

Development of TDC ASIC for the STCF Endcap PID Detector ◆B 紣 ^を なばよう

University of Science and Technology of Claima

Development of TDC ASIC for the STC

Endcap PID Detector

Presenter: Xinchi Xu

E-mail: wangyg@ustc.edu.cn (professor Yonggang Wang)

2024.11.20

CONTENTS

- DTOF Readout Electronics #01
- #02 ASIC TDC for DTOF Detector
- #03 Test Results
- #04 Summary

#01 DTOF Readout Electronics

Dirc-like TOF Detector for Endcap PID at STCF

Dirc-like time-of-flight (DTOF) detector: the endcap particle identification (PID) device at STCF.

- Using the detection of internally reflected Cherenkov light (DIRC) to measure the time of flight (TOF) and separate different particles ike TOF Detector for Endcap PID at STCF
-like time-of-flight (DTOF) detector: the endcap particle identification (PID) device at STCF.

> Using the detection of internally reflected Cherenkov light (DIRC) to measure the t
-
-

672-channel electronics for DTOF prototype 200

-
- \triangleright Fully meet the timing requirement

- \triangleright Leading edge discrimination (LED)
- > LED correction with time-over-threshold (TOT)
- FPGA-based time-to-digital converter (TDC)

672-channel electronics for DTOF prototype Protot

FD circuit based on discrete devices

• Broadband RF amplifier

• Using FPGA HSTL IO for discrimination

PGA-based TDL-TDC **72-channel electronics for DTOF prototyp**

ED circuit based on discrete devices

• Broadband RF amplifier

• Using FPGA HSTL IO for discrimination

PGA-based TDL-TDC

• Tapped delay line constructed by CARRY chain 72-channel electronics for DTOF

FD circuit based on discrete devices

• Broadband RF amplifier

• Using FPGA HSTL IO for discrimination

• Tapped delay line constructed by CARRY chain

• Time resolution: ~ 7 ps

• Time in

- \triangleright LED circuit based on discrete devices
	-
	-
- **FPGA-based TDL-TDC**
	-
	-
	-

LED circuit with discrete devices

From Discrete Devices to ASIC
Finning resolution (electronics): < 10 ps

(At least 8 channels within each FET or TDC chip)

-
- **are prototype achievements
• Timing resolution (electronics): < 10 ps
• Channel number: 627
• Power comsumption: ~380 mW/ch
• Power which the feasilities** Framing resolution (electronics): < 10 ps

• Channel number: 627

• Power comsumption: ∼380 mW/ch

• Demonstrate the feasibility Framing resolution (electronics): < 10 ps

• Channel number: 627

• Power comsumption: ~380 mW/ch

• Demonstrate the feasibility
	-
	-
	-
- Timing resolution (electronics): < 10 ps

 Channel number: 627

 Power comsumption: ~380 mW/ch

 Demonstrate the feasibility

 Anallenges to integrate final ~7k channels \triangleright Challenges to integrate final ~7k channels
	- Timing resolution (electronics): < 10 ps

	 Channel number: 627

	 Power comsumption: ~380 mW/ch

	 Demonstrate the feasibility

	 Allenges to integrate final ~7k channels

	 High power consumption of both the RF AMP

	 and the TDC (cooling) • Timing resolution (electronics): < 10 ps

	• Channel number: 627

	• Power comsumption: ~380 mW/ch

	• Demonstrate the feasibility

	• Mallenges to integrate final ~7k channels

	• High power consumption of both the RF AMP
 • Lack of customization (relectronics)

	• Channel number: 627

	• Channel number: 627

	• Power comsumption: ~380 mW/ch

	• Demonstrate the feasibility

	• Allenges to integrate final ~7k channels

	• High power consumption of • Channel number: 627

	• Power comsumption: ~380 mW/ch

	• Demonstrate the feasibility

	hallenges to integrate final ~7k channels

	• High power consumption of both the RF AMP

	and the TDC (cooling)

	• Low integration with • Power comsumption: ~380 mW/ch

	• Demonstrate the feasibility

	hallenges to integrate final ~7k channels

	• High power consumption of both the RF AMP

	and the TDC (cooling)

	• Low integration with discrete devices (space • Demonstrate the feasibility

	hallenges to integrate final ~7k channels

	• High power consumption of both the RF AMP

	and the TDC (cooling)

	• Low integration with discrete devices (space)

	• Lack of customization (radi Anallenges to integrate final ∼7k channels

	• High power consumption of both the RF AMP

	and the TDC (cooling)

	• Low integration with discrete devices (space)

	• Lack of customization (radiation hardness)

	• Lep to ASIC
 hallenges to integrate final ~7k channels

	• High power consumption of both the RF AMP

	and the TDC (cooling)

	• Low integration with discrete devices (space)

	• Lack of customization (radiation hardness)

	• Lack of custo
	-
	-
- \triangleright Step to ASIC
	-
	-
	-
	-
	-

#02 ASIC TDC for DTOF Detector

DTOF Requirements on TDC ASIC Frame Precision:

• RMS precision (single channel) < 20 ps

• Better precision is preferred, giving margin

to system design equirements on TDC ASIC

ending Precision:

• RMS precision (single channel) < 20 ps

• Better precision is preferred, giving margin

to system design

• Ower: < 30 mW/ch

→ Requirements on TDC ASIC

> Timing Precision:

· RMS precision (single channel) < 20 ps

· Better precision is preferred, giving margin

to system design

→ Power: < 30 mW/ch

→ Integration: ≥ 8 channels (TOT) on one chip Precision:

⇒ Timing Precision:

• RMS precision (single channel) < 20 ps

• Better precision is preferred, giving margin

to system design

⇒ Power: < 30 mW/ch

→ TOT m

→ Fe

→ Integration: ≥ 8 channels (TOT) on one chi

- > Timing Precision:
	-
- to system design Frame Precision:

• RMS precision (single channel) < 20 ps

• Better precision is preferred, giving margin

to system design

⇒ T

→ T

1

1

1

1

A pample rate:

• A least 5 MS/s (< 200 ns conversion time)

→ Higher ra Framing Precision:

• RMS precision (single channel) < 20 ps

• Better precision is preferred, giving margin

to system design

bower: < 30 mW/ch

• TO

• TO

• TO

• TO

• Higher rate:

• At least 5 MS/s (< 200 ns conver
-
-
- \triangleright Sample rate:
	-
	-

- > TOT measurement:
	-
- \triangleright Possibility to be integrated with FET ASIC on one chip
- ≥ 130 nm CMOS

Typical TDC Implementations in ASIC

Simple One-step TDC:

 \triangleright Tapped delay line (TDL) TDC

 \triangleright Multiphase clock TDC

Considerations:

-
-
- **onsiderations:**
• Simple circuits and structures
• Beginner friendly
• Their resolution is limited by the minimum gate delay,
which strongly depends on the technology node **onsiderations:**
• Simple circuits and structures
• Beginner friendly
• Their resolution is limited by the minimum gate delay,
which strongly depends on the technology node.
• High resolution needs advanced technologies **FROM STATE CONTROLLET SETTLE SETTLEM SHE SHERICH SHERICH** which strongly depends on the technology node. **onsiderations:**
• Simple circuits and structures
• Beginner friendly
• Their resolution is limited by the minimum gate delay,
which strongly depends on the technology node.
• High resolution needs advanced technologies.

- - \rightarrow High R&D costs

Pursuing Sub-gate Delay Resolution Vernier TDC: simple Vernier structure has the

 \triangleright Local passive interpolation: create intermediate signal transitions using resistor chain

 \triangleright Parallel interpolation: sampling in parallel at time intervals with sub-gate delay

◆ For our first ASIC attempt, a simpler structure and robustness are preferred.

disadvantage of long conversion time and limited Interpolation: etc. and the contract of the contract of the contract of the contract of the measurement range.

Two-step TDC: coarse-fine structure

- ◆ Two simple stages are cascaded √
	-
	-
	-
- \triangleright Vernier for the fine stage: robust control of delay difference
- \triangleright Time amplification (TA) between coarse and fine stages: one simple TDC can be reused in two stages

-
-
-
-

Progress

▶ Dual-slope TA-TDC

- 9 POSS

 First version prototype has been taped out in March 2024

 First version board completed

 COB packaged

 COB packaged

 Corporation board completed

 COB packaged

 Corporation board continues in the cont **9 | PCSS**

Val-slope TA-TDC

• First version prototype has been taped out in March 2024

• Evaluation board completed

• COB packaged

• Preliminary test results available
-
-
-

- First version prototype has been taped out in July 2024 ultiphase clock Vernier hybrid TDC
• First version prototype has been taped out in July 2024
• Evaluation board design undergoing
• QFN package undergoing
• To be evaluated soon
-
-
-

 $\frac{BKA}{\mathbb{R}}$ results of the Dual-slope $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{if } & \text{if } & \$ The following section will only show preliminary test TA-TDC.

#03 Test Results —— Dual-slope TA-TDC

- \triangleright First prototype for silicon validation
- \triangleright 6 TOT banks (12 TDC channels): designed different in part of \triangleright unit circuits to validate our understanding of the circuits

- \geq LSB = 8.7 ps
- Conversion time < 50 ns
- \triangleright Low power consumption
	-
	-

- \triangleright Tests undergoing
	-
	-
- \triangleright Evaluation setup:

Precision

- \triangleright INL correction adopted
- CCISION

> INL correction adopted

> The average RMS precision of all TDC channels are below 11.2 ps (15.8 ps / $\sqrt{2}$)

 Timing performance variations between channels are observed

> Fulfill the timing resolution requ
	-
- \triangleright Fulfill the timing resolution requirement of DTOF detector (< 20 ps).

Average RMS precision of all TDC banks

Bin Size, DNL and INL Bin size (mean = 8.7 ps)

- \triangleright Averaged bin size of 8.7 ps
- stage bin size). • Bin Size, DNL and INL

• Peraged bin size of 8.7 ps

mall bins appear every ~ 200 ps (the coarse

age bin size).

• Periodic large DNL error

• Significant INL error

• Significant INL error

• Significant INL error • Bin Size, DNL and INL

• Fragged bin size of 8.7 ps

mall bins appear every ~ 200 ps (the coarse

age bin size).

• Periodic large DNL error

• Significant INL error

• Significant INL error

• Significant INL error

1. veraged bin size of 8.7 ps

mall bins appear every ~ 200 ps (the coarse

age bin size).

aading to:

Periodic large DNL error

Significant INL error

Significant INL error

Significant INL error

Significant INL error

- \triangleright Leading to:
	-
	-
- \triangleright It's due to:
	- -
		-
	- -
		-
		-

0 100 200 300 400 500 600 700 Bin number

–8
0

-6 -4 -2

- The number of small bins is normally around twice of the coarse stage bin number ($\sim 2 \times 30 = 60$). Follow the number of small bins is normally around twice of the coarse stage bin number (~ $2 \times 30 = 60$).

bo many small bins mean **noise** interference.

Sosible noise sources:
 Conting to the evaluation PCB \rightarrow to be
- \triangleright Too many small bins mean noise interference.
- **Possible noise sources:**
	-
	-

Sample rate and temperature effect

- \triangleright Sample rate:
- **Sample rate and temperature ef**
emple rate:
• Checking the maximum input frequency
where the measured TOA sequence loss
its continuity
• Sample rate reaches 7 MS/s where the measured TOA sequence loss its continuity **Sample rate and temperature ef**
emple rate:
• Checking the maximum input frequency
where the measured TOA sequence loss
its continuity
• Sample rate reaches 7 MS/s
• Limited by the data acquisition process
(100 ns) Sample rate and temperature ef

emple rate:

• Checking the maximum input frequency

where the measured TOA sequence loss

its continuity

• Sample rate reaches 7 MS/s

• Limited by the data acquisition process

(100 ns)
	-
	- (100 ns)
- With 50 ℃ temperature change
	-
	-
- TDC measurement result drifts ~ 2%.
• TDC measurement result drifts ~ 2%.
• TDC precision keeps good (below 20 ps).
• Updating LUT significantly suppresses the temperature effec • TDC measurement result drifts ~ 2%.
• TDC measurement result drifts ~ 2%.
• TDC precision keeps good (below 20 ps).
• Updating LUT significantly suppresses the temperature effec • Updating LUT significantly suppresses the temperature effect.
• TDC precision keeps good (below 20 ps).
• Updating LUT significantly suppresses the temperature effect.

20

#04 **Summary**

Summary

- > Two TDC ASIC designs are taped out for the DTOF detector at STCF. mary
• The ASIC designs are taped out for the DTOF detector at S
• The basic requirements are satisfied
• Further investigation required to figure out unexpected results and for
•
- \triangleright Preliminary test results available for the dual-slope TA-TDC
	-
	-

Undergoing

- \triangleright Further comprehensive evaluation of the two ASICs
- \triangleright Comparison and trade-off between the two designs
- \triangleright Preparing for the next ASIC iteration

THANKS

For Your Attention

Low-power DLL

- e

 One LP DLL for each TOT bank against intra chip variation

 Frequency divider and phase shifter

 Slow down the VCDL nodes switch

 Start-up free
-
-
-
- CKUP
• One LP DLL for each TOT bank against intra chip variation
• Frequency divider and phase shifter
• Slow down the VCDL nodes switch
• Start-up free
• Only one of UP and DN valid in each phase comparison cycle CKUP
• One LP DLL for each TOT bank against intra chip variation
• Frequency divider and phase shifter
• Slow down the VCDL nodes switch
• Start-up free
• Only one of UP and DN valid in each phase comparison cycl • One LP DLL
• One LP DLL for each TOT bank against intra chip variation
• Frequency divider and phase shifter
• Slow down the VCDL nodes switch
• Start-up free
• Only one of UP and DN valid in each phase comparison cycle

- \triangleright Fast residue extraction
	-
	- represent the interpolation result.
	- RES_STOP.
	- insertion to wait for decoding

> Td is required for good TA performance with small input. • Wide input range for both input sequences

\triangleright Type A (TA A)

- e A (TA_A)
• Switch the two branches to the slow slew rate Td after the later
• Wide input range for both input sequences
• Gain difference between two input sequences due to mismatch coming input. Figure 4 (TA_A)

• Switch the two branches to the slow slew rate Td after the later

coming input.

• Wide input range for both input sequences

• Gain difference between two input sequences due to mismatch
 $\textcircled{1}$ Tin
-
-
- **•** Switch the two branches to the slow slew rate Td after the later

coming input.

 Wide input range for both input sequences

 Gain difference between two input sequences due to mismatch

① Tin < 0:
 $T_{out} = \frac{V_{T2} V$ Ω Tin < 0: (2) Tin > 0: $\frac{2 - V_{b2} - K_2 (I_d - I_{in})}{2} - \frac{V_{T1} - V_{b1} - K_1 I}{2}$ $2^{7} N_2$ $\kappa_1^{1} N_1$ $\frac{N_1}{N_1} - N_2 T_d + \frac{N_2 (V_{T2} - V_{b2})}{L} - \frac{N_1 (V_{T1} - V_{b1})}{L}$ $\frac{1}{2}T_{in} + (N_1 - N_2)T_d + \frac{N_2(V_{T2} - V_{b2})}{k_2} - \frac{N_1(V_{T1} - V_{b1})}{k_1}$ $(T_d - T_{in})$ $\sqrt{N_2}$ $\frac{1}{k_1/N_1}$ $T_{out} = \frac{V_{T2} - V_{b2} - k_2 (T_d - T_m)}{k_1 N} - \frac{V_{T1} - V_{b1} - k_1 T_d}{k_2 N}$ k_2/N_2 k_1/N_1 k $N_{\rm i}$ $k_{\scriptscriptstyle\Vert}$ $= N_2 T_{in} + (N_1 - N_2) T_d + \frac{N_2 (V_{T2} - V_{b2})}{I} - \frac{N_1 (V_{T1} - V_{b2})}{I}$ $=\frac{V_{T2}-V_{b2}-k_{2}(T_{d}-T_{in})}{I_{c}+N_{c}+N_{c}}-\frac{V_{T1}-V_{b1}-k_{1}}{I_{c}+N_{c}}$ • Wide input range for both input sequences

• Gain difference between two input sequences due to mismatch
 \bigoplus Tin < 0:
 $T_{out} = \frac{V_{r2} - V_{b2} - k_2(T_d - T_m)}{k_2/N_2} - \frac{V_{r1} - V_{b1} - k_1T_d}{k_1/N_1}$
 $= N_2T_{in} + (N_1 - N_2)T_d + \frac{N$ • Wide input range for both input sequences

• Gain difference between two input sequences due to mismat
 $\textcircled{1}$ Tin < 0:
 $T_{out} = \frac{V_{r2} - V_{b2} - k_2 (T_d - T_m)}{k_2 / N_2} - \frac{V_{r1} - V_{b1} - k_1 T_d}{k_1 / N_1}$
 $= N_2 T_m + (N_1 - N_2) T_d + \frac$ • Gain difference between two input sequences due to mismatch

(1) Tin < 0:
 $T_{out} = \frac{V_{r1} - V_{b2} - k_2 (T_d - T_m)}{k_2 / N_2} - \frac{V_{r1} - V_{b1} - k_1 T_d}{k_1 / N_1}$
 $= N_2 T_{in} + (N_1 - N_2) T_d + \frac{N_2 (V_{r2} - V_{b2})}{k_2} - \frac{N_1 (V_{r1} - V_{b1})}{k_1}$

$$
T_{out} = N_1 T_{in} + (N_1 - N_2) T_d + \frac{N_2 (V_{T2} - V_{b2})}{k_2} - \frac{N_1 (V_{T1} - V_{b1})}{k_1}
$$

 \triangleright Type B (TA B)

-
-
-

$$
T_{out} = N_1 T_{in} + (N_1 - N_2) T_d + \frac{N_2 (V_{T2} - V_{b2})}{k_2} - \frac{N_1 (V_{T1} - V_{b1})}{k_1}
$$

26