TORCH: Extending LHCb's particle ID capabilities in Upgrade II

Marion LEHURAUX, on behalf of the TORCH project

The 6th International Workshop on Future Tau Charm Facilities, 18-21 November 2024, Guangzhou

GSI Helmholtzzentrum fü

Schwerionenforschung

WARWICK THE UNIVERSITY OF WARWICK

LHCb Upgrade II Physics program & technical challenge

(Non-exhaustive) Physics program

- Onstrain CKM model to increase sensitivity to CP-violating new physics
 - ► e.g. precise ($\mathcal{O}(0.35^\circ)$) measurement of CKM angle γ
- Probing New physics model measuring the CP violating phase ϕ_s ($\mathcal{O}(0.17^\circ)$)
- Exotic hadron spectroscopy
- More in [LHCB-TDR-023] & [CERN-LHCC-2017-003]

Technical challenges

- Running at high luminosity: $\sim 1.5 imes 10^{34}$ cm 2 s $^{-1}$
- With high pile up: ~ 42

Illustration of the track density inside the VELO generated by 42 collisions spread over a bunch crossing

The TORCH detector

Detector concept

- Large area (6 x 5 m²) time of flight detector
- Designed to provide PID in 2-15 GeV/c momentum range
- Aims to supplement PID performance in momentum region where p and K are both below threshold in LHCb RICH detectors
- For K/π separation over 10m flight distance, aims for a 15 ps time resolution per track (i.e. ~ 70 ps time resolution per photon with 30 reconstructed photons)

Marion LEHURAUX - FTCF2024 - 19/11/2024

The TORCH detector

Detector design

- Large area to cover the full LHCb acceptance: 6x5 m² made out of 18 modules,
- Each module has 2500 x 66 x 1 cm³ radiator
- Exploits prompt production of Cherenkov light in an array of fused-silica bars to provide timing
- Total internal reflection from quartz surfaces propagates the photons to the detector plane
- Cylindrical focussing block focusses the image onto a detector plane with highly segmented photo-detectors
 Mode details on the TORCH design

The TORCH detector Comparison with STCF DTOF detector

Similar concept, different detectors

- DIRC-like TOF detector concept
- High counting rate capabilities
- High radiation tolerance
- **Time resolution requirements:** $\sigma_{tot}^{\text{STCF}} < 50 \text{ ps while } \sigma_{tot}^{\text{TORCH}} < 15 / 70 \text{ ps}$ (per track / per photon)
- Momentum range: < 2 GeV/c for STCF DTOF against [2-15] GeV/c for TORCH</p>
- Different angles distributions
- **Radiator thickness:** 5 mm for STCF DTOF against 10 mm for TORCH
- Number of readout channels: 672 per sector x 4 sectors for STCF DTOF against 225k for TORCH
- **Overall dimensions:** 1.080 m diameter ring for STCF DTOF against 5 x 6 m² rectangle for TORCH
- MCP dimensions & segmentation: 23 x 23 mm² sensitive area in 4x4 pixels for STCF DTOF against 53 x 53 mm² sensitive area in 8x64* pixels for TORCH (*varying granularity per module according to expected occupancy)

Expected PID performances

Impact on physics measurements

• Provides π/K (p/K) separation in the 2-10 (2-15) GeV/c momentum range

- Improves phase-space coverage of many analysis and improves effective flavour tagging power [LHCb-PUB-2020-006]
- Will complement RICH2 in providing timing for downstream tracks
 - e.g. reduce combinatorial when reconstructing K_S or Λ

Fused-silica pieces

- Optics formed from multiple pieces of synthetic fused silica
- Requires high-quality surface on front and rear faces
 - Flatness variations \leq 3 μ m
 - Surface roughness $\leq 5 \text{ Å}$
- Two plates of 66x62.5x1cm³ radiator are glued together complete a full-sized module

Focusing block

Fused silica bars used as Cherenkov radiator Measured flatness variations in 1 µm contours

Mechanical support

- Requires lightweight structure to minimise material inside acceptance \rightarrow carbon fibre
- Prototype of the final support structure that accommodates existing photo-detectors and readout electronics has been designed
- Development of exoskeleton (self-standing structure to host single module) to take single full-size module to beam test also being produced

Photo-detectors

Current prototype

- <u>Custom TORCH PMT</u>: 53 x 53 mm² MCP-PMTs with 64 x 64 pads readout
 - Produced by Photek
 - Pixels grouped by 8 along x for effective anode segmentation of 8 x 64
- Excellent intrinsic time resolution < 30 ps
- Readout connectors are mounted on an external PCB and connected via anisotropic conductive film
- MCP is ALD coated to improve lifetime to $\sim 5C/cm^2$

60 mm pitch

Not suitable for HL-LHC environment at this stage

Photocathode, 0 V

MCP input, +HV

MCP output, +HV

Resistive layer, +HV

Photo-detectors

Next generation

- R&D efforts ongoing to find suitable solutions:
 - 16 x 96 pixels MCP directly coupled to reduce charge sharing & per-pixel occupancy

Photocathode, -HV

MCP input, -HV

MCP output, -HV

- Efforts in the context of DRD4 to improve rate capability & lifetime
- Investigating other options such as SiPMs
 - Fill requirement of pixelised devices with time resolution < 50 ps \checkmark
 - Challenge to operate in radiation environment
 - → would require cooling to keep dark count rate under control

Readout electronics

- <u>Current electronics</u> based on NINO & HPTDC (with 100 ps binning) ASICs
- Adaptator boards are being developed to read the new DC-coupled MCPs with existing readout
- For Upgrade II the plan is to use the <u>FastRICH ASIC</u> (25 ps binning)
 - Developed by CERN-ESE and University of Barcelona
 - Constant Fraction Discriminator → no need for time walk corrections & could avoid sending time over threshold information

Detector performances Some results

- MCP-PMT & readout electronics studied extensively in laboratory measurements with pulsed 405 nm picosecond LASER (attenuated to reach single photon mode)
 - MCP operated at 10⁶ gain
 - Intrinsic time resolution of MCP-PMT + electronics is around 50 ps (after Integral Non-Linearity (INL) corrections) [NIMA 1038 (2022) 166950]

- Dedicated calibration system developed to improve the INL and charge-to-width calibration
 - Injection of known charge directly into electronics

Detector performances Results from 2018 beam test

- Observed pattern is consistent with GEANT4 simulation of the prototype
- Time resolutions close to the needs of TORCH
 - Expect to be improved with better electronics calibration
- Photon yield in data about 82-85% of expectations
 - Work ongoing with 2022 beam test data to further improve understanding
- More details in paper [NIMA 1050 (2023) 168181]

Detector performances First look at 2022 test beam data

- 6 MCP-PMTs instrumented
- Data taken at multiple positions of the beam on the quartz radiator bar and for different beam momenta (3, 5, 8 and 10 GeV/c)

Marion LEHURAUX - FTCF2024 - 19/11/2024

Detector performances First look at 2022 test beam data

- Ongoing work
- Time difference between T1 and T2 consistent with time of flight difference
- Comparisons indicate a similar time resolution is seen in 2018 and 2022

Summary & next steps

- TORCH is a large area time-of-flight detector designed to improve LHCb
 PID performances for particles with 2
- Developed for LHCb Upgrade II high luminosity running conditions & installation during LS4 (~2034)
- Significant progress has been made over the past few years :
 - Beam tests indicate that the desired time resolution can be achieved
 - Light-weight support mechanics designed and under construction
 - Aim for beam test in July 2025 with full scale prototype and new mechanics
- R&D is ongoing as part of DRD4 to improve the relevant aspects needed for TORCH (lifetime)
- New collaborators welcome !

BackUp slides

Marion LEHURAUX, on behalf of the TORCH project

The 6th International Workshop on Future Tau Charm Facilities, 18-21 November 2024, Guangzhou

GSI Helmholtzzentrum für

Schwerionenforschung

WARWICK THE UNIVERSITY OF WARWICK

Detector performances *Characterisation of photo-detectors*

@Warwick

@CERN

@Monash

- Multiple test benches are being developed to characterise MCP-PMTs & SiPMs
- Measurements of gain, quantum efficiency, lifetime

- **Ideally:** compare pattern on MCP to $\pi/K/p$ hypothesis 'template'
 - Will be investigated in the future
- In practice: easier to compare information at emission point

For each mass hypothesis:

Each photon detected on the MCP is analytically back-propagated to its emission point and associated to a track
 A log-likelihood is constructed for each given track/hypothesis combination

$$\log L = \sum_{\gamma} \log \left\{ \sum_{\substack{\text{track } j, \ j \neq t}} \frac{N_j}{N_{\text{tot}}} P_j(\vec{x_{\gamma}}^{"} | h_j^{\text{best}}) + \frac{N_t}{N_{\text{tot}}} P_t(\vec{x_{\gamma}}^{"} | h_l) + \frac{N_{\text{bkg}}}{N_{\text{tot}}} P_{\text{bkg}}(\vec{x_{\gamma}}^{"}) \right\}$$

$$= PDF \text{ for the best hypothesis assignment to each other tracks of the event}} PDF \text{ for the track of the event}} + \frac{PDF \text{ for the the background considered track}}{PDF \text{ for the track of the event}} + \frac{N_{\text{bkg}}}{N_{\text{tot}}} P_{\text{bkg}}(\vec{x_{\gamma}}^{"}) + \frac{PDF \text{ for the background considered track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the background track}}{PDF \text{ for the background track}} + \frac{PDF \text{ for the backg$$

TORCH Reconstruction algorithm Validation

Simulation pattern generated by forward-mapping ~ 10⁶ photons for one track

