

STCF endcap PID detector R&D Progress

Xuesen Lin

On behalf of the DTOF group

FTCF2024, Guangzhou, Nov.17-Nov.21, 2024

 Detector overview Beam test @ CERN Beam test result Summary

Detector Overview-STCF PID requirement

The momenta of STCF final state particles Endcap PID detector requirements

- >4σ π /K separation power at p<2 GeV/c
	- Equivalent to 2% misidentification while over 97% corresponding identification for particles(Pi/K)
- Compact structure, thickness<20 cm
- Low material budget $(<0.5 X_0$)
	- ➢ A **TOF detector** based on **detection of internal reflected Cherenkov light** technology (**DIRC-like TOF**) can meet these requirements.

Detector overview

Good direction property \Rightarrow need a VERY smooth light guide

Detector feature

- Radiator as light guide
- Very smooth surface to keep the light direction
- Use Cherenkov angle and hit time information to separate particles

Detector overview

Previous work

- Simulation work
	- Time & Separation performance
- Full size prototype
	- Production
	- Cosmic ray test (and simulation)

Time performance consistent well with simulation!

 π /K separation power

DTOF prototype for Beam Test

top

DTOF beam test prototype:

- A trapezoid Heraeus Suprasil 312 synthetic fused silica
	- Thickness = 15 mm
	- Roughness < 1 nm for front & back surfaces
	- Top & bottom surfaces blackened
	- **Lateral roughness not so good**
- 14 MCP-PMTs :Hamamatsu R10754
	- 4^{*}4 channels
	- 27.5mm*27.5mm
	- 33 ps time resolution
- PMT-silica coupled by EJ550 silicon grease
- A rotatable designed mechanical structure

bottom

T0 for Beam Test

T0 detector:

- 2 modules
- Each module
	- 2 pieces of 10cm*20cm EJ200 scintillators
		- Rise time ~0.9ns Decay time \sim 2.1 ns
	- 2*3 MCP-PMT
	- Coupling by EJ550 silicon grease
	- Thin black Kapton tape for light shield and low material budget
- Good time resolution ~ 60ps/module, 45ps for T0(~STCF T0 40ps)
- Also serves as TOF for hadron PID up to 5 GeV/c (flight length ~8 m)

Electronics system for DTOF & T0

2024/11/20 Flexible adapter board \times (7 for DTOF+8 for T0) 10ps time precision !

Beam test - Introduction

Basic Information

- CERN PS T9
- 4GeV Pi/P~2GeV Pi/K
- 2 T0 modules
- 2 group of trackers(each 2 Micromegas)
- A trapezoid DTOF prototype

Pi/P@4GeV are equivalent to Pi/K@2GeV!

Fig. 5. Beam composition of the positive beam at the T9 beam line. Flux/spill describes the number of particles per burst. As for the positive beam, there are no muons present right after the target, but they appear when pions or kaons decay⁷

Beam test Introduction

Time reconstruction algorithm

Beam test result - time reconstruction

Beam test result - time reconstruction

Timing result :

• For Pi/P, use Pi/P assumption separately Single track time distribution

 $2024/11/20$ FTCF 2024 Considering the time $\sigma_t{\sim}45 ps,$ the intrinsic $\sigma_{DTOF}{\sim}23 ps$

Single photon time distribution result for different particle with each assumption

Beam test result - time reconstruction

Simulation result

2D likelihood algorithm-Imaging algorithm

2D likelihood:

- Time algorithm cannot meet the requirement~3.3σ
- Use the channel information
- But Geant4 need over 10^5 s to form a hit template
- Project channel vertexs to 2 dimension coordinate (phiC , Zemit)
- Pad area and hit time for each pad=>2D channel-Time map

Cherenkov photons are uniformly distributed in phiC and transportation dimension!

2D likelihood algorithm-Imaging algorithm

- Compare with Geant4 Simulation for fixed hit point (0mm,0mm) and perpendicular to the DTOF prototype
- Patterns are consistent well

Can reduce the process time to 2s/event!

2D likelihood result-Imaging likelihood

2D likelihood result ~3.5σ@ 99.93% efficiency

Result:

- $~\sim$ 3.5/4.0 σ separation (at 99.9%/98.4%) efficiency)
- Slightly worse than simulation, Possible reasons
	- **PMT** crosstalk
	- Tracker calibration
	- **Alignment**
	- Average flight distance for Pi/K in STCF is 1650mm, which is set to 1450mm in beam test (in order to accord with the z-dimension distance)

Summary

- ◆ We proposed the 1/3 DIRC-like TOF (DTOF) detector for beam test @CERN
- ◆ The expected performance of the DTOF detector was simulated, and compared with the beam test result, the result agreed with each other.
- ◆Time reconstruction method was used to separated Pi/P@4GeV. A 3.3σ separation was achieved.
- ◆Imaging reconstruction achieved 4σ separation power for Pi/P@4GeV, with an efficiency of 98.4%.
- T nanks for your attention! ◆ More detailed study and calibration ongoing...

BACKURIP

Beam test Simulation

Geant4 Simulation setup:

- 4GeV Pi/P from $z = -1450$ mm
- Wavelength:280-600nm
- A 8mm thickness shell
- Surface roughness SigmaAlpha ~ 0.1deg
- Track hit point ~2D Gaus(mean=0,sigma=14mm)
- PMT time response function:
	- 67%*Gaus(t,0ps,28ps)+33%*Gaus(t,135ps,135ps)

0.35

cross talk channel 4

MCP-PMT TOT and cross talk

PiSim

Beam test 2D likelihood algorithm 2 channels malfunctional

hChT_alg_pattern_Pi 16000 14000 AO. 12000 0.06 10000 8000 0.02 6000 4000 160 180 200 220 121

> Red dot : Pi Green dot : P as Pi

hChT alg pattern Pi

Beam test 2D likelihood algorithm 2 channels malfunctional

8500 -0.12 0.1 8000 0.08 7500 0.06 7000 0.04 6500 0.02 6000 220 150 180 190 200 210 140 160 170 hChT alg pattern P

hChT_alg_pattern_P

Red dot : Pi as P Green dot : P

Beam test Sim and Data comparason

Signal selection

• **Before selection** DATA SPE signals of one track 16000 DT_1 , DT_2 , $...$, DT_N -2.513 ± 0.294 14000 60.34 ± 0.31 $p2$ p3 4699 ± 40.5 Ing electrons 12000 141.4 ± 1.3 $p5$ 144.1 ± 1.0 Calculated DT_{max} , DT_{min} and $\frac{10000}{5}$ D6 901.4 ± 15.2 $p7$ 209.7 ± 2.8 DT_{mean} p8 505.5 ± 5.1 BKG: 5-electrons, 6000 BKG: δ -electrons,
scattering photons
and dark noise, et al. 4000 YES Eliminate DT_{\min} DT_{\max} - DT_{\min} \lt ΔT ? 2000 • **After selection** $\frac{2000}{1000}$ Time for single photoelectron [ps] χ^2 / ndf 959.9 / 86 16000 DATA $1.565e+04 \pm 4.835e+01$ 2.451 ± 0.184 YES NO 14000 62.43 ± 0.17 p3 749.5 ± 30.7 $(DT_{\text{max}}$ - $DT_{\text{mean}})$ \times μ $<$ DT_{mean} - DT_{min} 12000 p4 48.6 ± 1.5 p5 145.5 ± 1.9 10000 은 σ = 62 ps **Δ***T* **= 200 ps** ළි 8000 |් $w = 1.3$ Output DT_1 , DT_2 , ... , DT_N 6000 And DT_{mean} 4000 $2000 -$ Two parameters, **Δ***t* and *w* -8000 00 -500
Time for single photoelectron [ps]
2024/11/20 -500 500 1000

DTOF detector

- ◆ **fused silica radiator and MCP-PMT**
- ◆ **4σ π/K separation at** *p* **= 2 GeV/***c* **(≈ 40 ps)**
	- Only *TOF*, time resolution **~35 ps**
	- *TOF+TOP*, time resolution **~50 ps**
- ✓ **Large area**
- ✓ **ease of operation and maintenance**
- ✓ **Compact structure, T=1-2 cm**
- ✓ **Excellent time resolution, σSPE~100 ps**
- ✓ **High counting rate capability, ~10 MHz/cm²for MCP-PMT**
- ✓ **High radiation tolerance, TID>5000 Gy**

TOF reconstruction

 θ c

Δz

⚫ **SPE time resolution ~92 ps**

Algorithm

1. Reconstruct light path, including the length of light transmission along different direction, i.e. Δx , Δy and Δz

$$
-\qquad \text{Solving equation, } \cos \theta_c = \frac{1}{n_p \beta} = \overrightarrow{v_t} \cdot \frac{\overrightarrow{v_p}}{|\overrightarrow{v_p}|}
$$

$$
-\qquad \overrightarrow{v_p}=(\Delta x,\Delta y,\Delta z)
$$

- **2.** Length of propagation $LOP = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$
- **3. Time of flight** $TOF = T \frac{LOPn_g}{r_g}$ $\frac{1}{c} - T_0$

⚫ **π/K separation power at 2 GeV/c**

- ‒ TOF-based algorithm, including TOP differences
- $TOF_{\text{hypo}} = T TOP_{\text{hypo}} T_0$ $= TOF_{truth} + TOP_{truth} - TOP_{hypo}$

>4σ π/K separation power

2024/11/20 FTCF 2024 35

Optimization

Some conclusions

- **1. Thick radiator increases material, and thin radiator degreases performance** ➔ **a right thickness is better**
- **2. Large area radiator reduces the number of lateral reflections, causing less hit map's overlaps and better π/K separation power**
- **3. Adding mirror on the top surface will increase Np.e., but cause more overlaps on the photon hit maps. As results, no obvious performance improvement and great attenuation of MCP-PMT's lifetime** ➔ **Reducing the misidentification of photon paths is more important than increasing the number of photons**

Optimal design: Large area (4 sectors),15 mm radiator, with absorber on top and button surfaces

DTOF prototype Auxiliary systems

• **Dark box**

• **Electronics module**

• **MCP-PMT installation**

• **Cooling**

DTOF installation and system integration

● Clean radiator and apply matting paint ● Installation

晶体放入清洗装置

组装清洗装置

吊装搬运晶体

搬运转移出水箱

安装晶体

安装PMT

PMT安装完成后转移至实验室

安装风扇和探测器外壳

安装柔性读出板

搬运至洁净间

洁净室拆卸清洗装置

晶体侧边涂黑

探测器安装完毕

搭建测试平台

2024/11/20 FTCF 2024 39

Cosmic ray test data acquisition system

