STCF fast simulation framework

Xiaoshuai Qin Shandong University On behalf of the fast simulation working group

2024.11.19

Outline

- Introduction to STCF project
- Fast simulation framework
- Performance compared with full simulation
- Porting to OSCAR and flexibility study
- Further prospects

- Huge data statistic
 - The STCF will produce a data sample about a factor of 100 larger than that of the present τ -charm factory(BESIII)
- Variety of physics topics
 - XYZ physics, $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
 - Hyperon CP symmetry, $J/\psi \to \Lambda \overline{\Lambda}$
 - Collins effect
 - Charmed hardon, K^0 system, τ physics
- Background
 - Expect to have $O(10^{11})$ level background events for $1ab^{-1}$ data.
- Huge CPU/storage consumption

Basic design: Peak luminosity: $0.5 \times 10^{35} \text{cm}^{-2} \text{s}^{-1} @E_{\text{cm}} = 4 \text{GeV}$ Luminosity per year: 1.4ab⁻¹ Energy region: $E_{\text{cm}} = 2 - 7 \text{GeV}$

Fast simulation for STCF

- Goals of physics simulation
 - Feasibility studies for a dedicate physical topic (physical sensitivity, background etc.)
 - Optimize detectors (efficiency, resolution etc.)
 - Comparison to past/existing/future experiments

- Simulation Tools
 - Full Simulation (For signal and standard for fast simulation.)
 - Fast Simulation (For the background study, sensitivity estimation, etc.)

Basic design: Peak luminosity: $0.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} @ \text{E}_{\text{cm}} = 4 \text{GeV}$ Luminosity per year: 1.4ab⁻¹ Energy region: $\text{E}_{\text{cm}} = 2 - 7 \text{GeV}$

Fast simulation for STCF

- Basic ideas for Fast simulation:
 - Fast and small storage capacity (inclusive MC samples)
 - Flexible for detector responses/parameters
 - Convenient and friendly for users

- Dedicated for pre-study of STCF project
 - Fast simulation framework developed long before the project
 - Originally make use of BESIII software system and event data management.

Basic design: Peak luminosity: $0.5 \times 10^{35} \text{cm}^{-2} \text{s}^{-1} @ \text{E}_{\text{cm}} = 4 \text{GeV}$ Luminosity per year: 1.4ab⁻¹ Energy region: $\text{E}_{\text{cm}} = 2 - 7 \text{GeV}$

Scheme for Fast Simulation KKMC+EvtGen

- Generator: keep McGenEvent in storage
- Fast simulation for charge and neutral tracks (resolution, efficiency etc.)
- Fixed random seed for repeating analysis.
- Not kept RecEvent information on disk.
- Same analysis procedure as full reconstruction for users
- Expect to have O(10¹¹) level background events for 1ab⁻¹ data.
- Apply this scheme to reduce CPU and storage consumption

Data flow

- Truth information:
 - Particle type, momentum, vertex, decay chain
 - Data type: struct
- Information after reconstruction
 - Realization of tracking efficiency, sub-detector efficiency, momentum/energy and spatial resolution, decay vertex or generating point
 - Helix parameter and error matrix for tracks

Realization for track and shower — efficiency and resolution

- Detector responses extracted from fully simulated single particle MC
- Efficiency via sampling, momentum/energy and spatial resolution via smearing

Realization for track and shower — spatial parameterization

- Parametrization
- Can also be realized via different CDF for momentum and polar angle bins

Parameterization $\sigma(pt, \cos(\theta))$

Data management

- Track and shower assembling
- Event assembling

Performance: charged track

- Performance of low momentum charged tracks:
 - Check $e^+e^- \rightarrow Zc(3900)^{\pm}\pi$ with $Zc(3900)^{\pm} \rightarrow \pi^{\pm}\psi(3686)$
- Comparison with BESIII full simulation

Performance: photon reconstruction

- For photons, refer to process $J/\psi \rightarrow \gamma f_0(1710), f_0(1710) \rightarrow \pi^0 \pi^0$
- Fast and full simulation consist well

Performance: vertex and kinematic fit

- Decay vertex position smeared around truth generating vertex.
- Validation of long-lived particles (K^0_S , Λ)
- Non-diagonal parameters in the helix error matrix not considered yet.

Performance and outcome

• O(10²) improvement on time and storage consumption via fast simulation

	Full sim (BESIII)	Fast sim
CPU time	~5300s/k	~50s/k
Event size	~160Mb/k	~0.8Mb/k

• Contributions to sensitivity studies of physics topics

- Feasibility study of $Ds^+ \rightarrow \tau^+ v_{\tau}$ decay and test of lepton flavor universality with leptonic Ds^+ decays at STCF
- Sensitivity of CP violation of Λ decay in $J/\psi \rightarrow \Lambda \Lambda$ at STCF,
- Sensitivity study of the charged lepton flavor violating process $\tau \rightarrow \gamma \mu$ at STCF
- Feasibility study of measuring b \rightarrow s γ photon polarisation in D⁰ \rightarrow K₁(1270)⁻e⁺v_eat STCF
- Feasibility study of CP violation in $\tau \rightarrow K_S \pi v_{\tau}$ decays at the Super Tau Charm Facility

Flexibility: performance of π^0 reconstruction

- Provide scaling factor according to the expected performance
- For low momentum π^0 , mass resolution improved with energy resolution of photon
- For high momentum π^0 , mass resolution improved with better spatial resolution of photon

Flexibility: charged track reconstruction

- $e^+e^- \rightarrow D^0\overline{D}{}^0$ at $\sqrt{s} = 3.77$ GeV with $D^0 \rightarrow K^-\pi^+$
- Study of improvement we can gain with better spatial resolution

Flexibility with different detecting response or detector design

- Tracking efficiency varies according to different background level.
- Different detector design leads to different detecting resolution.

Particle identification

- Sub-detectors designed for different identification purpose
- PID algorithm works quite well combining information from sub-detectors
- For fast simulation, implement the overall identification efficiency and fake rates.

Fast simulation based on GAN

- Researching on hybrid technology of full and fast simulation
- ECAL simulation is the most time consuming part, novel methods like GAN are investigated

Summary

- The fast simulation framework works well
- Flexible for different detecting response and friendly for physics sensitivity study.
- The basic framework porting to OSCAR is done.
- More features under improvement

Thank you!

