

Bunch-by-Bunch Luminosity Monitor For STCF

Linghua Zhang

On Behalf of The STCF-FWDR Group

Guangxi Normal University

2024/11/21 **·**FTCF2024 **·**Guangzhou

1

Outline

 Luminosity Monitor by Cherenkov Detector

Luminosity Monitor by Diamond

1. Motivation

Bunch-by-Bunch Luminosity monitor

-
- **Luminosity:** an important physical quantity about the event rate for a collider. It is a key factor of the performance of the collider.
- **Bunch-by-Bunch Luminosity monitoring :** an important technique for tuning the beam current, helping to keep the luminosity of each bunch (4 ns) to be consistent.

Radiation Bhabha Process

Radiation Bhabha Process:

 $e^+ + e^- \rightarrow e^+ + e^- + \gamma$

 \Box Large cross-section, \sim 97 mb at 4 GeV (with a photon cutoff energy of 200 MeV).

The emission angle of photon is focused within 1 mrad.

 \triangleright For example, the acceptance (polar angle) is \sim 1 mrad, Ecm = 4 GeV, the minimum cutoff energy of photon $= 200$ MeV.

$$
R = L \times \sigma \qquad R = 10^{35} \, \text{cm}^{-2} \, \text{s}^{-1} \times 9.7 \times 10^{-26} \, \text{cm}^2 = 9.7 \times 10^9 \, \text{s}^{-1}
$$

- *R*: Single photon count rate (Hz)
- *L*: Peaking luminosity (cm⁻²s⁻¹)
- \bullet *σ*: Cross section of Single photon Bhabha (cm²)

Rate of Single photon per bunch : $R_{single} = R \times T/N \approx 0.08$ / bunch

❖ Photon angular distribution

5

Current Operational Luminosity Monitor

BESIII

BLM

Measurement of small-angle radiation Bhabha photon

- ❑ Tungsten converter, fused silica and PMT
- ➢ **Provides relative luminosity measurements at 0.5 Hz with 0.8% accuracy.**
- ➢ **Lower background**

- Measurement of photons and positrons/electrons in the smallangle radiation of the Bhabha process
- ❑ Silica Cherenkov detector

BelleII

- ❑ Single crystal diamond detector
- ❑ LGSO Crystal Scintillator Detector
- ➢ **Provides relative luminosity measurements at 1 kHz with about 1% accuracy;**
- → a wide luminosity range $(10^{30} 10^{36} cm^{-2} s^{-1})$

2. Conceptual Design of Luminosity Monitor By Cherenkov Detector

Cherenkov Detector Design

Cherenkov radiator: PbF₂ (Lead fluoride) crystals

Advantages :

- Short $X_0=0.93$ cm : Allows the detector to be smaller. It is suitable for the limited installation space.
- ⚫ Higher index of refraction : more light produced.
- Faster time response $:$ < 1ns.
- ⚫ Hard radiation resistance.

Disadvantages :

⚫ Compared to scintillators, lead fluoride crystals have a lower light yield.

8

PMT

表 4.1 PbF2 与一些较耐辐照闪烁体的性能比较

 $\overline{\gamma}$

PbF2

Deposited energy in the radiator

\blacksquare Energy threshold for γ : large than 100 MeV

Cherenkov Detector: Size

 \Box Optimize size :

- ⚫ Deposited energy in different crystal depth with different initial energies (0.3, 0.5, 1, 2, and 3 GeV) , where the maximum energy deposited at $[4, 6]X_0$.
- \bullet Lateral deposited energy is focused within 3 X_0 .
- The width and length of crystal are optimized to be: *Φ*4×14cm² .

❖ Deposited energy distribution along the Z-direction

Cherenkov Detector: PMT

Selection of the PMT

● The R2083 model PMT made by HAMAMATSU with a fast rise time (0.7 ns)

and response to blue light.

HAMAMATSU R2083 performance

Figure 1: Typical Spectral Response

WAVELENGTH (nm)

γ Signal Location

□ Spatial distribution of Gamma.

- ⚫ Most Gamma accumulated at 11.38 m;
- \Box We propose location of the detector at 11.38 m according to spatial distribution of Gamma.

Location of Cherenkov Detector on Site

□ Over 90% of the radiation Gamma travel along the direction of the incoming positron and electron, escaping from the beam pipe after the first layer of the dipole magnet.

❑ Radiation Gamma detection: at 11.38 m along the beam pipe.

Requirement of the 'window' on the beam pipe

Radiation Gamma interact strongly with the material of the beam pipe in small angles . The

'window' on the beam pipe helps to reduce the radiation Gamma at the beam pipe wall.

 \Box 'window' (The shape change of the beam pipe wall): angle 45 $^{\circ}$.

 \Box Location of the radiation Gamma window : $z = 1138$ cm.

3. Conceptual Design of Luminosity Monitor By Diamond Detector

e **+ /***e -* **Signal**

 \Box Measures luminosity by collecting recoil e^+/e^-

 \Box Low energy e^+/e^- will be bent in B0 downstream of the IP point (like in Belle II). After passing through QD2 (defocused in x, focused in y), e^+/e^- will be bent again in the x direction

Need more radiation shields because of large mass materials like QD2.

Conceptual Design: sCVD Diamond

- sCVD (Single crystal Chemical Vapor Deposition) diamond detector
	- Good radiation tolerance, fast signal collection, average ionization energy of 13 eV
	- diamond size: $4.5 \times 4.5 \times 0.5$ mm³
	- Using broadband current amplifier, turn ionization energy to the current signal
- **T** Tungsten radiator length: $3X_0$
	- Generated more secondary *e*, thereby increasing the energy deposition and event rate on diamond

Preliminary Luminosity Simulation

 \Box Train Integrated Luminosity signals(TIL): integrate the deposition energy signal over all the bunches in 1 ms.

- **□** According to Geant4 simulation, the TIL is 1554 MeV at 1kHz when the luminosity reaches 0.5×10^{33} cm⁻²s⁻¹. The relative precision will reach 1% when luminosity reaches 0.5×10^{35} cm⁻²s⁻¹.
- ❑ Set multiple diamond to calibrate each other. The TIL on different diamond has good linear relationship.

Preliminary Background Simulation

-
- ❑ Beam background: Touschek effect, beam-gas interaction(coulomb scattering and bremsstrahlung)
- **□** The background along the beam pipe at 12m: TID ~ 200Gy/y, NIEL ~ $2 \times 10^{10} (n_{eq} \text{cm}^{-2} \text{y}^{-1})$
- □ Considering Touschek effect and beam-gas interaction, the Preliminary Background result(on diamond) is less than 20 MeV at 1kHz.

- \Box Bunch-by-Bunch luminosity monitoring is of significant helpful for beam tuning.
- A Cherenkov detector is preliminary proposed for STCF, and the key technologies are also studied.
- □ The diamond luminosity detector have been carried out for STCF.
- \Box Next, we will proceed with the hardware development.

Backup

Leadfluoride crystal transmittance curve

4

Hard radiation resistance

The radiation damage resistance of PbF₂ crystals

has been tested.

Experiments show that the light output only

decreases by ~15% after nearly 4 hours of

continuous irradiation(10⁶ rad).

Fig. 10. Transmission of PbF₂ crystals before and after irradiation with 10 krad y-rays as well as before and after annealing with 365 nm filtered light.

PbF2 scintillator crystal strengths:

- High stopping power: High Density 7.77 g/cm³, Radiation Length 0.93 cm, Moliere Radius -2.2 cm
- Fast: Decay Times 6 and 30 ns
- Radiation Hard: No damage up to 10⁵ Gy

