

Design of Analogue Transient Recorder and Digitiser for Particle Detector Readout - ATR16 and CTR16

Holger Flemming

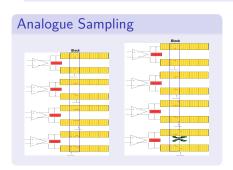
19.11.2024

Outline

- Motivation
- 2 The Transient Recorder ATR16 / CTR16
 - Concept
 - Architecture
 - Variants
- 3 CTR16 Tests and Measurements
 - Test and Measurement Summary
 - Conclusion
- Outlook
- 6 References

Motivation

PANDA Barrel EMC

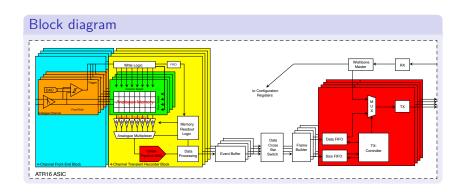


Motivation for ATR16

- Reduction of cable cross section.
- Reduction of analogue pic-up.
- ⇒ Development of an power efficient integrated digitiser.
 - Integrated circuit fitting to the readout concept and requirements of PANDA EMC
 - Operated close to cold area of PWO crystals (-25 °C).

Concept

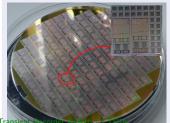
- Gaining physical quantities by transient recording and processing.
- Efficient ADC utilisation by analogue recording and triggering.


Analogue Transient Recorder

- Continuously sampling of signal, storing in analogue memory.
- Switching to next memory block on trigger.
- Asynchronous readout of memory.

Architecture

- 16 channel analogue transient recorder organised in four block with four channels each.
 - Input buffer for external preamplifier or integrated charge sensitive amplifier.
 - Analogue memory 4 rows by 16 columns for each channel.
 - One 12 bit ADC for each block.
 - Data processing (calibration, feature extraction) for each block.
- Event buffer with trigger selector ⇒ Triggered and self-triggered operation.
- Four serial links with 500 Mbit/s each.
- More details in [Flemming et al., 2022a, Flemming and Noll, 2023].


2 Variants of Transient Recorder

- Two variants with different front ends:
- ATR16
 - Input buffer for external preamps[Flemming et al., 2022b].
 - PANDA EMC
- CTR16
 - Integrated charge sensitive amplifier[Wieczorek et al., 2022, Rocco et al., 2022].
 - Originally PANDA GEM
 - SFRS GEM-TPC


First Iteration

- Both ASICs realised in 180-nm-CMOS from UMC.
- First prototypes produced in 2021.

Production

CTR16 Tests and Measurements

CTR16 Tests and Measurement Summary

General Observations

- Reasonable power consumption √.
- Communication works √.

Front End

- Response to DAC settings √.
- Threshold scans √.
- Automatic threshold setting
 \(\times \).
- Baseline tracking for drift compensation √.

Transient Recording and Digitisation

- Transient data seen √.
- ADC calibration stable over hours √.

Data Transport

- Some minor issues in data transport Understood.
- Hang-up of crossbar switch Makes data taking with high statistics difficult.

CTR16 Tests and Measurements

Measurement Conclusion

- First iteration of CTR16 was extremely successful.
- Except for issue in cross bar switch complete complex logic for control, readout and data transport is operational. Minor bugs are understood.
- Issue in cross bar switch makes precise analogue characterisation with high statistics and data taking difficult.

Conclusion for ATR16

- ATR16 not yet tested
- Analogue memory readout and data acquisition back end are identical on ATR16 and CTR16.
- ullet \Rightarrow It is expected that issues in data transport affect ATR16 as well.

Outlook

Next Prototype Iteration

- Redesign of digital part in 2023.
 - Correction of all known bugs.
 - Cross bar switch redesigned from scratch considering all observations of first iteration.
- Wafer production in 2024.
- Wafer currently at dicing process.
- First results expected end of 2024 / beginning of 2025.

Motivation
The Transient Recorder ATR16 / CTR16
CTR16 Tests and Measurements
Outlook
References

Thank you for your attention

Flemming, H., Deppe, H., and Wieczorek, P. (2022a). A family of transient recorder ASICs for detector readout. *Journal of Instrumentation*, 17(07):C07002.

Flemming, H., Deppe, H., and Wieczorek, P. (2022b). The front end and trigger unit for an analogue transient recorder ASIC. *Journal of Instrumentation*, 17(09):C09013.

Flemming, H. and Noll, O. (2023). Performance tests of feature extraction algorithms for short preamplifier transients. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 1047:167880.

Rocco, E., Wieczorek, P., Flemming, H., Kurz, N., Löchner, S., Nociforo, C., Schmidt, C. J., Simon, H., Voss, B., Winkler, M., Garcia, F., Grahn, T., and Luoma, M. (2022). AWAGS: A single ASIC to identify fast ions from protons to uranium. *Nuclear Instruments and Methods in Physics Research A*, 1040:167188–167192.

Motivation
The Transient Recorder ATR16 / CTR16
CTR16 Tests and Measurements
Outlook
References

Wieczorek, P., Flemming, H., and Deppe, H. (2022). Low Noise Amplifier With Adaptive Gain Setting (AWAGS) ASIC. *Journal of Instrumentation*, 17(07):C06010.

