The 6th International Workshop on Future Tau Charm Facilities

FTCF, 2024, Guangzhou

STCF tracking with ACTS

Hao Li(ZZU), Xiaocong Ai(ZZU), Xingtao Huang(SDU), Hongkun Mo (USTC), Lailin Xu (USTC) , Jin Zhang(SYSU), Hang Zhou(USTC)

STCF tracking system

- The baseline tracking system includes uRWELL-based Inner Tracker (ITK) and Main Drift Chamber (MDC)
 - ITK: 3 layers with radii of 60 mm, 110 mm, and 160 mm $\sigma_{r-\varphi} \times \sigma_z \approx 100$ um \times 400 um 10
 - MDC: 48 layers, $\sigma_{drift \, dist} \approx 120 \sim 130$ um

A Commom Tracking Software(ACTS)

- A modern open-source detector-independent tracking toolkit for current&future HEP experiments (ATLAS, ALICE, sPHENIX, FASER, MUC, CEPC, STCF…) based on LHC tracking experience
- A R&D platform for innovative tracking techniques (ML) & computing architectures

- ◆ Developed based on **C++17** (—>20)
- Detector and magnetic field agnostic
- Strict thread safety
- Less dependence (Eigen)
- Highly configurable
- Adapt to modern computing frameworks

Github: <u>https://github.com/acts-project/acts</u>

Readthedocs: <u>https://acts.readthedocs.io/en/latest/</u>

ACTS application on STCF

- STCF fullsim geometry is converted to ACTS tracking geometry using ACTS plugin
 - ITK layer —> ACTS layer with sensitive **CylinderSurface**
 - MDC layer —> ACTS layer with LineSurface
- Measurement creation: using Oscar Geant4 full sim hits as inputs, smeared with detector resolution
 - ITk : 100 um (r * φ) x400 um (z)
 - MDC: 125 um (drift distance)
- ACTS seeding algorithm and CKF algorithm are used tracking
- ACTS has been added as Oscar external package

Tracking efficiency without backgrounds

- >93% tracking efficiency for π in the region |cos θ |<0.9, 50< P_T <100 MeV
- 100% tracking efficiency for μ in the region $|\cos\theta| < 0.9$, 500 $< P_T < 600$ MeV

Tracking efficiency with backgrounds

- >96% tracking efficiency for π in the region $|\cos\theta| < 0.9$, $50 < P_T < 100$ MeV
- 100% tracking efficiency for μ in the region $|\cos\theta| < 0.9$, $500 < P_T < 600$ MeV

Tracking fake rate

• Almost zero fake rates W/O backgrounds \rightarrow become non negligible W/ backgrounds

Particle requirements: nHits>=5, $|\cos\theta| < 0.94$ Track requirements: nHits>=5, matchingProb > 0.5

Long-lived particles on STCF

- Long-lived particles, e.g. the lambda baryon, may decay within or outside the inner tracker hence leaving very limited number of hits at the ITK of STCF
- Reconstruction of long-lived particles is difficult and challenging

ACTS seeding efficiency for long-lived particles

- ACTS seeding efficiency approaches 100% when the vertex displacement of particles is below 60 mm
- ACTS seeding efficiency drops to 0% if displacement exceeds 60 mm

Tracking strategy for long-lived particles

CKF for STCF

- CKF relies on an initial track seed and a set of measurements associated with the sensitive surfaces of the tracking geometry.
- CKF propagates the track states in the direction of momentum and upon reaching a surface, the CKF searches for compatible measurements.
- Progressingly associate compatible hits to tracks based on prediction χ^2 : $\chi^2 = r^T (HCH^T + V)^{-1}r$
 - r: residual
 - H: projection from track parameters to measurement
 - V: measurement covariance
- Currently, left/right sign of drift circle is taken to be the same as the predicted track parameters
 - Explosive combinatorics if considering two measurements

Hough Transform for seeding

For Hough Transform:

- > 90% seeding efficiency for particles **p** with P_T > 400MeV
- > 80% seeding efficiency for particles π with P_T > 100MeV

Particle requirements: nHits>=5, $|\cos\theta| < 0.94$

Hough Transform for seeding

Duplicate tracks are retained to ensure an ample supply of seeds for CKF

Backgrounds not included

Particle requirements: nHits>=5, $|\cos\theta| < 0.94$

Hough Transform for seeding

- Hough transform is more robust against local hit loss/inefficiency
- ACTS has slightly better seeding efficiency if there are enough hits

Backgrounds not included

Particle requirements: nHits>=5, $|\cos\theta| < 0.94$

Hough Transform + CKF performance

- For Hough Transform+CKF:
 - > 90% tracking efficiency for particles **p** with $P_T > 400 \text{MeV}$
 - > 80% tracking efficiency for particles π with $P_T > 150 \text{MeV}$
- Efficiency loss can be recovered by using Hough as seeding

Particle requirements: nHits>=5, $|\cos\theta| < 0.94$ Track requirements: nHits > = 5, matchingProb > 0.5

Backgrounds not included

 $J/\psi \rightarrow \Lambda(\rightarrow p\pi)\overline{\Lambda}(\rightarrow \overline{p}\pi^{+})$

 $J/\psi \rightarrow \Lambda (\rightarrow p\pi) \overline{\Lambda} (\rightarrow \overline{p}\pi^{+})$

π⁺(ACTS Seeding)

π⁺(HoughTransform)

0.25

– π⁻ (HoughTransform)

 $\mapsto \pi^{+}$ (HoughTransform)

0.3

Truth p_ [GeV]

Truth vxy [mm]

15

Summary

- ACTS has been implemented for track reconstruction at STCF
 - First application and validation of ACTS for a drift chamber
 - -94% tracking efficiency with P_T in [50, 100] MeV
- Hough+CKF in ACTS has been implemented for longlived particles at STCF
 - Above 90% seeding efficiency for particles p with $P_T > 0.4 \text{GeV}$
 - Above 80% seeding efficiency for particles π with P_T >0.1GeV

OutLook

- Optimization of CKF performance for a drift chamber
- Comparison with track finding based on Hough Transform+genfit2
- Investigate ML ambiguity resolver to remove fake/duplicate tracks

Back Up

ACTS seeding

- ACTS uses the typical way to create seeds is to combine measurements which finds 3 measurements to describe the helical path of a charged particle .
- One such triplet of measurements would then constitute a seed and defines, in close bounds, where the tracking needs to look for additional measurements to create a track spanning the whole detector.

Hough Transform at STCF

Backgrounds

Touschek effect

- · Scattering between inner beam particles
- Generation rate ∝ N_{bunch}, beam size⁻¹, energy⁻³

E 1

Main Background

Beam-gas effect

- · Effect with residual gas in the beam pipe
- Coulomb scattering, bremsstrahlung
- Generation \propto pressure e^{\pm}

Yupeng Pei

Luminosity-related background

- Radiative Bhabha: $e^+e^- \rightarrow e^+e^-\gamma$
- Two-photon process:
 e⁺e⁻ → e⁺e⁻γ^{*}γ^{*} → e⁺e⁻e⁺e⁻

5

Other background

- Injection
- Synchrotron radiation

Background hits count per event

ITR	(1	ITK2	іткз	MDC1	MDC2	MDC3	MDC4	MDC5	MDC6	MDC7	MDC8
37	3	13.6	8.2	60.3	42.4	24.8	25.1	60.0	67.8	30.8	30.0

Particle $COS\theta$ vs P_T

Particle $COS\theta$ vs P_T

22

Merits for track finding performance

• seeding efficiency: $\frac{N_{seed}(selected,matched)}{N_{truth}(selected)}$

• Track finding efficiency: $\frac{N_{reco}(selected, matched)}{N_{truth}(selected)}$

• Fake rate: $\frac{N_{reco}(selected,unmatched)}{N_{truth}(selected)}$

• Duplication rate: $\frac{N_{reco}(selected, matched, duplicated)}{N_{truth}(selected, matched)}$

→Reco-truth matching: $\frac{N_{hits}(Majority)}{N_{hits}(Total)} > 0.5$ → Simple track selection: $N_{hits} > = 5$ → Theta cut:20°<theta<160°

Tracking fake rate without Backgrounds

24

Duplicate rate without backgrounds

25

Duplicate rate with backgrounds

cos0	_	μ, ψ(3686) → π ⁺ π ⁻ J/ψ(→ μ ⁺ μ ⁻) W/ backgrounds								-)	_	ion rate	o cosθ	-	_ _ _		Т	τ, ψ (36	586)→ W/	π [⁺] π⁻J/u ′ backg	ν(→ μ ⁺ Iround	μ) s	-	1 0.9 tion rate				
8	1	0.374	0.232	0.646	0.887	0.931	0.897	0.966	0.966	0.958	0.926	0.943	0.977	0.933		ar a	S	I	0.362	0.543	0.867	0.975	0.994	0.993	1.000	1.000		0 8 0
Ð		0.885	0.284	0.132	0.106	0.178	0.726	0.936	0.974	0.970	0.972	0.976	1.000	1.000		0.0.9	Φ		0.289	0.291	0.398	0.713	0.985	0.993	0.993	1.000		0.0.3
с		0.958	0.862	0.790	0.350	0.091	0.078	0.114	0.529	0.955	0.960	0.963	0.941	0.962		n - n	ſ		0.447	0.370	0.332	0.353	0.747	0.976	0.992	0.952		0 7 2
		0.943	0.900	0.901	0.889	0.603	0.092	0.065	0.084	0.249	0.835	0.941	0.885	0.926		0.70			0.539	0.416	0.375	0.334	0.426	0.830	0.981	0.984		0.70
(ר ב	0.954	0.925	0.922	0.864	0.811	0.628	0.108	0.056	0.084	0.203	0.686	0.926	0.944				05	0.522	0.433	0.377	0.354	0.307	0.454	0.960	0.947		
(J.S	0.975	0.949	0.825	0.849	0.797	0.685	0.411	0.105	0.057	0.099	0.166	0.833	0.812		-0.6		0.5	0.599	0.464	0.399	0.354	0.282	0.292	0.640	0.976	_	0.6
		0.939	0.976	0.841	0.793	0.740	0.732	0.566	0.245	0.060	0.066	0.086	0.266	0.875					0.662	0.511	0.424	0.339	0.266	0.217	0.430	0.929		
		0.937	0.951	0.836	0.741	0.750	0.730	0.695	0.515	0.089	0.060	0.078	0.085	0.467					0.660	0.554	0.447	0.345	0.261	0.211	0.244	0.902		05
		0.958	0.949	0.844	0.780	0.786	0.750	0.815	0.724	0.122	0.063	0.071	0.099	0.221		0.5			0.690	0.520	0.449	0.352	0.271	0.198	0.220	0.791		0.0
	Δ	0.966	0.944	0.796	0.730	0.771	0.837	0.696	0.692	0.240	0.075	0.075	0.097	0.220			0	0.688	0.617	0.453	0.364	0.259	0.172	0.175	0.702			
, c	U	0.943	0.949	0.825	0.825 0.784 0.709 (0.744	0.623	0.500	0.214	0.077 0	0.067	0.101	0.119	_	0.4			0.708	0.593	0.454	0.352	0.247	0.221	0.241	0.661	1 - (0.4	
		0.968	0.963	0.746	0.752	0.781	0.769	0.723	0.562	0.144	0.065	0.070	0.075	0.190					0.723	0.520	0.443	0.356	0.269	0.211	0.173	0.822		
		0.961	0.957	0.816	0.778	0.759	0.828	0.784	0.571	0.114	0.068	0.065	0.114	0.409	_	0.3			0.643	0.512	0.452	0.334	0.255	0.200	0.256	0.949		0.3
		0.960	0.906	0.836	0.789	0.787	0.621	0.574	0.283	0.069	0.069	0.089	0.227	0.839		0.0			0.663	0.497	0.412	0.343	0.257	0.248	0.401	0.959		
_(ר ב	0.955	0.933	0.812	0.848	0.830	0.718	0.442	0.095	0.072	0.090	0.162	0.804	0.833		-0 5	0.576	0.436	0.379	0.331	0.286	0.273	0.730	1.000		0.2		
	J.S	0.965	0.917	0.862	0.836	0.777	0.523	0.112	0.064	0.076	0.195	0.658	0.867	0.941	_	-0.2		0.0	0.559	0.440	0.387	0.345	0.304	0.445	0.970	0.977		0.2
		0.933	0.931	0.908	0.851	0.633	0.098	0.056	0.086	0.248	0.939	0.986	0.912	1.000					0.520	0.404	0.365	0.324	0.416	0.878	0.989	0.922		
		0.953	0.914	0.888	0.295	0.089	0.078	0.124	0.606	0.970	0.977	0.946	0.981	0.912		0.1			- 0.414	0.374	0.322	0.386	0.723	0.979	0.992	1.000	_	0.1
		0.880	0.301	0.116	0.124	0.188	0.734	0.960	0.959	0.958	0.981	0.959	1.000	0.927					0.299	0.305	0.372	0.760	0.984	0.997	1.000	1.000		
	-1	0.331	0.221	0.644	0.926	0.932	0.9 <mark>60</mark>	0.961	0.9 <mark>64</mark>	0.989	0.938	1.000	0.9 <mark>76</mark>	1.0 <mark>00 </mark>		0		1	0.349	0,487	0,869	0. <mark>98</mark> 4	0,996	0 <mark>,994</mark>	1.000	1,00 <mark>0 </mark>		0
	-1	0.	.6	0	.8		1	1	.2	1	.4	1	.6	1.	.8	0		0:0	05 0	.1 0.	15 0	.2 0.	25 0	.3 0.3	35 0.	4 0.4	45	Ũ
										Re	CO	р _т [Ge	V/c]										Reco	p _T [G	eV/c]		

Duplicate rate and fake rate for long-lived particles P_T

27