

Upgrade of the Belle II Vertex Detector with Depleted Monolithic CMOS Active Pixel Sensors

Roua BOUDAGGA – CPPM, Aix Marseille Université, CNRS/IN2P3, Marseille, France

on behalf of the Belle II VTX collaboration

6th International Workshop on Future Tau Charm Facilities (FTCF2024-Guangzhou) November 19, 2024

boudagga@cppm.in2p3.fr

- 1. The Belle II Experiment
- 2. The current Vertex Detector (VXD)
- 3. The VTX Upgrade Proposal
- 4. The TJ-Monopix2 chip
- 5. The OBELIX sensor : Optimized Belle2 pIXel sensor
- 6. Conclusions

VTX collaboration

Jilin University KIT, Karlsruhe IPMU, Kashiwa Queen Mary University of London CPPM, Marseille

IGFAE, Barcelona University of Bergamo University of Bonn University of Dortmund University of Göttingen

IJCLab, Orsay RAL, Oxford INFN & University of Pavia INFN & University of Pisa IFCA (CSIC-UC), Santander IPHC, Strasbourg University of Tokyo KEK, Tsukuba IFIC (CSIC-UV), Valencia HEPHY, Vienna

The Belle II Experiment

- Located at the SuperKEKB collider in Tsukuba, Japan
- $\circ~$ Asymmetric e⁺- e⁻ collider at 4 / 7 GeV and vs = 10.58 GeV
- Luminosity frontier experiment, exploring new physics
- Target instantaneous luminosity of 6x10³⁵ cm⁻²s⁻¹, currently 0.47x10³⁵ cm⁻²s⁻¹
- Target integrated luminosity of **50** ab⁻¹, currently **0.43** ab⁻¹
 - Machine related beam background will increase with high luminosity
 - Efficiency, resolution and performance of data tracking could degrade with higher occupancy from background
 - Extrapolation to this target luminosity has large uncertainty and limited safety margins

- An upgrade of the machine elements and the detector's **interaction region (IR)** is required:
 - \circ To cope with the higher luminosity provided by the SuperKEKB accelerator
 - To improve detector robustness against high backgrounds
 - To provide larger safety factors for running at higher luminosity
 - To increase longer term subdetector radiation resistance
 - To improve overall physics performance
- A long shutdown is foreseen around early 2030 and provides the opportunity to install an upgraded detector

A new vertex detector concept VXD is proposed

The Current Vertex Detector (VXD)

- $\,\circ\,$ Current VXD performance good and operating with low background occupancy < 1 $\,\%\,$
 - $\,\circ\,$ Well below limits: PXD~3%, SVD~5%
- $\circ~$ Two different technologies compose the VXD:
 - \circ Pixel Detector (PXD)
 - $\,\circ\,\,$ Two layers of DEPFET pixel sensor
 - $\circ~$ Material budget: 0.25 % X0 / layer
 - $\circ~$ Pixel pitch: 50 to 75 μm
 - $\circ~$ Integration time of 20 μs
 - Silicon Vertex Detector (SVD)
 - $\circ~$ Four layers of double sided silicon strip sensor
 - $\circ~$ Material budget: 0.75 % X0 / layer
 - Up to 12 cm long strips
 - Time resolution of 3 ns

Silicon Vertex Detector (SVD)

The VTX Upgrade proposal

- A new fully pixelated CMOS detector to replace the VXD VTX Ο
- Improved tracking resolution and space-time granularity Ο

Radius

Ladders

Sensors

Expected hitrate*

Material budget

- Reduced material budget $\approx 2\%$ X0 instead of 3.8%X0 (sum of all layers) Ο
- 5-6 straight layers with Depleted Monolithic Active CMOS Pixel Sensors (DMAPS) process Ο

L1

14.1

б

4

19.6

0.2

L2

22.1

10

4

7.5

L3

39.1

17

7

5.1

- L1 and L2 (iVTX) Ο
 - All silicon ladders \cap
 - Air cooling (constrains power) Ο
- L3 to L5 (oVTX) 0
 - Carbon fiber support frame Ο
 - Cold plate with liquid cooling Ο

L4

89.5

40

16

1.2

L5

140.0

31

 2×24

0.7

Unit

mm

per ladder

MHz/cm²

The VTX detector mechanics

- iVTX Inner Layers Concept:
 - 4 contiguous sensors diced as a block from the wafer
 - Flex print cables
 - Redistribution layer for interconnection
 - Heterogeneous thinning for thinness and stiffness

chips

Carbon Fiber support

Schematic view of the iVTX ladder design

oVTX Outter Layers Concept:

• Ladder structure design inspired by ALICE ITS2, composed of:

- Carbon Fiber support structure (truss)
- Cold-plate with pipes for liquid coolant circulation
- $\circ~$ Chip and Flex circuit for power and signal glued on top

• A same monolithic CMOS pixel sensor chip for all layers : **Optimized Belle II pIXel sensor (OBELIX)**

Flex circuit

Cold plate

The TJ-Monopix2 (TJM2) as prototype

TJ-Monopix2 sensor bonded on a test board

- Developed for ATLAS experiment
 - FE derived from ALPIDE
 - 4 FE flavors
 - Column-drain R/O architecture
- DMAPS Tower Semiconductor 180 nm CMOS
- \circ 2×2 cm² chip: 512×512 pixels
- $\circ~$ Pixel pitch: 33.04×33.04 μm^2
- Expected from design (simulations):
 - $\circ~\sim$ 100 e– min. threshold
 - 5-10 e– threshold dispersion (tuned)
 - \circ >97% efficiency at 10¹⁵ n_{eq} /cm²
 - \circ ~ 5 e- noise
 - \circ Fully efficient with hit rate 120 MHz/cm²
 - \circ Power: ~ 1 μ W/pixel

Base-line option for OBELIX design

The TJM2 Testing

- Characterisation of TJ-Monopix2 (all FE) to validate key performance crucial for OBELIX design
- Full characterisation on bench:
 - Threshold scans (lowest value, dispersion)
 - \circ Noise testing
 - ToT (Time Over Threshold) calibration
- Control and data acquisition system based on the BDAQ53 setup

TJM2 setup DAQ inherited from RD53 collaboration

- Typical settings for operational threshold:
 - $\circ~$ Thresholds between 200 to 300 e–
 - Average noise varies from 7 to 8 e-
- Time Over Threshold (ToT) calibration, Fe55
- o Comparison with measurement and simulations
 - Measurement from monitoring pixels of the analog output signal after the FE amplifier

The TJM2 Testing

• Full characterisation@DESY:

- Efficiency/Resolution measurements
- Radiation hardness (NIEL and TID irradiation campaigns in progress)

• Several test beam campaigns (3-5 GeV e-)

- July 2022: Non-irradiated chips
 - High threshold (500 e-)
 - $\circ~$ Hit efficiency \sim 99.54%, Cluster position residuals \sim 9 μm
- $\circ~$ July 2023: Irradiated chips at 5x10^{14} \, n_{eq}^{}/cm^2
 - $\circ~$ Lower threshold \sim 250-300 e-
 - Good performance and high efficiency
- \circ July 2024: Irradiated chips at 5x10¹⁴ n_{eq}/cm², TID of 100 Mrad
 - Good efficiency but temperature influence

Another test beam planned for 2025

Setup for testbeam – @Desy

The OBELIX Sensor

Aix Marseille Universit

Sensor specifications:

- Tower Semiconductor 180 nm CMOS
- Hit rate up to 120MHz/cm²
- TID tolerance: 100 MRad
- \circ NIEL tolerance: 5x10¹⁴ n_{eq}/cm²/year
- \circ Spatial resolution < 15 μ m
- Power < 200 mW/cm²
- Time precision < 100 ns
- $\circ~$ Trigger at 30kHz average frequency with 5-10 μs latency

- 464 rows and 896 columns
- Overall sensor dimensions around 30.2x18.8 mm²
- $\circ~$ Pixel pitch 33x33 μm^2
- Main design is based on the TJM2 chip

Analog

- Pixel matrix adapted from TJM2
- Column drain architecture
- Monitoring ADC
- Temperature sensors

Power pads

- Power regulators added
- Simplified system integration

Digital Periphery

- Main clk-in: 170MHz
- New end-of-column adapted to Belle II trigger
- Timestamped hits stored in memories
- Read-out when timestamp matched with trigger
- Single output at 340 MHz average bandwidth
- RD53 control/readout protocol

- The OBELIX sensor inherits the performance of the pixel matrix from TJ-Monopix2 sensor
- $\circ~$ The same pitch, 33 \times 33 μm^2 , with the same layout for the analog and digital parts
- The Matrix pixel of TJ-Monopix2 is composed of 4 pixel flavors with differences in the Front-End (FE) amplifier and detector input coupling (AC or DC):
 - Normal FE / Cascode FE
 - HV Cascode FE / HV FE
 - Based on current characterization and simulation results, 2
 FE flavors are chosen for OBELIX on equal area:
 - \circ Cascode FE
 - $\circ ~~ \text{HV Cascode FE}$

Floorplan of TJM2 sensor

The OBELIX Power management

- Power distribution is a major concern as OBELIX is larger than TJ-Monopix2, leading to performance degradation
- Long linear ladders voltage drop across ladder
- On chip regulators are being developed in OBELIX to compensate the voltage drop and minimize the material budget dedicated to power distribution:
 - Two analog LDO (Low Dropout) regulators will be implemented to supply the matrix from both sides
 - A digital LDO in the bottom side of the chip to supply the digital blocs
 - A preregulator to supply LDO references generator
 - A VPC (Voltage pre-charge) LDO to reset and recharge bit-lines between each read cycle
- The LDO generates the output voltage of 1.8 V ± 10% necessary for the technology to power the chip
- Wide input supply voltage range of 2V to 3 V

- New modules related to the Belle II trigger:
 - $\circ~$ TRU: The Trigger Unit
 - Pixel readout, trigger processing
 - $\circ~$ PTD: Periphery Time to Digital
 - $\circ~$ TTT: The Track Trigger Transmission
 - Fast transmission in parallel to the Belle II trigger system

- SCU sync & clk divider: digital clk divider, synchronize circuit & clk divider, RxDat format conversion, main function: clock divider, Rx_data SIPO synchronization
- CRU Control Unit: Implementation RD53B interface, which almost keeps the same design as TJM2, main functions: command decoder, global configuration
- **TRU Trigger Unit**: Manage pixel data from the matrix-EOC and wait for the trigger to pick them for output
- **TXU TX Unit**: generate output data and sequential output, main functions: data framing, serializer

- The SuperKEKB collider is considering a major upgrade to reach a high luminosity
- Reaching the target peak luminosity requires an upgrade of the interaction region and the Vertex Detector
- \circ A new DMAPS VTX is foreseen to improve the performance of the Belle II vertex detector
- The OBELIX sensor based on TJM2 chip with TJ180 nm technology is under development with additional features (all on-chip):
 - Voltage regulators
 - ADC and temperature sensors
 - $\,\circ\,\,$ Trigger logic, up to 10 μs latency at 120 MHz/cm²
 - Precision timing module
 - Fast transmission for trigger contribution
- Lab testing and TB campaigns on TJM2 to validate key performance crucial for OBELIX design
- Development and verification of OBELIX are entering the final stages
- Aiming submission of first version of OBELIX sensor in Spring 2025

Thanks for your attention

boudagga@cppm.in2p3.fr

a