

Bunch-by-Bunch Luminosity Monitor For STCF

Linghua Zhang

On Behalf of The STCF-FWDR Group

Guangxi Normal University

2024/11/21 • FTCF2024 • Guangzhou

Outline

2 Luminosity Monitor by Cherenkov Detector

1. Motivation

Bunch-by-Bunch Luminosity monitor

- 1932
- □ Luminosity: an important physical quantity about the event rate for a collider. It is a key factor of the performance of the collider.
- Bunch-by-Bunch Luminosity monitoring : an important technique for tuning the beam current, helping to keep the luminosity of each bunch (4 ns) to be consistent.

Radiation Bhabha Process

Radiation Bhabha Process:

 $e^+ + e^- \rightarrow e^+ + e^- + \gamma$

□ Large cross-section, ~ 97 mb at 4 GeV (with a photon cutoff energy of 200 MeV).

 \Box The emission angle of photon is focused within 1 mrad.

➢ For example, the acceptance (polar angle) is ~1 mrad, Ecm = 4 GeV, the minimum cutoff energy of photon = 200 MeV.

$$R = L \times \sigma \qquad R = 10^{35} cm^{-2} s^{-1} \times 9.7 \times 10^{-26} cm^{2} = 9.7 \times 10^{9} s^{-1}$$

- *R*: Single photon count rate (Hz)
- *L*: Peaking luminosity (cm⁻²s⁻¹)
- σ : Cross section of Single photon Bhabha (cm²)

Rate of Single photon per bunch : $R_{single} = R \times T / N \approx 0.08 / bunch$

Photon angular distribution

Current Operational Luminosity Monitor

BESIII

BLM

Measurement of small-angle radiation Bhabha photon

- □ Tungsten converter, fused silica and PMT
- Provides relative luminosity measurements at 0.5 Hz with
 0.8% accuracy.
- Lower background

- Measurement of photons and positrons/electrons in the smallangle radiation of the Bhabha process
- □ Silica Cherenkov detector

Bellell

- □ Single crystal diamond detector
- □ LGSO Crystal Scintillator Detector
- Provides relative luminosity measurements at 1 kHz with about 1% accuracy;
- > a wide luminosity range $(10^{30} 10^{36} cm^{-2} s^{-1})$

2. Conceptual Design of Luminosity Monitor By Cherenkov Detector

Cherenkov Detector Design

Cherenkov radiator: *PbF*₂ (Lead fluoride) crystals

□ Advantages :

- Short X₀=0.93 cm : Allows the detector to be smaller. It is suitable for the limited installation space.
- Higher index of refraction : more light produced.
- Faster time response : < 1ns.
- Hard radiation resistance.

Disadvantages :

• Compared to scintillators, lead fluoride crystals have a lower light yield.

8

表 4.1 PbF2 与一些较耐辐照闪烁体的性能比较

material	PbF2	BGO	LYSO	BaF2	GSO	PbWO4		
Radiation length(cm)	0.93	1.1	1.1	2.1	1.4	0.89		
Moliere radius(cm)	2.2	2.7	1.9	4.4	2.2	2.2		
Refractive index	1.82	2.15	1.82	1.47	1.8	2.16		
Decay constant(ns)	1	300	40-44	0.6,620	30	6,30		

PbF2

PMT

Deposited energy in the radiator

\square Energy threshold for γ : large than 100 MeV

Cherenkov Detector: Size

D Optimize size :

- Deposited energy in different crystal depth with different initial energies (0.3, 0.5, 1, 2, and 3 GeV), where the maximum energy deposited at $[4, 6]X_0$.
- Lateral deposited energy is focused within $3 X_0$.
- **\square** The width and length of crystal are optimized to be: $\Phi 4 \times 14$ cm².

Deposited energy distribution along the X-direction

Cherenkov Detector: PMT

Selection of the PMT

• The R2083 model PMT made by HAMAMATSU with a fast rise time (0.7 ns)

and response to blue light.

	D	Description / Value				
Spectral Bespense	R2083		300 to 650			
Spectral Response	R3377		160 to 650			
Wavelength of Maximur		420				
Photocothodo	Material		Bialkali			
Filolocathode	Minimum Effective Area		¢46			
Window Material	R2083	E	Borosilicate glass		_	
	R3377	Sy	Synthetic silica glass		_	
Dynode	Structure	Li	Linear focused type			
	Number of Stages		8			
Operating Ambient Ten		-30 to +50				
Storage Temperature			-30 to +50			
Base		19-pin glass ba	19-pin glass base with SMA output connector			
Suitable Socket		E	E678-19J (supplied)			
Time Response	Anode Pulse Rise Time	—	0.7	—	ns	
	Electron Transit Time	—	16	—	ns	
	Transit Time Spread		0.37	_	ns	

HAMAMATSU R2083 performance

Figure 1: Typical Spectral Response

WAVELENGTH (nm)

γ Signal Location

□ Spatial distribution of Gamma.

- Most Gamma accumulated at 11.38 m;
- We propose location of the detector at 11.38 m according to spatial distribution of Gamma.

Location of Cherenkov Detector on Site

Over 90% of the radiation Gamma travel along the direction of the incoming positron and electron, escaping from the beam pipe after the first layer of the dipole magnet.

□ Radiation Gamma detection: at 11.38 m along the beam pipe.

Requirement of the 'window' on the beam pipe

P 1932

 \square Radiation Gamma interact strongly with the material of the beam pipe in small angles . The

'window' on the beam pipe helps to reduce the radiation Gamma at the beam pipe wall.

 \square 'window' (The shape change of the beam pipe wall): angle 45°.

\Box Location of the radiation Gamma window : z = 1138 cm.

3. Conceptual Design of Luminosity Monitor By Diamond Detector

e⁺/*e*⁻ Signal

■ Measures luminosity by collecting recoil e^+/e^-

Low energy e⁺/e⁻ will be bent in B0 downstream of the IP point (like in Belle II). After passing through QD2 (defocused in x, focused in y), e⁺/e⁻ will be bent again in the x direction

 Need more radiation shields because of large mass materials like QD2.

Conceptual Design: sCVD Diamond

- □ sCVD (Single crystal Chemical Vapor Deposition) diamond detector
 - Good radiation tolerance, fast signal collection, average ionization energy of 13 eV
 - diamond size: $4.5 \times 4.5 \times 0.5 \text{ mm}^3$
 - Using broadband current amplifier, turn ionization energy to the current signal
- **\Box** Tungsten radiator length: $3X_0$
 - Generated more secondary e^- , thereby increasing the energy deposition and event rate on diamond

Preliminary Luminosity Simulation

□ Train Integrated Luminosity signals(TIL): integrate the deposition energy signal over all the bunches in 1 ms.

- □ According to Geant4 simulation, the TIL is 1554 MeV at 1kHz when the luminosity reaches 0.5×10^{33} cm⁻²s⁻¹. The relative precision will reach 1% when luminosity reaches 0.5×10^{35} cm⁻²s⁻¹.
- □ Set multiple diamond to calibrate each other. The TIL on different diamond has good linear relationship.

Preliminary Background Simulation

- □ Beam background: Touschek effect, beam-gas interaction(coulomb scattering and bremsstrahlung)
- □ The background along the beam pipe at 12m: TID ~ 200Gy/y, NIEL ~ $2 \times 10^{10} (n_{eq} \text{cm}^{-2} \text{y}^{-1})$
- Considering Touschek effect and beam-gas interaction, the Preliminary Background result(on diamond) is less than 20 MeV at 1kHz.

- □ Bunch-by-Bunch luminosity monitoring is of significant helpful for beam tuning.
- A Cherenkov detector is preliminary proposed for STCF, and the key technologies are also studied.
- □ The diamond luminosity detector have been carried out for STCF.
- □ Next, we will proceed with the hardware development.

Backup

Lead fluoride crystal transmittance curve

4

Hard radiation resistance

The radiation damage resistance of PbF₂ crystals

has been tested.

Experiments show that the light output only

decreases by ~15% after nearly 4 hours of

continuous irradiation (10^6 rad) .

Fig. 10. Transmission of PbF₂ crystals before and after irradiation with 10 krad γ-rays as well as before and after annealing with 365 nm filtered light.

PbF2 scintillator crystal strengths:

- High stopping power: High Density 7.77 g/cm³, Radiation Length 0.93 cm, Moliere Radius -2.2 cm
- Fast: Decay Times 6 and 30 ns
- Radiation Hard: No damage up to 10⁵ Gy

