

A jet

Machine learning for jets

— Highlights on established DNN techniques, facilities, and key applications

Congqiao Li (李聪乔) (Peking University)

FTCF2024, Guangzhou 21 November, 2024

Typical collider experiment workflow

Typical collider experiment workflow

ML is everywhere...

Congqiao Li (Peking University)

Typical collider experiment workflow

ML is everywhere...

Congqiao Li (Peking University)

Image from link

Jets at hadron colliders

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-09 23:58:07.702464 GMT Run / Event / LS: 304738 / 935742940 / 550

Jets: collimated particle sprays

- they are streams of particles originating from quarks or gluons due to hadronisation.
- most ubiquitous objects at a hadron collider
- encodes information about QCD dynamics

Jet 1: $p_{\tau} = 2.77 \text{ TeV}$ Jet 2: $p_{\tau} = 1.74 \text{ TeV}$ Jet 3: $p_{\tau} = 1.42 \text{ TeV}$ $m_{jjj} = 7.20 \text{ TeV}$ Jet 3

Jet 1

• Jet tagging: identify the origin of the jets (quark or gluon? quark flavours?)

Jet 2

Jets at hadron colliders

• Experiments also reconstruct **large-R jets**, which can be initiated from a energetic (highly Lorentz-boosted) resonance particle

Run: 299584 Event: 563621388 2016-05-20 08:26:49 CEST M(JJ)=2.40 TeV

5

Evolution of jet NNs

feed-forward NN (high-level inputs) ••••••• 1D/2D CNN, RNN (low-level inputs) •••••• graph NN

graph NN, Transformers (low-level inputs)??

Shallow networks

 Using high-level features directly as input to a shallow network

Evolution of jet NNs

feed-forward NN (high-level inputs) •••• •••• 1D/2D CNN, RNN (low-level inputs)

Shallow networks

 Using high-level features directly as input to a shallow network

Deep NN with low-level inputs

- ✦ Using particle-level features
- Input data structure determines the type of networks
 - jet as a image (fixed-grid data structure)
 - jet as a sequence → 1D CNN or RNN

- graph NN, Transformers (low-level inputs)
- ••••• ??

Evolution of jet NNs

feed-forward NN (high-level inputs) ··· • ··· 1D/2D CNN, RNN (low-level inputs)

(low-level inputs)

??

Shallow networks

 Using high-level features directly as input to a shallow network

Deep NN with low-level inputs

- Using particle-level features
- Input data structure determines the type of networks
 - jet as a image (fixed-grid data structure)
 - jet as a sequence → 1D CNN or RNN

Graph structure

- ✦ Graph neural networks
 - treat a jet as a permutational-invariant set of particles (or, point cloud)
 - build "edges" between particles
- Transformer networks
 - modern architectural designs; like a • full-connected graph

Α Α FEATURE LEARNING CLASSIFICATIO **Typical CNN Typical RNN**

Typical graph

GNNs and Transformers

- → Modern architectures do right: (DNNs that better suit the particle-format data?)
 - inductive bias: particle-format data has their intrinsic symmetries
 - permutational-invariant symmetry: GNN is better than CNN/RNN; native Transformer (w/o positional encoding)
 - Lorentz symmetry: adding "pairwise particle masses" to input features
 - let particles interact:
 - "message passing" in GNNs and attention mechanism in Transformers
 - Scale better with data and model size: Transformers!

ParticleNet and its applications

- ➔ ParticleNet, based on dynamic graph GNNs
 - treat jet as a (permutational-invariant) set of point clouds
 - define "a local patch" for each particle by knearest neighbours and apply convolution (EdgeConv)

Applications in CMS

EdgeConv

ParticleNet and its applications

- → ParticleNet, based on dynamic graph GNNs
 - treat jet as a (permutational-invariant) set of point clouds
 - define "a local patch" for each particle by knearest neighbours and apply convolution (EdgeConv)

VH→cc search W_{lep}/Z_{lep} (merged region) PRL 131 (2023) 061801

• With merged+resolved region combined, achieve most stringent direct limit on κ_c : 1.1 < $|\kappa_c|$ < 5.5

PRL 131 (2023) 041803

• First time excluding $\kappa_{2V} = 0$

Conggiao Li (Peking University)

ParticleNet and its applications

Other selected applications

credit to Huilin's slides

Talk by Manqi

Transformer jet taggers in ATLAS/CMS

- → ATLAS/CMS "flagship" jet taggers have all switched to the Transformer architectures
 - much improved b-tagging performance (to reject c-jets and light jets)
 - huge progress has been made from 2016 (early Run-2) to 2024 (mid-Run3) !

Inference facility: ONNX runtime

- → Both ATLAS and CMS use ONNX runtime inference engine
 - ONNX: "Open Neural Network eXchange" format, representing a BDT/DNN model
 - support model conversion from XGBoost (BDT models), TensorFlow, PyTorch...
 - ONNX runtime: accelerate ML inferencing across a variety of platforms
 - CPU/GPU environment for model inference
 - support C++/python interface and more!
- → Helper functions in the ATLAS (athena) and CMS (cmssw) software
 - for inference of jet taggers (with low-level inputs) in central workflow
 - also support inferencing custom DNN models at analysis level

FTCF 2024

Inference facility: SONIC

- → Inference as-a-service (laas)
 - instead of using CPU for the whole data processing workflow, certain tasks can be run more efficiently on other specialised processors (i.e. coprocessors)
- → SONIC (Service for Optimized Network):
 - is the implementation of IaaS in experimental software frameworks

Comput Softw Big Sci 8, 17 (2024)

- Test delivered to run CMS's ParticleNet, DeepTau, and DeepMET algorithms
- with SONIC approach
- Improved throughputs on the large-scale tests

Modern model-agnostic searches

Modern model-agnostic searches

→ Begin of journey in the modern (machine-learning-based) model-agnostic searching scheme at LHC

Anomaly Detection for Resonant New Physics with Machine Learning				
Jack H. Collins (Marylan Berkeley)	d U. and Johns Hopkins U.), Kiel Ho	we (Fermilab), Benjamin Nachman (UC, Berkeley and LBL,		
May 7, 2018	PRL, 121 (2018) 24, 241803	→ 161 citations		

Modern model-agnostic searches

→ Begin of journey in the modern (machine-learning-based) model-agnostic searching scheme at LHC

Anomaly Detection for Resonant New Physics with Machine Learning			
Jack H. Collins (Maryl Berkeley)	and U. and Johns Hopkins U.), Kiel Howe	(Fermilab), Benjamin Nachman (UC, Berkeley and LBL,	
May 7, 2018	PRL, 121 (2018) 24, 241803	→ 161 citations	

- → A "general method" for resonant search with minimal requirements
 - resonance localised in a mass window
 - can be reconstructed by two hadronic large-*R* jets
- → General strategy:
 - ☆ scan on the mass spectrum → <u>apply model-independent selection</u> → purify the signal
- → With no significant evidence of new physics found at LHC, a broader search strategy will be a meaningful

Weakly-supervised approach

JHEP 10 (2017) 174

Equivalent effect for training **S** vs **B**

- ➔ Proposed "CWoLa (classification without labels) Hunting"
 - allow to detect anomalies purely from data
 - <u>train a classifier for mass window vs mass sideband</u> (mixed sample 1 vs 2)
 - can prove that the effect is equivalent to training S vs B

Weakly-supervised approach

JHEP 10 (2017) 174

- ➔ Proposed "CWoLa (classification without labels) Hunting"
 - allow to detect anomalies purely from data
 - <u>train a classifier for mass window vs mass sideband</u> (mixed sample 1 vs 2)
 - can prove that the effect is equivalent to training S vs B

Equivalent effect for training **S** vs **B**

Weakly-supervised approach

Congqiao Li (Peking University)

Autoencoder approach

a compressed jet representation

- → A view on (variational) autoencoder for anomaly detection
 - ★ Training on SM background jet → anomalous jet will produce outlier latent scores → make selection on the score
- → Use autoencoder for anomaly detection has industry basis

Reconstruction Error Distribution

ATLAS's model-agnostic search

- → ATLAS applies full-event-level anomaly detection
- → Train "autoencoder" and select on the score
- → Search in 9 invariant masses including dijet, di-b-jet, with three anomaly regions

FTCF 2024

Conclusion

- → We highlight recent advances in ML for jets from three aspects
 - novel algorithms (GNN and Transformers) and their applications
 - hope to shed light across experiments regarding network designs: why they are found helpful to process particle-format data
 - ATLAS/CMS's most recent developments in jet tagging (Transformers are the leading designs)
 - ParticleNet's broad application across the fields (and possibly Particle Transformer and/ or its alternatives shortly)

model inferencing facilities in ATLAS/CMS

ONNX runtime and SONIC

novel ML paradigm (model-agnostic search) at the LHC

- weakly-supervised approach and autoencoder approach
- their applications in ATLAS/CMS