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Introduction

 The super τ-charm facility (STCF):
 CMS：2 ~ 7 GeV

 Peak luminosity：≥ 0.5 × 1035cm−2�−1

 Rich physics in the τ-charm energy region
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Data volume is approximately two orders of magnitude higher than BEPCⅡ/BESⅢ, this poses a challenge for 
MC production
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Introduction

 Electromagnetic calorimeter (ECAL):
 2D crystal calorimeter, shaped like a round barrel, divided into 

barrel part and two end cover areas

 Barrel: 51 × 132 = 6732, Endcap: 3 × 85 + 102 + 136 = 969

 ECAL MC simulaton
 Energy deposition in each crystal cell needs to be simulated

 Simulation of electromagnetic shower requires significant 
amount of resources due to large number of secondary particles
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Geant4 simulation time consumption of each sub-detector

Parameterization or ML methods 
should be considered



Calorimeter Fast Simulation Based on Machine Learning

 Generative models are suitable for this kind of tasks (Generative Stochastic Network, 
Variational Auto-Econders, Generative Adversarial Networks, Diffusion models, ...)

 Realistic generation of samples

 Be able to generate complicated probability distributions using simple inputs

 Work well with missing data

 Extremely fast compared to full simulation

5The AtlFast3 fast simulation for ATLAS based on GAN LHCb calorimeter fast simulation based on WGAN



Generative Adversarial Networks

 Adversarial: two ML models are trained simultaneously

 Generator: captures the data distribution characteristics, and generate fake data

 Disciminator: estimates the probability that a sample came from the training data rather than 
the generator

 Training of the Generator aims to maximize the probability that Disciminator makes a mistake

 Training of the Disciminator aims to minimize the mistake probability 
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GAN is Quite Popular Internationally

7Eur. Phys. J. C (2022) 82:386



ECAL-GAN for STCF ECAL Fast Simulation

 The detector response (energy deposit) is converted into 2D images 
 11*11 images, seeding crystal as the center pixel

 All models (G, D and R) are basically deep CNNs

 ECAL-GAN should be made conditional
 Extended to learn from a parameterized generator

(able to simulate particles of certain momentum and position)

 Some additional features (y) are made as inputs 
(4-momentum, incident angle, etc.)

 An additional Regressor is pre-trained to 
stabilize the training process

 Predict the fake images y features, as an additional
term of the Generator loss function

8STCF ECAL-GAN model
 

 



Training Strategy of ECAL-GAN 

 The entire R&D of ECAL-GAN can be summarize as the following
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Train and optimize
Regressor

independently

Train the Generator
and Discriminator

with single energy point

Evaluate and optimize 
the single energy point 

model

Expand the model
 to another energy point

Evaluate the 
Generalization 

of the model

Expand the Model for all
particles. Deal with 

penetrations

Full simulation
integration



Dataset

 Dataset for training the GAN model (including G, C and R)
 Data sample is generated using OSCAR 2.5.0

 Single photons generated using particle gun, with a unified distribution
P ∈ (0，2.0) Gev/c, � ∈ (20°,160°), � ∈ (0°,360°)

 Calorimeter response (energy depositions) are converted to images of 11x11 size.

 Each pixel is one crystal. The center pixel is the crystal where the particles hit ECAL
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Design and Training of the Regressor

  Design and training of the regressor
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• Image
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Design of the Generator and Discriminator

 Design of the generator and discriminator
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Generator

Linear+Reshape(16×4×4)

UpSampling2D(3,3)

Conv2D(16,(4,4))+ReLU+BatchNorm2d

Input(y)+Noise:518 × 1

2×{Conv2D(16,(3,3))+ReLU+BatchNorm2d}

Conv2D(8,(3,3))+ReLU+BatchNorm2d

Conv2D(1,(2,2))+ReLU+BatchNorm2d

Output(11×11)

Discriminator

normalize

Input(11×11)+y

Conv2D(16,(2,2)+LReLU+Dropout(0.1)

Conv2D(32,(3,3)+LReLU+Dropout(0.1)

Conv2D(64,(3,3)+LReLU+Dropout(0.1)

MaxPooling2D+Flatten

Concatenate(minibatch_discriminator,y,e
nergies,spasity)

Dense(1,activation=‘sigmoid’)

Output(real/fake)score



Training of the Generator and Discriminator

 The Generator and discriminator are trained simultaneously. We carefully tuned the loss 
function to make sure they converge roughly at the same speed

 The feature distribution difference between GAN and geant4 is used to monitor the 
training process
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Preliminary Results I

  Step 1: train G and D with particles of single energy point

 Previous experiences show that balancing generator and discriminator using the 
entire phase space data is diffcult

 A 55W training set of 1GeV photons are used as the first step.

 The model does not perform well for the part with lower energy deposition
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Improve the Performance

 Evaluate the performance of the Regressor when the deposited energy is low

 The regressors well in the event of low deposition energy did not predict the 
momentum well

 Increasing events in the low energy region also improves the performance, by 
forcing the GAN model not to overlook them
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Preliminary Results after Mitigation
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Preliminary Results after Mitigation

 Comparison of GAN model results and Geant4 results

17



Preliminary Results

 Energy deposition distribution in the �  and �  directions
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Summary

 To deal with the intensive MC data production requirement, a GAN-based fast 

simulation method is proposed

 Based on experience (mostly) from LHC

 A fully functional fast simulation requires sophisticated R&D work

 A preliminary ECAL-GAN model is developed, now capable of simulating 

single energy photons

 A lot of work is ahead

 Further evaluation model performance using reconstruction results

 Expanding model for more energy points and particles

 Dealing with punch through particles

 Integration with Geant4 
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Back up

20



02. Methodology

21FTCF2024

  The model:

• Loss:


