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Introduction

+ The super T-charm facility (STCF):
e CMS: 2~7GeV

e Peak luminosity: = 0.5 x 10%°cm™2s~
e Rich physics in the T-charm energy region
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Data volume is approximately two orders of magnitude higher than BEPC Il /BES Il this poses a challenge for
MC production
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Introduction

< Electromagnetic calorimeter (ECAL):

e 2D crystal calorimeter, shaped like a round barrel, divided into
barrel part and two end cover areas

e Barrel: 51 x 132 = 6732, Endcap: 3 x 85 + 102 + 136 = 969
<+~ ECAL MC simulaton

e Energy deposition in each crystal cell needs to be simulated

e Simulation of electromagnetic shower requires significant
amount of resources due to large number of secondary particles

210cm

320¢cm

Geant4 simulation time consumption of each sub-detector should be considered

Parameterization or ML methods




Calorimeter Fast Simulation Based on Machine Learning

<+ Generative models are suitable for this kind of tasks (Generative Stochastic Network,
Variational Auto-Econders, Generative Adversarial Networks, Diffusion models, ...)

e Realistic generation of samples
e Be able to generate complicated probability distributions using simple inputs
e Work well with missing data

e Extremely fast compared to full simulation
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Generative Adversarial Networks

<« Adversarial: two ML models are trained simultaneously
e Generator: captures the data distribution characteristics, and generate fake data

e Disciminator: estimates the probability that a sample came from the training data rather than
the generator

e Training of the Generator aims to maximize the probability that Disciminator makes a mistake

e Training of the Disciminator aims to minimize the mistake probability
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GAN is Quite Popular Internationally

Table 1 Calorimeter simulation with deep leaming

No. Model Algorithm Architecture Condition Qutput

1 LAGAN [21] GAN 2D Locally connected Particle type as discrete labels 25 % 25 = 625 cells
(2017)

2 CALOGAN [22] GAN 2D Locally connected Ep ~ U1, 100) GeV Layerl: 3 x 96 layer2: 12 x 12
(2017) layer3: 12 x 6 = 504 cells

3 IDGAN initial ACGAN Conv3D Ep ~ U2, 500) GeV 25 % 25 x 25 = 15625 cells
prototype [17]
(2018)

4 ATLAS [23] WGAN and VAE Dense Ep ~ Ull, 260) GeV Vector of 266 cells
(2018)

5 LHChb [24] WGAN Conv2D Five variables related to 30 x 30 = 900 cells
(2019) position and momentum

6 HGCAL [25] WGAN Conv2D and locally connected Ep and initial impact position Concatenation of 7 (12 x 15)
(2019) (X, ¥) layers = 1260 cells

T 3IDGAN [19] ACGAN Conv3D Ep ~ U2, 500) GeV and 51 % 51 x 25 = 65025 cells
(2019) 6 ~ U60°, 120°)

8 DijetGAN [26] WGAN Conv2D Vector of 7 jet variables
(2020)

9 SARM [27] Autoregressive models Dense datal: Py ~ [250, 300] GeV Datal: 25 x 25 = 625 cells
(2021) Ipixet ~ [0, 276] data2: data2: 32 x 32 = 1024 cells

Pr ~ [10, 20] GeV/c
!pi xet ~ [0, 172)

10 ILD [28] (2021) GAN, WGAN and BIB-AE Conv3D Ep ~ U(10, 100y GeV 30 x 30 x 30 = 27000 cells

11 CaloFlow [29] Normalizing flows Dense Ep ~ U(l, 100) GeV Layerl: 3 x 96 layer2: 12 x 12
(2021) layer3: 12 x 6= 504 cells

The sizes of simulated images in cells are emphasized in bold

Eur. Phys. J. C (2022) 82:386



ECAL-GAN for STCF ECAL Fast Simulation

< The detector response (energy deposit) is converted into 2D images

e 11*11 images, seeding crystal as the center pixel

e All models (G, D and R) are basically deep CNNs Noise +y
<+ ECAL-GAN should be made conditional .-
| Generator
e Extended to learn from a parameterized generator r
(able to simulate particles of certain momentum and position) |
e Some additional features (y) are made as inputs | I k. |
(4-momentum, incident angle, etc.) x” real 2 fak
. l+ Yreal l e \-I- Y2
< An additional Regressor is pre-trained to Y ER—
stabilize the training process Discriminator Jiss
1 | (Pretrained,
e Predict the fake images y features, as an additional score M
term of the Generator loss function L X
B!
D(x) D(x)

mgnEﬁ.wp(fg;{e) 108(1 - D(f)) Hllyr — ¥11l4

STCF ECAL-GAN model 3
MaxEy -p(data) log(D(x)) + Ezp(fake) l0g(1 — D (X))



Training Strategy of ECAL-GAN

<+ The entire R&D of ECAL-GAN can be summarize as the following

Train and optimize Train the Generator Evaluate and optimize
Regressor and Discriminator the single energy point
independently with single energy point model

Expand the Model for all Exband the model Evaluate the
particles. Deal with P Generalization
penetrations of the model

to another energy point

Full simulation
integration




Dataset

+ Dataset for training the GAN model (including G, C and R)
e Data sample is generated using OSCAR 2.5.0

e Single photons generated using particle gun, with a unified distribution
P € (0, 2.0) Gev/c, 6€ (20°,160°), @€ (0°,360°)

e Calorimeter response (energy depositions) are converted to images of 11x11 size.

e Each pixel is one crystal. The center pixel is the crystal where the particles hit ECAL
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Mom=1.64318GeV, AcpMom =-1.8766°, apMom — 0.266638°, Mom= 0.883455GeV, AcpMom =-0.0952646°, apMom — 0.268006°,

AZPos = _0.632551mm, ApPOS = -0.52491°,AZ = 352.501mm AZPos = _1.60522mm, A@POS = 1.26624°, AZ = 45.0363mm 10



Design and Training of the Regressor

< Design and training of the regressor

Regressor Loss During Training
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Design of the Generator and Discriminator

< Design of the generator and discriminator

Generator Discriminator

l Input(11 X 11)+y

normalize

v

Conv2D(16, (2, 2)+LRelLU+Dropout(0. 1)

y
1)
1)

l Input(y)+Noise:518 x 1

Linear+Reshape(16 x 4 x 4)

(
UpSampling2D(3, 3)
J Conv2D(32, (3, 3)+LRelLU+Dropout(0. 1

Conv2D(16 (4, 4))+ReLU+BatchNorm2d J
l Conv2D(64, (3, 3)+LRelL.U+Dropout(0. 1
2 x {Conv2D(16, (3, 3))+ReLU+BatchNorm2d} v
‘ MaxPooling2D+Flatten
¥

Conv2D(8, (3, 3))+RelLU+BatchNorm2d
Concatenate(minibatch_discriminator,y ,

‘ nergies, spasity)

Conv2D(1,(2,2))+RelLU+BatchNorm2d

Il Dense(1, activation="sigmoid’)

Output(11 % 11) y
Output(real /fake)score




Training of the Generator and Discriminator

<+ The Generator and discriminator are trained simultaneously. We carefully tuned the loss
function to make sure they converge roughly at the same speed

Generator Loss During Training

1.6

1.4

1.2

1.0

0.8 1

G

T T T T T T
0 100000 200000 300000 400000 500000
iterations

+ The feature distribution difference between GAN and geant4 is used to monitor the

10° T

training process

(0; —E))?
E;

XP=2

4.0 1

3.5

2.04

L5 A

1.0 A

Discriminator Loss During Traini

ng

e

T T T T
o] 100000 200000 300000

iterations

Chi-squared Statistic over Epochs (Logarithmic Scale)

EEEEE

T
400000

T
500000

13



Preliminary Results |

4

D)

» Step 1: train G and D with particles of single energy point

e Previous experiences show that balancing generator and discriminator using the
entire phase space data is diffcult

e A 55W training set of 1GeV photons are used as the first step.

e The model does not perform well for the part with lower energy deposition
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Improve the Performance

+ Evaluate the performance of the Regressor when the deposited energy is low

e The regressors well in the event of low deposition energy did not predict the
momentum well

Distribution of AP Distribution of AP with Gaussian Fit
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<+ Increasing events in the low energy region also improves the performance, by

forcing the GAN model not to overlook them
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Preliminary Results after Mitigation
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AZPos = _0.632551mm, ApPOS = -0.52491°,AZ =352.501mm:  AZP©°S = -0.3303mm, ApP°S = -0.4320°,AZ = 0.6226mm:: 2zPos = -0.3808mm, ApPOS = 0.0746°,AZ = -0.2961Tmm:
Fake energy deposition distribution Fake energy deposition distribution Fake energy deposition distribution
104 10 10 s
94 9 0.6 9
0.6
o 0.4 - 5 -
05
21 z z 05
s ® P g °] - £ *] 0.4
g 5 g s g s >
GAN : : :
il = 2
& 4 02 = i & a4 03
3 ? 02 ®
02
2 2 2
0.1
1] i 0.1 1 -
04 0 [
e S T T T TR U I TR R R v T TR T T TR R R v
theta direction theta direction theta direction
Real energy deposition distribution Real energy deposition distribution Real energy deposition distribution
10 104 08 10 07
9 94 5
0.4 05 0.6
8 8 8
7 74 7 05
0.4
Geant4 : | : °] : ]
£ 2 2 0.4
3 5 ? s 3 5
== £ 03 £ 8
£ E £
= 02 & a4 PR 03
3 3 0.2 3
02
2 21 2
0.1
0.1
1 1 14 0.1
0 0 0
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10 > 1 2 3 a4 5 6 7 8 9 1

theta direction theta direction theta direction



Preliminary Results after Mitigation

+ Comparison of GAN model results and Geant4 results

Distribution of Energy

Distribution of E3*3 Distribution of ES*5
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Preliminary Results

+ Energy deposition distribution in the ¢ and Z directions
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Summary

<+ To deal with the intensive MC data production requirement, a GAN-based fast
simulation method is proposed
e Based on experience (mostly) from LHC
<+ A fully functional fast simulation requires sophisticated R&D work
e A preliminary ECAL-GAN model is developed, now capable of simulating
single energy photons

e A lot of work is ahead
Further evaluation model performance using reconstruction results
Expanding model for more energy points and particles
Dealing with punch through particles

Integration with Geant4
19
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D/? 02. Methodology

€ The model: |
Yy ( yit YZ): Noise +y
* V1.

Momentum: the momentum of the particle.

e APMO™: the ¢ difference between the momentum of incoming
particle and the direction of the crystal.

« ABMo™: the @ difference between the momentum of incoming
particle and the direction of the crystal.

. X
* Yo
« AZPOS: the Z difference between the hit point of incoming
particle and the z of front center of the crystal. Discriminator Reg [ESSOr
. Acbp.os: the ¢ difference between the hit point of incoming S S (Pr—et rained,
particle and the ¢ of front center of the crystal. ‘
« Z: the Z value of hit point. score . o
+ Loss: - ¢ 5 ! | 2!
- MINEsp(fakey 10g(1 = D)) + [ly1 = 911l D(x) D)

m§XEx~p(data) IOg(D (X)) + E}?wp(fake) log(l - D(f))
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