The 6th International Workshop on Future Tau Charm Facilities

FTCF, 2024, Guangzhou

Status of STCF simulation and digitization

Binbin Qi On behalf of the STCF software group

University of science and technology of China

Super Tau Charm Facility (STCF)

- A future e⁺-e⁻ collider in China
- $E_{cm}\text{=}$ 2-7 GeV, $\mathcal{L} > 0.5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- Potential for upgrade to increase luminosity and realize polarized beam

<complex-block>

Deliver a massive amount of tau-leptons and composed of charm quarks, to study the composition of particles, the deep structure of matter, as well as the basic interaction forces

- 2021-2026: Conceptual design and R&D of Key technologies, 0.42 B CNY
- 2026-2031: Construction, 4.5 B CNY
- Operating for 15 years (may undergo upgrade).

The Final State Particles of STCF

- Charged particles
 - e, μ , π , K, proton (*p* up to 3.5 GeV, most with p < 2 GeV, lots of particles with p < 400 MeV)
- Neutral particles
 - γ (energy coverage from 25 MeV to 3.5 GeV)
 - K_L, neutron (up to 1.6 GeV)

Charged particle momentum

Photon energy

K₁ and neutron

STCF Detector System

To detect the final state particles (e, μ, π, K, p, γ, etc.) with high precision and efficiency in the whole dynamic space

STCF Offline software System

- The Offline Software of Super Tau-Charm Facility (OSCAR) is designed for detector design, MC data production and physics analysis at STCF:
 - Applications: STCF specific application software
 - Core software: common platform for the offline software
 - External libraries and tools
- Core software are developed for common functionalities
 - Event loop control (sequentially and concurrently)
 - Detector data and event data management
 - Common tools for data analysis
 - To support efficient parallel and heterogeneous computing
- Some applications are ported from BESIII

Status of STCF Offline Software

- Dedicated Core Software System including the underlying framework, DM system, GMS etc. are developed
- Full chain of detector simulation and physics object reconstruction has been built
- Physics analysis with full detector simulation and reconstructed objects is supported
- Parallelized simulation and reconstruction based on MT-SNiPER is developed

Detector Description

- The full STCF Detector is described with DD4hep
- Each sub-detector is implemented with a single compact file
- Very convenient to optimize detector geometry according to detector experts

Geometry Management System

- Developed geometry management system for all applications
 - detector simulation, reconstruction and event display
 - The version number is used for different design options
- Ensure consistent detector information between different applications with a single source of detector description
 - DDG4 for delivering detector geometry to Geant4
 - DDRec for delivering detector geometry to reconstruction algorithms
 - DDXMLSvc: the unified interface to DD4hep, including DDG4 and DDRec

Detector Simulation Chain

- Full chain of detector simulation from generator to simulated information is built
- Providing flexible configuration for different purposes of detector simulation
 - Generator for different physics topics i.e. Babayaga, KKMC, Phokhara, DIAG36, BBBrem ...
 - Geometry for different detector design options
 - User actions for recording MC truth information, G4Step level

Flexible Simulation Configuration

- Configure simulation setups flexibly to balance accuracy and efficiency if need
- Some optimization setups to save the consumption of time the memory

Moving to 'Realistic' Simulation

- Event mixing with background at the Geant4 step level
 - Simulated background particles as input, a unified algorithm applied to each sub-detector.
- Raw hit data digitized to be same as the detector measurement
 - Considering electronic response, noise and other effects, as input for reconstruction and analysis

Background Production

- Event pile-up: Physics Backgrounds
 - Multiple physics events can exist in one trigger window, i.e. pileup
 - Maximum event rate at STCF: 400kHz
 - Maximum time window in sub-detectors : 1 µs
 - Probability of events overlapping in1 µs: ~33%
- Backgrounds: Touschek, beam-gas, luminosity-related
- Setup background simulation software and produced background database

Time window (ns)

Event Mixing Algorithm

- Developed mixing algorithm based on multi-stream functions provided by OSCAR
- Providing flexible configuration for event mixing
 - Signal, e.g. $e^+e^- \rightarrow \pi^+\pi^- I/\psi(\rightarrow \mu^+\mu^-/e^+e^-)$
 - Backgrounds: Touschek, beam-gas, luminosity-related, reading from background database
 - Physics backgrounds: $e^+e^- \rightarrow anything$

Digitization

- Developed a unified digitization framework for all sub-detectors within OSCAR
- Each sub-detector implemented its digi. algorithms and produced the digi. information
- The reconstruction algorithms use the digi. information as their inputs

Parameterized Mode

- The parameterized digi. modes for all sub-detectors are bult within OSCAR
- The digitization parameters are extracted from standalone simulation and experiment data
- Several different digi. Modes are developed, depending on the requirement of efficiency and accuracy
 MDC current signal

Status of Event Mixing and Digitization

- All detectors are working, but still need improvement, keep in sync with detector R&D
- Very long time consumption (too many Bkg. hits), need optimization

Detector	Simulation	Mixing + Digitization	Reconstruction
ITKM	✓	 Image: A second s	
ITKW	 ✓ 	 Image: A second s	✓
MDC	✓	✓	
RICH	✓	✓	✓
BTOF	✓	✓	?
DTOF	✓	✓	×
ECAL	✓	✓	✓
MUD	✓	✓	✓

100 $\psi(2S) \rightarrow \pi^+\pi^- J/\psi(\rightarrow \mu^+\mu^-)$ events Mixing and digitization time consumption

Detector	Time w/o Bkg (s)	Time With Bkg (s)
ITKM	~3	59
ITKW	~1	6
MDC	~2	35
RICH	<1	~1
DTOF	<1	~1
ECAL	23	1475
MUD	<1	~1
All Detector	24	1488

✓ Stable and Optimizable

✓ Working, need optimization

? Developing or Not started

Another Mixing Framework

- Some or all hits mixing in digi. hit level, pre-digitize the Bkg raw hit to produce a Bkg digi. Database
- One order of magnitude time savings, with no significant performance degradation
- The mixing algorithms in digi. hit level is developing, need balance precision and efficiency

Summary

- ***** STCF is an important and unique platform for probing physics at τ -charm sector
- Full chain of detector simulation and digitization has been built within the STCF offline software system (OSCAR)
 - The framework of simulation, event mixing and digitization is built, and all detectors are working now
 - Digitization information after event mixing has been as inputs for recon. Algorithms
 - We are developing the Mixing framework in digi. hit level to balance precision and efficiency
- Future plan
 - Optimization of digi. parameters and algorithms, keep in sync with detector R&D
 - Focusing on improving OSCAR's computing performance to meet high luminosity requirements

BACKUP

Underlying framework: **SNiPER**

- Developed since 2012, very lightweight and flexible, supporting both non-collider experiments and collider experiments
- Providing basic functions of event loop control, application interface, job configuration, logging etc.
- Providing simple interfaces for building multi-threaded applications, thus supporting both serial and parallel event processing with extension of SNiPER, Muster
- Adopted by JUNO (neutrino), LHAASO (cosmic ray), nEXO (neutrinoless double beta decay) and HERD (dark matter)

Event Data Model (EDM) and Serial Event Data Management

- Very crucial and taking significant effect on performance of the event processing
- Developed STCF EDM based on podio, which is also adopted by EDM4hep
 - Define event data and relationship between data object in YAML file
 - **Re-use** MCParticle and ReconstructedParticle from **EDM4hep** as the core index
 - Good support for multithreading
- Extended SNiPER data management system based on podio

