

PANDA Detector at FAIR Status and Challenges

Anastasios Belias GSI Helmholtzzentrum für Schwerionenforschung GmbH

The 6th International Workshop on Future Tau Charm Facilities Guangzhou, China – November 17-21, 2024

PANDA Detector at FAIR Status and Challenges

FAIR – The Facility

FAIR

- ... accelerates particle beams from (anti)protons up to uranium ions with
 - very high intensities
 - up to a factor of ~100 increase for primary Uranium beams (~ 5 x 10¹¹ U²⁸⁺ ions /s),
 - up to a factor of ~10.000 increase for secondary rare isotope beams
 - high pulse power (up to ~ 50 kJ / 50 ns)
 - suite of storage cooler rings equipped with stochastic and electron cooling for brilliant beam quality
- ... develops and exploits innovative particle separation and detection methods, as well as novel computing techniques
- ... to perform forefront experiments towards the production and investigation of

New Extreme States of Matter. FTCF2024-Guangzhou

FAIR - Construction update

FTCF2024-Guangzhou

Antiprotons at FAIR

Antiproton production

- Proton Linac (70 MeV)
- Accelerate p in SIS18/100 (4/29 GeV)
- Produce \bar{p} on Ni/Cu target (3 GeV)
- Collection in CR, fast cooling
- Accumulation in HESR
- PANDA luminosity $\leq 2 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$
- p̄ momentum: 1.5 15 GeV/c
- Fixed target: cluster jet/pellet
- Full FAIR version
 Accumulation in RESR, slow cooling
 Storage in HESR
 PANDA luminosity ≤ 2x10³²cm⁻²s⁻¹

HESR - High Energy Storage Ring

PANDA Physics Objectives

Antiprotons – Unique Probes for Discoveries and Precision Physics

Technical Design Reports approved by experts review

12m

PANDA Targets

Cluster Jet Target

- Expansion of pre-cooled and compressed hydrogen gas into beam pipe
- Cluster jets move with supersonic speed during condensation
- Size: 10³-10⁵atoms/cluster

Project status:

- TDR approved
- Continuous development
- Nozzle improvement
- Better alignment by control device tilting
- Goal: $4 \times 10^{15} cm^{-2}$ target density already achieved
- Continuous improvements

Pellet Target

- Small droplets of frozen hydrogen created in triple point chamber
- Pellet diameter: 10 30 μm
- Vertical injection into target tube
- Falling speed: ~60 m/s
- Flow rate: 100,000 pellets/s
- > 4 × $10^{15} cm^{-2}$ feasible

Project status:

- TDR approved & Prototype in progress **Project freeze!**
- Some developments by other group

PANDA Targets

Cluster Jet Target

- Expansion of pre-cooled and compressed hydrogen gas into beam pipe
- Cluster jets move with • supersonic speed during condensation
- Size: 10³-10⁵atoms/cluster

A. Belias - GSI

Pellet Target

- Small droplets of frozen hydrogen created in triple point chamber
- Pellet diameter: $10 30 \,\mu m$
- Vertical injection into target tube

Photo of the cluster-jet beam (faise colour). Visible are the two highly intense core beams.

PANDA - Magnets

Solenoid Magnet

- Super conducting coil, 2 T central field (B_z)
- Segmented coil for target
- Instrumented iron yoke muon chambers
- Doors laminated, instrumented, retractable

Dipole Magnet

- Normal conducting racetrack design, 2 Tm
- Forward tracking detectors partly integrated
- > Dipole also bends the beam
- HESR component

FTCF2024-Guangzhou

Inner bore: \emptyset 1.9 m /L: 2.7 m Outer yoke: \emptyset 2.3 m /L: 4.9 m Total weight: 300 t

Vertical acceptance: $\pm\,5^\circ$

A. Belias - GSI Horizontal acceptance: ± 10°

Total weight: 200 t

PANDA - Magnets

Solenoid Magnet

- Super conducting coil, 2 T central field (B_z)
- Segmented coil for target
- Instrumented iron yoke muon chambers
- > Doors laminated, instrumented, retractable

Project status:

- TDR approved
- Yoke build & SC cable prototype started **Project freeze!**

Challenges:

- Review the use of other existing solenoids
- Impact studies
 - Different geometry parameters
- New magnet design considerations
 - SC cable new production and QA
 - Yoke design & instrumentation
- Nor

Dipole

- Forward tracking detectors partly integrated
- Dipole also bends the beam
- > HESR component

FTCF2024-Guangzhou

Inner bore: \varnothing 1.9 m /L: 2.7 m Outer yoke: \varnothing 2.3 m /L: 4.9 m Total weight: 300 t

Vertical acceptance: \pm 5°

A. Belias - GSI Horizontal acceptance: ± 10°

Total weight: 200 t

PANDA Detectors - Particle Tracking

PANDA – Micro Vertex Detector

MVD Design

- Si-Pixels inner layers
 - hybrid pixels with thinned sensors $(100 \times 100 \ \mu m^2)$ TDR design
 - ToPiX ASIC, 0.13 μm CMOS
- Si-Strips outer layers
 - Rectangles and trapezoids
 - 130 (70) μm pitch 90 (15) stereo angle
 - ToASt ASIC, 110 nm CMOS
- 6 ns timing resolution
- 50 μ m vertex resolution, $\delta p/p \sim 1\%$
- Low material budget X/Xo \leq 1 % / layer
- Radiation tolerance $< 10^{14} n_{1MeV eq} cm^{-2}$
- Total Dose: 10 MRad
- Continuous readout 10⁷ ch @160 MHz

Project status

- TDR approved
- Si-Strips ready, ASIC v2 progress
- Radiation hard links GBTx & DC/DC (CERN)
- Module Data Concentrator ASIC progress

FTCF2024-Guangzhou

PANDA – Micro Vertex Detector

MVD Design

Challenges:

Revise Si-Pixels with new options: ALICE ITS / HV MAPS / MIMOSIS(CBM)

- Si-Strips outer layers
 - Rectangles and trapezoids
 - 130 (70) μm pitch 90 (15) stereo angle
 - ToASt ASIC, 110 nm CMOS
- 6 ns timing resolution
- 50 μ m vertex resolution, $\delta p/p \sim 1\%$
- Low material budget X/Xo \leq 1 % / layer
- Radiation tolerance $< 10^{14} n_{1MeV eq} cm^{-2}$
- Total Dose: 10 MRad
- Continuous readout 10⁷ ch @160 MHz

Project status

- TDR approved
- Si-Strips ready, ASIC v2 progress
- Radiation hard links GBTx & DC/DC (CERN)
- Module Data Concentrator ASIC progress

FTCF2024-Guangzhou

PANDA - Straw Trackers

Central Tracker STT

- 4224 straws, Ø 1cm
- Ar CO₂ at 2 bar (absolute)
- 19 axial layers, 8 skewed
- 0.04% X₀/layer
- ASIC readout

Forward Tracker 1-4

- 2+2 planar stations,
- 5600 straws, 1 cm diameter
- Ar CO2 at 2 bar (absolute)
- 4 DL/station (x,u,v,x)
- ASIC readout

OuterTracker (LHCb straws)

- Inner half length modules 2.4m
- 10800 straws, Ø 0.5cm
- 4 DL/station (x,u,v,x)
- 0.1% X₀/layer
- LHCb ASIC readout + interface

PANDA - Straw Tube Tracker - Barrel

Tracking in Target Spectrometer

- Layers of drift tubes
- R_{in}= 150 mm, R_{out}= 420 mm, l=1500 mm
- Tube made of 27 μ m thin Al-Mylar, O=1cm
- Self-supporting straw double layers at ~1 bar overpressure (Ar/CO₂) developed at FZ Jülich
- 4224 straws in 19 /8 Axial /stereo layers at ~3°

Gas tube

Electric

contact

Resolution: $\sigma(r) \sim 150 \mu m$, $\sigma(z) \sim 2-3 mm$

Material Budget

- $0.05 \% \text{ X/X}_{0} \text{ per layer }$
- Total 1.3% X/X₀

Project Status

- **TDR** Approved
- **ASIC (PASTTREC) & TDC FPGA** AMS 0.35µm CMOS
 - time and ToT, PID capability
- Extensive beam tests at COSY and QA done

Nire

Crimp pin

- Ageing tests: up to 1.2 C/cm²
- Module production starting

PANDA-STT (3D-view)

Straw layout (cross-view), stereo layers in red/blue.

G

with electric gro

Fixation ring

PANDA - Forward Straw Tube Tracker

Tracking in Forward Spectrometer

Stations 3 with 2 chambers each

- FT1&2 : in front of dipole
- FT3&4 : inside the dipole gap
- FT5&6 : behind the dipole

Straw tubes arranged in double layers

- Same technology as for STT Barrel
- 27 µm thin Al-mylar, O=1cm tubes
- Stability by 1 bar overpressure
- 4 projections 0°/+ -5°/0° per chamber
- Readout ASIC (PASTREC) & TDC FPGA (same as STT Barrel)

Project status

- TDR approved
- Straw and module production ongoing
- Ageing tests: up to 1.2 C/cm²
- Frames for FT1/2 ready, for FT3/4 in production
- Module production started
- Tender for HV system and gas flow regulators
- Prototype purified gas system used for tests

PANDA - Straw Tube Tracker in FAIR Phase O

Detector Layout

- Layers of drift tubes
- R_{in}= 150 mm, R_{out}= 420 mm, l=1500 mm
- Tube made of 27 μ m thin Al-Mylar, O=1cm
- Self-supporting straw double layers at ~1 bar overpressure (Ar/CO2) developed at FZ Jülich
- 4224 straws in 19 /8 Axial /stereo layers at ~3°
- Resolution: σ(r) ~150µm, σ(z) ~2-3mm
 Material Budget
- 0.05 % X/X₀ per layer
- Total 1.3% X/X₀

Project Status

- TDR Approved
- ASIC (PASTTREC) & TDC FPGA AMS 0.35µm CMOS
 - time and ToT, PID capability
- Extensive beam tests at COSY & QA
- Module production starting
- FEE Calibration & Readout fully validated

A. Belias - GSI

FTCF2024-Guangzho

LHCb Outer Tracker Straw Tubes in PANDA

LHCb/CERN donated the formidable Outer Tracker straw tube detector to PANDA at GSI/FAIR.

One of 12 frames, 5x6 m², with 4352 straws in 18 modules. (Photo courtesy: LHCb)

Outer Tracker brief specs

Straw tube

- Diameter, length: 5 mm, 2.4 m
- Anode wire: $25\mu m$ at 1550 V
- Gas mix: Ar/CO₂/O₂

Module

- Two staggered layers of 64 straw tubes
- One module: $X/X_0 = 0.37\%$
- Independent upper and lower sides
- Front-end electronics (FEE) each side

Whole Detector

- 53,760 straw tubes, 216 modules, 432 FEE
- Area coverage: 5 x 6 m² x12 planes

Performance (LHCb operations, Run 1&2)

- $\epsilon \approx 98\%$, $\sigma \approx 170 \ \mu m$
- $\delta p/p \approx 0.4\%$ (2-100 GeV tracks)
- No significant ageing or gain loss

Whole OT in transport frame, $7x5.5x3.5 \text{ m}^3$, 24t, arrival at GSI, Aug. 25, '23. (Photo courtesy: GSI)₂₅

OT use case I: PANDA Forward Tracking

PANDA - Gaseous Electron Multiplier Tracker

Electronics

Forward Tracking inside Solenoid

- Tracking in high occupancy region
- Important for large parts of physics

Detector design

- 3 stations with 4 projections each \rightarrow Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils developed at CERN (50µm Kapton, 2-5µm copper coating)
- Outer diameter (mm): 900, 1120,1480
- ADC readout for cluster centroids → Approx. 35000 channels total
- Challenge to minimize material

Project status

- Advanced mechanical concept
- Demonstrator construction started
- Readout electronics (VMM by CERN)

2D Demonstrator at GSI

PANDA - Gaseous Electron Multiplier Tracker

Electronics

Forward Tracking inside Solenoid

- Tracking in high occupancy region
- Important for large parts of physics

Detector design

- 3 stations with 4 projections each
 → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils developed at CERN (50µm Kapton, 2-5µm copper coating)
- Outer diameter (mm): 900, 1120,1480
- ADC readout for cluster centroids
 → Approx. 35000 channels total
- Challenge to minimize material

Project status

- Advanced mechanical concept
- Demonstrator construction started
- Readout electronics (VMM by CERN)

2D Demonstrator at GSI

Challenges:

- Large Area coverage
- Segmentation issues
- Reconsider design & other MPGD

PANDA - Luminosity Detector

Elastic scattering:

- Coulomb part calculable
- Tracking scattered p

Detector layout:

- Roman pot system at z=11 m
- Acceptance 3-8 mrad
- Silicon pixels (80x80 μm²):
 4 planes of HV MAPS (50 μm thick)
 - Active pixel sensor HV CMOS (Mu3e)
 - Digital processing on chip
 - Faster and more rad. hard
 - Testbeams: S/N ~ 20
 Efficiency ~99,5 %
- CVD diamond supports (200 μm)
- Retractable half planes in sec. vacuum

Project status:

- TDR approved
- Mechanical vessel, vacuum, cooling ready
- CVD diamond supports available
- Large sensors MuPix 11 sensors available
- In beam tests luminosity determined to 2%
 Data at a standard stand Standard stand Standard stand Standa
- Detector completion progressing well

PANDA Detectors - Calorimetry

A. Belias - GSI

PANDA - Crystal Calorimeter: Barrel and Endcaps

Crystal Calorimeter based on ~15,500 high quality second-generation PWO II (PbWO₄) crystals (Lead Tungsted)

- Radiation length X₀ = 0.89 cm (20cm ≈ 22 X₀)
- Short decay time τ =6.5 ns
- Increased light yield, at -25°C
- Time resolution <2ns

Project Status

- TDR approved
- EMC Endcaps ready to completion
- Barrel EMC in progress
- Crystal production continued effort

PANDA – Backward Endcap EMC

Project status

- TDR approved
- Detector construction towards completion
- PANDA BWE EMC in use at Mainz Microtron (MAMI)

Assembly of Phase 0 system (640 ch instead of 524 for PANDA)

- All modules assembled and calibrated
- Pre-tests done
- Calibration in Coldbox starting
- Beamtimes at MAMI in 2024 ff

Electronics

- HV boards series production, calibration in progress
- Lightpulser system: fibrebundles produced, PCB boards in production
- Arduino Apfel&HV control: tested and working

PANDA – Backward Endcap EMC in FAIR Phase 0

PANDA BWE EMC at Mainz Microtron (MAMI) part of experiments for high-resolution electron scattering in coincidence with hadrons (FAIR Phase 0)

Physics program with PANDA Endcap at MAMI

- π^0 to $\gamma\gamma$ transition form factor (TFF)
- Primakoff π⁰ electroproduction
- Setup: endcap calorimeter around beam pipe
- Measurement at MAMI: CW e-beam, up to 1.5 GeV

PANDA Endcap with Scintillator for e-detection

MAMI A1 3 spectrometer setup

PANDA – Forward Endcap EMC

- Detector construction towards completion
- PANDA FWE EMC in experiments at ELSA

Talk by Meike Kuessner, "Performance of the new PANDA Forward-Endcap PbWOII-EMC measuring neutral pions produced by the COSY beam"

FTCF2024-Guangzhou

PANDA - Barrel EMC

Mechanics

- All alveoles produced
- First slice fully assembled, cooling implemented
- Production of next slice in preparation

Crystals

- Producer Crytur in Czech Republic
- 6100 crystals for complete setup needed, 129 needed for 3rd slice, 402 for 4th slice
- All raw material available

Readout

- APFEL ASIC, all available, flex PCBs delivered
- Hit Detection ASIC: ATR16 prototype delivered
- Backplane stack with HV regulation board, design verified, preparing series production

Services

- Light pulser monitoring
- Stimulated recovery with blue LED

- TDR approved
- Crystal production ongoing
- Slices construction continue

Talk by Holger Flemming, "Design of Analogue Transient Recorder and Digitiser for Particle Detector Readout - ATR16 and CTR16"

APFEL

FTCF2024-Guangzhou

A. Belias - GSI

PANDA - Forward Spectrometer Shashlyk Calorimeter

Forward electromagnetic calorimeter

- Interleaved scintillator and absorber layers
 - 380 layers of 0.3 mm lead and 1.5 mm scintillator, total length 680 mm
 - Transverse size 55x55 mm²
- WLS fibers for light collection
- Active area size 297x154 cm²
- PMTs for photon readout & FADCs for digitization **Project Status**
- TDR approved
- Prototype 2 x 2 cells of 5.5 x 5.5 cm² verified
- FADC systems ready, QA in progress
- Tests with electrons and tagged photons:
- → Energy resolution
 - $\frac{\sigma_E}{E} = 5.6/E \oplus 2.4/\sqrt{E[\text{GeV}]} \oplus 1.3$ [%] (1-19 GeV e⁻)
 - $\frac{\bar{\sigma_E}}{E} = 3.7/\sqrt{E[\text{GeV}]} \oplus 4.3$ [%] (50-400 MeV γ)
- → Time resolution
- 100 ps/√E[GeV]

Challenges:

• Detector design & continuity

A. Belias - GSI

PANDA Detectors - Partcile ID

PANDA – DIRC Counters

Detection of Internally Reflected Cherenkov light pioneered by BaBar

- Cherenkov detector with SiO₂ radiator
- Detected patterns give β of particles

Talk by Georg Schepers, "The PANDA DIRC detectors"

Barrel DIRC

- Design similar to BaBar DIRC
- Polar angle coverage: 22° < θ < 140°
- PID goal: 3σ π/K separation up to 3.5 GeV/c

FTCF2024-Guangzhou

Key technologies:

- Fast single photon timing in high B-fields with small pixels and long lifetime
- MicroChannelPlate (MCP) PMT
- High-quality fused silica radiators A-Bass and Discs

Endcap Disc DIRC

- Novel type of DIRC
- Polar angle coverage: 5° < θ < 22°
- PID goal: 3σ π/K separation up to 4 GeV/c

PANDA – Barrel DIRC

Barrel DIRC

• Coverage: 22° < θ < 140°

Project Status

- TDR approved
- All radiators received at GSI
- MCP-PMTs deliveries to GSI
- MCP-PMT tests ongoing at FAU-Erlangen
- Bar box (radiator's enclosure) material tests
- Long-term outgassing measurements at GSI
- Procedure for bar gluing started
- Readout design progressing
- Development of ANNs for DIRC PID

Key technologies:

- Fused silica radiators
- Fast single photon timing in B-field with small pixels and long lifetime

Endcap Disc DIRC

Coverage: 5° < θ < 22°

Project Status

- TDR approved
- One quadrant available
- Prototype readout started

Project freeze! Challenges:

Detector construction & completion

PANDA - Forward RICH

Design based on "Focusing Aerogel"

Increase light yield without deterioration of photon resolution by combining multiple tiles with different refractive index

- > Coverage: $\theta_x < 10^\circ$, $\theta_y < 5^\circ$
- > 40mm thickness focusing aerogel tiles (2 or 3 layers), n≈1.05
- Focusing mirrors direct Cherenkov photons to sensor array above/below beam
- Mirrors: 2mm float glass, Al+SiO₂ coating
- Sensors: ~240 Hamamatsu H12700 MaPMTs
- Fast FPGA-based readout electronics: DiRICH (same as PANDA Barrel DIRC, HADES/CBM RICH)
- Expected performance:
 - \geq 3 s.d. π/K separation for 2 10 GeV/c

Key technology: high-quality transparent aerogel tiles with finely-tuned refractive index.

Project status

- Small scale system tests
- Beam tests with electrons at BINP in 2019

Project freeze! Challenges:

- Technical Design
- Detector construction

Layout: long multilayer PCB for transmission ("railboard")

Project Status

- TDR Approved
- Studies on scintillator thickness
- Long PCB module produced, FoS (1/16)
- Optimizations and performance validation FTCF2024-Guangzhou

Projects freeze! Challenges:

Detector construction & completion

Project Status

- **TDR** Approved
- Readout optimization
- Design laser calibration system

140x10x2.5 cm

92 Hamamatsu R2083 (2")

Scintillator tiles 5 mm thick

Barrel ToF

- Photon readout with SiPMs (3x3 mm²)
 - High PDE, time resolution, rate capability
 - Work in B-fields, small, robust, low bias
- System time resolution: <100 ps achieved

- **TOFPET ASIC for SiPM readout**

Forward ToF Central part 20 counters 20 plastic scintillators Bicron 408 140x5x2.5 cm Side parts 40 Hamamatsu R4998 (1") 2x23 counters 46 plastic scintillators Bicron 408

PANDA - Muon Detector System

Count

Muon system rationale

- Low momenta, high BG of pions
 → Multi-layer range system
 Muon system layout
- Barrel: 12+2 layers in yoke
- Endcap: 5+2 layers
- Muon Filter: 4 layers
- Fw Range System: 16+2 layers
- Detectors: Mini Drift Tubes (MDT) wire & cathode strip readout

Project status

- TDR approved
- Testbeams at CERN, aging, cosmics
- Digital FEE developments

Testbeam results:

• μ , p and n easily resolved

PANDA – Muon Range System with LHCb OT Straw Planes

- LHCb Outer Tracker long modules for PANDA Muon Range System,
- Option 1 (right): +-5° angle, same size as original FRS
- Option 2 (left): 90° angle, fixed absorber planes

Less layers, thicker <u>absorber</u>

PANDA - Detector Control System (DCS)

Control, Monitor and Archive for all detectors and sub-systems

Decentralized architecture

□ Freely scalable

Allows "partitioning") each subdetector has its own DCS

FTCF2024-Guangzhou

Detector construction /system completion **Cluster-Jet Target Dipole Magnet Si-Strip Detector Straw Tracking** - Barrel and planar **Luminosity Detector EMC Forward Endcap EMC Backward Endcap Barrel EMC Barrel DIRC**

FTCF2024

Detector construction /system completion **Cluster-Jet Target Dipole Magnet Si-Strip Detector Straw Tracking** - Barrel and planar **Luminosity Detector EMC Forward Endcap EMC Backward Endcap Barrel EMC Barrel DIRC**

FTCF2024

Detector construction /system completion **Cluster-Jet Target Dipole Magnet Si-Strip Detector Straw Tracking** - Barrel and planar **Luminosity Detector EMC Forward Endcap EMC Backward Endcap Barrel EMC Barrel DIRC**

FTCF2024

Solenoid Magnet Challenges Detectors Shashlyk Calorimeter **Muon detection Forward RICH TOF Systems Disc DIRC**

Current prospects and timeline

50

FAIR with antiproton beams in HESR by 2032

SI/Zeitrausch

Turit