

Cluster Reconstruction of Tracker on STCF

Jiajun Tang (on behalf of STCF software working group)

University of Science and Technology of China

Jiajun Tang (USTC)

Nov 19, 2024

Outline

• Introduction

• ITKW

• ITKM

Jiajun Tang (USTC)

Summary

Nov 19

Introduction

STCF is an e^+e^- collider operating at $\sqrt{s} = 2 \sim 7 \text{ GeV}$ with a peak luminosity of $0.5 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$

QCD and hadronic physics

Flavor physics and CP violation

Forbidden/Rare decay and New Particle

Jiajun Tang (USTC)

Cluster reconstruction of tracker

Nov 19, 2024

Introduction

Tracking system

Inner tracker(ITK)

ITKW: Cylindrical MPGD

ITKM: Silicon detector

Drift chamber(MDC)

Performance requirements

Low material budget: about 0.25% for each ITK layer

Spatial resolution: better than 100 μ m in $r - \phi$

Detector occupancy: not exceeding a few percent

Momentum resolution: $\sigma_p/p < 0.5 \% @ 1 \text{ GeV}$

Jiajun Tang (USTC)

Geometry

MPGD-based ITK $\mu RWELL \rightarrow \mu RGroove$

single-amplification stage MPGD three cylindrical detector layers covering polar angle: $20^{\circ} - 160^{\circ}$ Ar-based gas

Jiajun Tang (USTC)

2D strip readout without charge sharing

Reconstruction

Cluster finding: successive hits' strip ID difference ≤ 2 **Cluster position**: µ-TPC & CC

Charge center

$$\frac{\Sigma_i X_i Q_i}{\Sigma_i Q_i} \to \text{cluster pos}$$

µ-TPC

 $v_{\text{drift}} \cdot T_{\text{drift}} \rightarrow \text{Position of points} \rightarrow \text{Fit to get pos}$

Jiajun Tang (USTC)

μ-TPC

At least 3 digit signals

Linear fit, then get the strip ID of the middle point

*v*_{drift}: get from simulation

Jiajun Tang (USTC)

ITKW

µ-TPC correction

 \star : reach point is not the center of the strip the $T_{\rm drift}$ is determined by the first one

if N_{ρ} is number of primary ionization collected by one strip correction: $ID = ID + (\frac{1}{2} - \frac{1}{N_e + 1}) \times D_{E_w}$

 D_{E_w} : Width of weighting field N_{ρ} : Estimated from sensing charge

Jiajun Tang (USTC)

 $Q \sim N_{\rho}$ relation

Performance

Jiajun Tang (USTC)

Deviation

ITKW

Resolution

ITKM

Geometry

MAPS-based ITK

Monolithic active pixel sensor three layers of silicon pixel detectors pixel size: 170 μ m \times 30 μ m covering polar angle: $20^{\circ} - 160^{\circ}$

ITKM

Reconstruction

Cluster finding: hit pixels inside 3×5 ($z \times \phi$) range classified as one cluster **Cluster position**: charge centering (TOT converted to charge)

Jiajun Tang (USTC)

Cluster reconstruction of tracker

11

I'I'K M

Performance

A nearly constant bias on $r - \phi$ direction, ~ $2 \mu m$

Bias on z direction varies with polar angle, a maximum of $25 \ \mu m$ at the end regions

Resolution: $\sigma_{r\phi} = 6.69 \ \mu m$, $\sigma_z = 32.99 \ \mu m$ (better than _____)

Jiajun Tang (USTC)

Geometry

8 superlayers each with 6 layers of drift cells

open circles: field wires

dots: sense wires

drift cell: squareshaped

Reconstruction

MDC could acquire drift time

- \rightarrow get drift distance according to T-X relation
- \rightarrow constrain hit position on a cylindrical surface
- \rightarrow used by track fitting

MDC

T-X relation

Waveform classification algorithm

- \rightarrow get the initial position of two waveforms
- \rightarrow using threshold to get the drift time of the POCA

Complicate electric field

 \rightarrow the relative angle ϕ should also be recorded

MDC

Cluster reconstruction of tracker

15

T-X relation

Initial T-X relation is artificial

1D T-X relation

T-X distribution

Cluster reconstruction of tracker

Jiajun Tang (USTC)

$\psi(3686) \rightarrow \pi \pi J/\psi(\rightarrow \mu \mu)$ sample is used

Performance Reconstructed position deviation with different iteration times

Jiajun Tang (USTC)

Summary

ITKW:

resolution of $r - \phi$ direction meets the requirement only works for simple signal sample, needs updates to be used in high counting rate conditions

ITKM:

Reached good position resolution Calibration according to pixel position may further improve

MDC:

Iteration could improve the accuracy of T-X relation Next will reconstruct more events, give the performance by layer

Thanks for listening

Jiajun Tang (USTC)

