STCF MUON R&D PROGRESS

KUN HU On Behalf of MUON GROUP NOV 21st, 2024

FTCF2024, Guangzhou, Nov.17-Nov.21, 2024

Detector Overview-MUON

- Baseline design: <u>JINST 16 (2021) 09, P09022</u>
 - RPC + Plastic Scintillator(PS)
 - Inner 3 layers: RPC
 - Outer 7 layers: PS
- Requirements:
 - Muon detection efficiency > 95%, p > 0.7 GeV/c , with $\,\mu/\pi$ suppression power >30

PS: strip

- 4cm * 1cm * (100~240cm)
- Printed TiO2 coating
- WLS(wave length shifting) Fiber
 - Kuraray, Y-11, $\phi = 1mm$
- SiPM: sensl,J-30035, 3*3mm
- Single-ended readout

PS: small scale scintillator system

- scintillator strips unit size: 50*4*1cm
- System scale: 53*51cm
- 2 layers
- Single-ended readout

The platform of gas gap production

- A marble table as base: 2.5m×1.8m
- A head stock supported by a gantry moving in 2-D.
- Automatic gluing and spacer placement.

Large-scale RPC production

- Honeycomb readout board: $\sim 1.1 \times 1.7 m$
- Board Flatness: 100µm

RPC: glass RPC test

- gas: R134 94.7%、C4H10 5%、SF6 0.3%
- I-V curve measured under High voltage
- Cosmic ray signals captured through oscilloscope

- The use of low resistivity glass is to achieving high event rate
- ρ : 10⁹- 10¹¹ Ω cm body resistivity
- Glasses were packaged and HV applied to the electrodes to see the resistivity offset

Electronics: ASIC Design

- Front end Amplifier-Shaper-Discriminator ASIC
- TDC ASIC

Electronics: Front-end ASIC

- Two-stages charge amplifier
- Three-stages shaper
- Multi-gain: 0.4mV/fC, 4mV/fC, 24mV/fC

• $Io = (N \times M) \times I_{det}$

GND

Electronics: Front-end ASIC

• Discriminator: delayed comparator

FTCF2024, Guangzhou, Nov.17-Nov.21, 2024

Electronics: TDC prototype design

Channel	1 start; 4stop
LSB	156.25ps
Time resolution	<60ps
Power consumption	<10mW/Channel
Event rate	>200kHz
Full Range	10us
Nonlinearity	<1LSB

TDC ASIC diagram

Electronics: ASIC tests

- SMIC 130nm mixed-signal process
- Sent out for fabrication July 23rd
- Die delivered late October
- Just get the packaged ASICs
- ASIC test ongoing

STCF

MUONE

Electronics: Front ASD ASIC test

Electronics: Front end ASIC test

- DUT: ASIC with fixed gain at 4mV/fC
- Waveform Generator: Keysight 33600A
- Power: Keithley 2231A
- Oscilloscope: Tek MDO3032

Electronics: Preliminary result

Test is ongoing and the typical application circuit will be given for the integration with SiPM and RPC detectors

Electronics: TDC test board

- TDC: CQFP100 packaging
- TDC test board is under soldering

TDC test board

TDC Bonding

FTCF2024, Guangzhou, Nov.17-Nov.21, 2024

Board level Electronics upgrade

8-ch time measurement system

FEE + DAQ: FEE: 8-ch amplifier & comparator, ASD chip; DAQ: multi-ch TDC; TDC chip.

FEE

FEE

Board level Electronics upgrade

- Both plastic scintillator and RPC make a good progress;
- ASICs are just received, the following works are focused on testing and integration with detector;
- Improved board-level electronics will be sent out to detector production site for testing.