group

20/11/2024

The 6th International Workshop on Future Tau Charm Facilities Guangzhou 2024

Outline

1. STCF trigger system preliminary design

- 2. MDC track reconstruction algorithm
 - 2D tracking and reconstruction
 - Time reconstruction
 - 3D reconstruction
- 3. Summary

STCF overview

- **Super Tau-Charm Facility:**
- > A new generation of **high-luminosity electron-positron collider**
- Center-of-mass energy: 2-7 GeV
- > Peak luminosity: > 0.5×10^{35} cm⁻²s⁻¹ at 4 GeV
 - Two orders of magnitude higher than BEPCII
- Collision data: more than 1 ab⁻¹/y
- > With potential to further **increase luminosity** and **beam polarization**

Fig: Concept Design Diagram

Requirements for trigger system

□ High luminosity in STCF generates:

- High physics event rate: over 400 kHz
- Large data size: 30 GB/s at 1 times background raw data
- High background: ~ 400 kHz/channel in MDC ~ 1 MHz/channel in ECAL

Trigger system:

- Identifying physics events from massive background
- Ensure very high physics event trigger efficiency :
 >99%
- Reducing the pressure in data acquisition and transmission

STCF trigger system preliminary design

Two-stage trigger system:

Level 1 Trigger:

- Identifying physics events window
- Based on FPGA platform
- Latency ~ 5 μ s

High Level Trigger (HLT):

- Suppressing backgrounds in each time window
- Based on server cluster

Preliminary design of L1-level trigger

- **ITK:** high background
- ✓ **MDC:** key tracking detector
- **RICH:** complex Cherenkov ring reconstruction
- **DTOF:** auxiliary in Endcap
- ✓ ECAL: key calorimeter, fast response
- **MUON:** auxiliary for $\mu/\pi/n/K_L$

MDC sub-trigger

Baseline design:

- 48 layers of small cell
- 1,4,7,8---axial superlayers
 - 2,3,5,6---stereo superlayers

Fig.1: Layout of the MDC signal wires.

Region division:

- Barrel & Endcap
- Long track: Exits after passing through the Barrel.
- Short track: Exits at the Endcap.

Fig.2: MDC geometric structure

MDC sub-trigger

Requirements for the MDC trigger algorithm:

Outline

1. STCF trigger system preliminary design

2. MDC track reconstruction algorithm

- 2D tracking and reconstruction
- Time reconstruction
- 3D reconstruction
- 3. Summary

Method selection:

- > Hough transform:
 - Complex calculations
 - Cannot achieve Track trigger logic $< 1 \ \mu s$

- > Pattern matching:
 - \checkmark Simple and easy to implement
 - ✓ achieve Track trigger logic < 1 μ s

D Pattern matching operation:

- Generate pattern banks through simulated data Write into distributed storage units on the FPGA
- Match event data with the pattens Implement high-speed parallel processing with FPGA logic

Three stages:

- Track segment (TS) finding: reduce the input, reject background hits
- Track finding: pattern matching---fast but sketchy
- Estimation of track parameters: matching with an accurate pattern bank

algorithm.

Track segment finding:

- Undivided TS: for track finding
- **Divided TS:** for parameter estimation

Fig.1: Configurations of three types track segments in different super-layers.

D Pattern matching

- Track finding: merged patterns for fast tracking total number: **784**
- Track reconstruction: accurate patterns
 - total number: ~7800
 - $p_T > 170 \text{ MeV}$

Fig.3: The granularity of patterns in track finding.

Fig.4: The granularity of patterns in pt reconstruction.

Fig.2: Three examples of segment hits classified by passing side.

Track efficiency

- Single track
 - Track finding: $p_T > 130 MeV \quad \theta > 30^\circ$
 - Parameter estimation: $p_T > 170 \text{MeV}$ $\theta > 30^\circ$ $\Delta p_T / p_T^2 \sim 0.1$
- Physics event
 - The cut of θ : reason for 90% lost events

 $Fig.1\colon$ The track finding efficiency in different thresholds.

Fig.2: p_T resolution and reconstruction efficiency for single track

> Track efficiency - The cut of θ : reason for 90% lost events

Optimization: Short Track Reconstruction

- For data with hits only in the first and fourth superlayers
- Introduce hits from the second and third superlayers to select short tracks (hits account for the θ error caused by the z-vertex offset)
- <u>Still under development</u>
- Preliminary tracking results:
 - Single track: Efficiency ~ 98% (1505/1540)
 - Background in physics events: Misidentification rate ~ 41% (1829/4463)

$\Box \phi$ reconstruction

FPGA implementation

Fig.2: φ resolution for single track

Time reconstruction

D Purpose of time reconstruction:

- TS generation time t_s + drift time t_{drift} = single wire hit time T
- suppress background
- Distinguish adjacent physics events

Time reconstruction

Reconstruct the hit time using track parameters

- Estimate the track segment as a straight line
- Calculate the drift distance based on the reconstructed track parameters, and then obtain the drift time
 - FPGA pipeline computation
- Combine the timestamp to calculate the generation time of the track segment
- The track time is the average value of the times of each track segment

Time reconstruction

Track time reconstruction

- Calculate the median
- Abandon TS whose time deviates significantly from the median
- Test with single tracks
 - For tracks with $p_T > 180$ MeV: efficiency > 80%, $\Delta t < 8$ ns

Fig.2:resolution of single tracks.

3D reconstruction

□ Main content of 3D reconstruction

- ✓ Z-vertex reconstruction
- Resolution of about 3 cm
- Support for |z| < 10 cm truncation, and an error of $\pm 3\sigma$
- over 97% of background tracks can be eliminated

Fig: The *z*-vertex distribution of background tracks selected by the two dimensional reconstruction algorithm.

Z-vertex reconstruction

Stereo TS finding

• 1 superlayer ---2 seed wires

Position + timestamp

Fig: Stereo SLs

Track finding

- Matching stereo TS with an existing track
- Sectorization and Normalization

Z-vertex reconstruction

MLP training

- Multi-layer fully connected neural network
 (MLP)
- Input: track segment numbers and timestamps for 8 superlayers
- Output: z-vertex in various p_t regions

Fig.1: The basic structure of an MLP model.

Fig.2: Z-vertex resolution at different pt

Quantization & FPGA resource optimization

• Qkeras

Model bitwidth and z-vertex resolution

bitwidth*	8_1	12_4	16_6	20_8
Δz /cm	2.93	2.84	2.53	2.51

*W_I represents ' $ap_fixed\langle W, I \rangle$ ', indicating a W-bit fixed-point number with I integer bits (including one sign bit).

• Pruning

Model size and resolution of z-vertex

Structure	Sparsity	NNZ Params	$\Delta z/cm$
	0	2.53k	2.43
A 1	0.2	2.04k	2.46
A	0.4	1.52k	2.56
	0.6	1.06k	2.90
	0.8	0.58k	5.05
\mathbf{B}^2	0.4	2.11k	2.31
124-32-32-1	6-8-1.		

²24-48-32-16-8-1.

Z-vertex reconstruction

□ Further resource optimization

- 1 MLP for all tracks
- Training with High Granularity Quantization (HGQ)
 - Certain parts of the network can accommodate lower precision without compromising performance.
 - Fine-tune the per-weight and per-activation precision.

- Latency: 60 clk
- Interval (Dead time): 2 clk
- FPGA resource:
 DSP: 71%
 FF: 29 %
 LUT: 19%

- Latency: 40 clk
- Interval (Dead time): 1 clk
- FPGA resource:
 - DSP: 4%

Outline

1. STCF trigger system preliminary design

2. MDC track reconstruction algorithm

- 2D tracking and reconstruction
- Time reconstruction
- 3D reconstruction

3. Summary

Algorithm Summary

- 1. 2D tracking and reconstruction (J/ ψ -> anything)
 - $\Delta p_T / p_T^2 \sim 15\%$
- 2. Time reconstruction (single track)
 - $\Delta t < 16 \text{ ns}$
- 3. Z-vertex reconstruction (clear single track)
 - $\Delta z \sim 3 \text{ cm}$

Latency = 339 ns

Latency = 207 ns

Latency (MLP) = 125 ns

Further Work Plan

Algorithm Optimization

- ➢ Un-identification of high-p_t track in Endcap
 - 3 hits tracking as a complement to 4 hits tracking requiring further optimization
- Continue advancing short track reconstruction.
- Distinguish of cross tracks

Engineering Principle Prototype Testing

- > Port the FPGA GBT protocol and establish the data link.
- > Validate the MDC hardware reconstruction algorithm.
 - 2D reconstruction algorithm
 - 3D reconstruction algorithm
 - Time reconstruction algorithm
- > Purpose:
 - Conduct on-board hardware logic test to verify the reliability of timing.
 - Ensure consistency between actual test results and simulated behavior.

Thanks