

STCF endcap PID detector R&D Progress

Xuesen Lin

On behalf of the DTOF group

FTCF2024, Guangzhou, Nov.17-Nov.21, 2024

Detector overview
Beam test @ CERN
Beam test result
Summary

Detector Overview-STCF PID requirement

The momenta of STCF final state particles

Endcap PID detector requirements

- >4 $\sigma \pi/K$ separation power at p≤2 GeV/c
 - Equivalent to 2% misidentification while over 97% corresponding identification for particles(Pi/K)
- Compact structure, thickness<20 cm
- Low material budget (<0.5 X₀)
 - A TOF detector based on detection of internal reflected Cherenkov light technology (DIRC-like TOF) can meet these requirements.

Detector overview

Good direction property => need a VERY smooth light guide

Detector feature

- Radiator as light guide
- Very smooth surface to keep the light direction
- Use Cherenkov angle and hit time information to separate particles

Detector overview

Previous work

- Simulation work
 - Time & Separation performance
- Full size prototype
 - Production
 - Cosmic ray test (and simulation)

Test areas			Central area	Peripheral area
Number of shotes electrone		DATA	20.6	17.8
Number of photon el	ectrons	MC	Central area 20.6 20.3 59 ps 21 ps 54 ps	17.6
Time resolution of the DTOF prototype	DATA	Single photon	59 ps	60 ps
		Single track	21 ps	22 ps
	мс	Single photon	54 ps	57 ps
		Single track	18 ps	22 ps

Time performance consistent well with simulation!

 π/K separation power

2024/11/20

FTCF 2024

DTOF prototype for Beam Test

DTOF beam test prototype:

- A trapezoid Heraeus Suprasil 312 synthetic fused silica
 - Thickness = 15 mm
 - Roughness < 1 nm for front & back surfaces
 - Top & bottom surfaces blackened
 - Lateral roughness not so good
- 14 MCP-PMTs :Hamamatsu R10754
 - 4*4 channels
 - 27.5mm*27.5mm
 - 33 ps time resolution
- PMT-silica coupled by EJ550 silicon grease
- A rotatable designed mechanical structure

bottom

top

T0 for Beam Test

T0 detector:

- 2 modules
- Each module
 - 2 pieces of 10cm*20cm EJ200 scintillators
 - Rise time ~0.9ns Decay time ~2.1ns
 - 2*3 MCP-PMT
 - Coupling by EJ550 silicon grease
 - Thin black Kapton tape for light shield and low material budget
- Good time resolution ~ 60ps/module, 45ps for T0(~STCF T0 40ps)
- Also serves as TOF for hadron PID up to 5 GeV/c (flight length ~8 m)

Electronics system for DTOF & T0

Flexible adapter board \times (7 for DTOF+8 for T0)

10ps time precision !

Beam test - Introduction

Basic Information

- CERN PS T9
- 4GeV Pi/P~2GeV Pi/K
- 2 T0 modules
- 2 group of trackers(each 2 Micromegas)
- A trapezoid DTOF prototype

ParticleType/L=1450mm	TOF/DeltaTOF:ps	Beta
Pi@2GeV	4839.6	0.9975
K@2GeV	4967.9	0.9709
TOF Difference Pi/K@2GeV	128.3	
Pi@4GeV	4848.4	0.9994
P@4GeV	4981.4	0.9736
TOF Difference Pi/P@4GeV	133.0	

Pi/P@4GeV are equivalent to Pi/K@2GeV!

Fig. 5. Beam composition of the positive beam at the T9 beam line. Flux/spill describes the number of particles per burst. As for the positive beam, there are no muons present right after the target, but they appear when pions or kaons decay.

Beam test Introduction

Time reconstruction algorithm

Beam test result - time reconstruction

FTCF 2024

Beam test result - time reconstruction

Timing result :

• For Pi/P, use Pi/P assumption separately

Considering the time $\sigma_t \sim 45 ps$, the intrinsic $\sigma_{DTOF} \sim 23 ps$

Single photon time distribution result for different particle with each assumption

Beam test result - time reconstruction

Simulation result

2D likelihood algorithm-Imaging algorithm

2D likelihood:

- Time algorithm cannot meet the requirement $\sim 3.3\sigma$
- Use the channel information
- But Geant4 need over 10^5 s to form a hit template
- Project channel vertexs to 2 dimension coordinate (phiC, Zemit)
- Pad area and hit time for each pad=>2D channel-Time map

Cherenkov photons are uniformly distributed in phiC and transportation dimension!

2D likelihood algorithm-Imaging algorithm

- Compare with Geant4 Simulation for fixed hit point (0mm,0mm) and perpendicular to the DTOF prototype
- Patterns are consistent well

Can reduce the process time to 2s/event!

2D likelihood result-Imaging likelihood

2D likelihood result ~3.5σ@ 99.93% efficiency

Result:

- ~3.5/4.0 σ separation (at 99.9%/98.4% efficiency)
- Slightly worse than simulation, Possible reasons
 - PMT crosstalk
 - Tracker calibration
 - Alignment
 - Average flight distance for Pi/K in STCF is 1650mm, which is set to 1450mm in beam test (in order to accord with the z-dimension distance)

Summary

- We proposed the 1/3 DIRC-like TOF (DTOF) detector for beam test @CERN
- The expected performance of the DTOF detector was simulated, and compared with the beam test result, the result agreed with each other.
- Time reconstruction method was used to separated Pi/P@4GeV. A 3.3 σ separation was achieved.
- Imaging reconstruction achieved 4σ separation power for Pi/P@4GeV, with an efficiency of 98.4%.
- Thanks for your attention! More detailed study and calibration ongoing...

BACKUP

Beam test Simulation

Geant4 Simulation setup:

- 4GeV Pi/P from z = -1450mm
- Wavelength:280-600nm
- A 8mm thickness shell
- Surface roughness SigmaAlpha ~ 0.1deg
- Track hit point ~2D Gaus(mean=0,sigma=14mm)
- PMT time response function:
 - 67%*Gaus(t,0ps,28ps)+33%*Gaus(t,135ps,135ps)

0.35

0.25

0.15

0.05

MCP-PMT TOT and cross talk

cross talk channel 4

2024/11/20

PiSim

Beam test 2D likelihood algorithm

hChT_alg_pattern_Pi

Red dot : Pi Green dot : P as Pi

hChT_alg_pattern_Pi

2024/11/20

Beam test 2D likelihood algorithm

Red dot : Pi as P Green dot : P

2024/11/20

FICE 2024

Beam test Sim and Data comparason

Pi

Ρ

Signal selection

Before selection SPE signals of one track DATA χ^2 / ndf 1083 / 141 16000 p0 1.254e+04 ± 6.072e+01 DT_1 , DT_2 , ..., DT_N Signals -2.513 ± 0.294 14000 p2 60.34 ± 0.31 p3 4699 ± 40.5 ng electron 12000 141.4 ± 1.3 p5 144.1 ± 1.0 Calculated DT_{max} , DT_{min} and 0000 Counts 0008 Counts p6 901.4 ± 15.2 209.7 ± 2.8 p7 *DT*_{mean} p8 505.5 ± 5.1 BKG: δ-electrons, 6000 ו האיזיט. ט-צופטעטופי, scattering photons and dark noise, et al. 4000 YES $DT_{\rm max}$ - $DT_{\rm min}$ < ΔT ? Eliminate *DT*_{min} Eliminate DT_{max} 2000 2000 1000 3000 4000 -1000 After selection Time for single photoelectron [ps] • NO $\chi^2/nd!$ 959.9/86 16000 DATA 1.565e+04 ± 4.835e+01 2.451 ± 0.184 YES 14000 NO 62.43 ± 0.17 pЗ $(DT_{\text{max}} - DT_{\text{mean}}) \times W < DT_{\text{mean}} - DT_{\text{min}}$? 749.5 ± 30.7 12000 p4 48.6±1.5 p5 145.5 ± 1.9 10000 Sourts Courts $\sigma = 62 \text{ ps}$ $\Delta T = 200 \text{ ps}$ w = 1.3Output DT_1 , DT_2 , ..., DT_N 6000 And *DT*_{mean} 4000 2000 Two parameters, Δt and w-1000 -500 0 500 Time for single photoelectron [ps] 1000 2024/11/20

DTOF detector

- fused silica radiator and MCP-PMT
- $4\sigma \pi/K$ separation at p = 2 GeV/c ($\sigma_{T0} \approx 40 \text{ ps}$)
 - Only **TOF**, time resolution ~35 ps
 - **TOF+TOP**, time resolution ~**50 ps**

✓ Large area

- ✓ ease of operation and maintenance
- Compact structure, T=1-2 cm
- **Excellent time resolution**, $\sigma_{SPE} \sim 100 \text{ ps}$
- High counting rate capability, ~10 MHz/cm² for MCP-PMT
- ✓ High radiation tolerance, TID>5000 Gy

TOF reconstruction

• SPE time resolution ~92 ps

Algorithm

1. Reconstruct light path, including the length of light transmission along different direction, i.e. Δx , Δy and Δz

- Solving equation,
$$\cos \theta_c = \frac{1}{n_p \beta} = \overrightarrow{v_t} \cdot \frac{\overrightarrow{v_l}}{|\overrightarrow{v_l}|}$$

$$- \qquad \overrightarrow{v_p} = (\Delta x, \Delta y, \Delta z)$$

- Length of propagation $LOP = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$ 2.
- Time of flight $TOF = T \frac{LOPn_g}{c} T_0$ 3.

π/K separation power at 2 GeV/c

- TOF-based algorithm, including **TOP** differences
- $TOF_{hypo} = T TOP_{hypo} T_0$ $= TOF_{truth} + TOP_{truth} - TOP_{hypo}$

>4 σ m/K separation power

2024/11/20

10000

-30-20 -10

Optimization

Some conclusions

- Thick radiator increases material, and thin radiator degreases performance → a right thickness is better
- 2. Large area radiator reduces the number of lateral reflections, causing less hit map's overlaps and better π/K separation power
- 3. Adding mirror on the top surface will increase Np.e., but cause more overlaps on the photon hit maps. As results, no obvious performance improvement and great attenuation of MCP-PMT's lifetime → Reducing the misidentification of photon paths is more important than increasing the number of photons

Optimal design: Large area (4 sectors), 15 mm radiator, with absorber on top and button surfaces

2024/11/20

672-channel electronics system of DTOF

DTOF prototype Auxiliary systems

• Dark box

Electronics module

MCP-PMT installation

Cooling

DTOF installation and system integration

• Clean radiator and apply matting paint

晶体放入清洗装置

吊装搬运晶体

搬运转移出水箱

放入超声水箱

洁净室拆卸清洗装置

晶体侧边涂黑

Installation

安装晶体

安装PMT

PMT安装完成后转移至实验室

安装风扇和探测器外壳

安装柔性读出板

探测器安装完毕

搭建测试平台

2024/11/20

搬运至洁净间

Cosmic ray test data acquisition system

