Allen: GPU-based event processing framework at LHCb

Da Yu Tou (杜大佑) on behalf of the LHCb Experiment

Tsinghua University

6th International Workshop on Future Tau Charm Facilities

The LHCb Experiment

2/45

The LHCb Experiment

- LHCb is a single-arm spectrometer in the forward region $(2 < \eta < 5)$ at the LHC: optimised for studying *b* (and *c*) decays boosted in the forward region. JINST 19 (2024) 05, P05065
- Flexible enough to support a broad range of physics: heavy ions and massive bosons (*Z*, *W*, *H*) results are competitive in the forward region and discoveries of charmed exotics in *b* decays.

The Current Run 3 LHCb Detector

- VELO, UT and SciFi trackers.
 - LHCb originally designed for flavor physics and CP violation: require good momentum, mass and vertex resolution.
 - **VE**rtex **LO**cator $55\mu m \times 55\mu m$ silicon pixel detector.
 - Upstream Tracker silicon strip detectors before magnet.
 - **Sci**tilating **Fi**bre scintillators with SiPM readout after magnet.

• Muon, RICH, ECAL and HCAL detectors for particle identification.

Run 2 LHCb Detector

 Run 3 detector is designed achieve performance equal to or better than Run 2 detector (figure on right).

Int.J.Mod.Phys.A 30 (2015) 07, 1530022

- Run 2 tracking performance:
 - Momentum resolution $\sigma_p/p \approx 0.5 1\%$.
 - ▶ IP resolution $(15 + 29/p_T \text{ [GeV]})\mu m$.
- Run 2 PID performance:

•
$$\epsilon(e) \sim 90\%$$
, $e \to h$ mislD $\sim 5\%$.

• $\epsilon(K) \sim 95\%$, $\pi \to K \text{ mislD} \sim 5\%$.

•
$$\epsilon(\mu) \sim 97\%$$
, $\pi \to \mu$ mislD $\sim 1 - 3\%$.

Real Time Analysis at 30MHz

Data-taking in e^+e^- and Hadron Colliders

- e^+e^- is relatively clean.
- Belle II online event display on 4th November. [link]

- In contrast, LHCb events are very busy.
- Typical LHCb event in Run 2. OPEN-PHO-EXP-2016-007

Physics Saturation with Hardware Triggers

- During LHCb Run 2, the L0 hardware trigger saturates at ${\cal L}_{\rm inst} = 4 \times 10^{32} \ {\rm cm}^{-2} \ {\rm s}^{-1}.{}^*$
- At 5 × L_{Run 2}, Run 3 cannot operate a hardware trigger without sacrifices to physics efficiencies. JINST 19 (2024) 05, P05065

*Low occupancy in muon detectors \rightarrow decays with μ have lower thresholds.

Real Time Analysis at 30MHz

• Problems:

LHCb-PUB-2014-027

- ▶ Trigger at $5 \times \mathcal{L}_{Run \ 2}$ without saturating physics efficiency.
- Run 3: every 53.5 events have a *b*-hadron, 4.7 for *c*-hadron.

Real Time Analysis at 30MHz

Problems:

LHCb-PUB-2014-027

- ▶ Trigger at $5 \times \mathcal{L}_{Run \ 2}$ without saturating physics efficiency.
- Run 3: every 53.5 events have a *b*-hadron, 4.7 for *c*-hadron.
- Solution: real-time software trigger that reconstructs full detector readout of 4TB/s and selects events at 30MHz.

JINST 19 (2024) 05, P05065

• Allen: high throughput inclusive HLT1 trigger. Focus of this talk!

- Allen: high throughput inclusive HLT1 trigger. Focus of this talk!
- Real-time alignment and calibration for offline quality detector alignment during online reconstruction.

- Allen: high throughput inclusive HLT1 trigger. Focus of this talk!
- Real-time alignment and calibration for offline quality detector alignment during online reconstruction.
- Offline quality reconstruction and flexible inclusive triggers at HLT2 to support broad physics program.

- Allen: high throughput inclusive HLT1 trigger. Focus of this talk!
- Real-time alignment and calibration for offline quality detector alignment during online reconstruction.
- Offline quality reconstruction and flexible inclusive triggers at HLT2 to support broad physics program.
- Multi stream storage.

- Allen: high throughput inclusive HLT1 trigger. Focus of this talk!
- Real-time alignment and calibration for offline guality detector alignment during online reconstruction.
- Offline quality reconstruction and flexible inclusive triggers at HLT2 to support broad physics program.
- Multi stream storage. TURBO persists partial event information to reduce data bandwidth. JINST 14 (2019) P04006

Allen: GPU Trigger at the LHCb Experiment

- GPU based trigger Allen project, named after Turing Award computer scientist Frances Allen.
 - Computer Software for Big Science 4, 7 (2020)
 - gitlab and <u>documentation</u>

- GPU based trigger Allen project, named after Turing Award computer scientist Frances Allen.
 - Computer Software for Big Science 4, 7 (2020)
 - gitlab and <u>documentation</u>

- What are the physics that Allen needs to trigger on?
- How does Allen achieve a high throughput input event rate (30 MHz)?
- How does developers and analyst interact with Allen?

Allen Framework - Trigger Tasks

- Decode subdetectors that are reconstructed.
- Reconstruct event.
 - Reconstruct tracks.
 - Add particle identification information from ECAL and MUON.
 - Reconstruct vertices.

Allen Framework - Trigger Tasks

- Trigger inclusively on physics signature:
 - Displaced secondary vertex and/or high momentum.
 - 2 Can relax cut with signature in ECAL or MUON detectors.
 - **③** ECAL reconstruction for γ .

Allen Framework - Processing Pipeline

• Minimize data transfers between Event Builders and Allen.

- Send raw detector data to GPUs over PCIE40.
- Allen sends back trigger decisions very little data.

Allen Framework - Hierachical Parallelism

- GPUs needs to process a lot of data in parallel to achieve high throughput.
- LHCb's HLT1 is inherently parallelizable:

Da Yu Tou (Tsinghua University)

Future Tau Charm Facilities 15 / 45

Allen Framework - CUDA Streams

• Multiple batches of events are scheduled in parallel on GPUs.

- Hide latency with asynchronous copy.
- Hide latency of kernel call overhead.
- Let CUDA scheduler on streaming multiprocessors optimize resource usage of GPUs.

Allen Framework - Memory Management

GPU VRAM

- Custom GPU memory manager.
 - Memory allocation and deallocation is slow → reduce throughput.
 - Allen allocates memory at start-up for each stream.
 - ► Algorithm request memory → manager dynamically returns chunk of unused pre-allocated memory.
 - ► Data dependency is used to track lifetime → dynamically returned unused chunk.

Allen Framework - Configuration

Example Allen sequence, each block is an algorithm.

- GPU algorithms are compiled into modular kernels.
- Configure sequence of kernels/algorithms in python using LHCb's PyConf package.
- Flexibility to configure parameters, reconstruction logic and trigger lines for different data-taking conditions.
 - Different trigger configuration for pp vs heavy ion collision.

Allen Framework - Software

S Failed े 00:59:55 昔 6 days ago	Merge branch 'ca_ion_2024' into 'baudurie_ion #8403194 th 1719	00000000000000000000000000000000000000
 Passed 02:00:19 6 days ago 	Fixed formatting #8402215 11 1760 ∽ 73148838 latest merge request	00000000000 0

Allen CI tests.

- Good parallel programming requires different mindset.
 - CUDA very similar to C++ but writing performant code is hard.
 - Allen has standalone build that is easy and fast to build.
 - Robust and fast CI pipeline for quick feedback to developers.
- Allen supports cross-architecture via macros.
 - Code written in CUDA, can compile to NVIDIA GPU and x86 CPU.
 - Architecture dependent code path for best performance.

Data Taking with Allen

RTA Triggers - Real Data

- HLT1 trigger efficiency and mass resolution in $B^{\pm} \rightarrow D^0 \pi^{\pm}$.
- Much better efficiency than Run 2.
 - Especially in low p_T where hardware triggers cut on.
- Good mass resolution with partial reconstruction of HLT1.

RTA Triggers - Real Data

- HLT1 trigger efficiencies in $B^{\pm} \rightarrow K^{\pm} J/\psi$, $J/\psi \rightarrow e^+ e^-/\mu^+\mu^-$.
- Software trigger much more efficient for electrons.
- Small improvement with software triggers in muons.
 - The LHCb muon stations has low occupancy.
 - Loose but efficient muon hardware triggers in Run 2.

Da Yu Tou (Tsinghua University)

LHCB-FIGURE-2024-007

Allen - Design Luminosity

- Started taking data in 2022.
- First few months of data taking to fine tune Allen (GPU trigger) and real time analysis project.

- 2024: successful data taking at design luminosity of $\mathcal{L}_{inst} = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}.$
- $\mathcal{O}(500)$ NVIDIA A5000 GPUs processing at 4TB/s input rate.

Future Tau Charm Facilities

23/45

Why Trigger with GPUs?

JINST 19 (2024) 05, P05065

- $\mathcal{O}(500)$ FPGA receives detector data at 30 MHz, 4 TB/s.
- ~ 170 event builder (EB) node with 3 GPUs each to trigger with HLT1, output up to 200 GB/s.
- Store events in a buffer before HLT2 filter down to 10 GB/s.

CPU based HLT1 DAQ

GPU based HLT1 DAQ

• This is too complicated, let's focus on the important part.

CPU based HLT1 DAQ

GPU based HLT1 DAQ

- GPUs are cheaper for the required throughput 325k CHF.
- Also save costs on network 250k CHF.

CPU based HLT1 DAQ

GPU based HLT1 DAQ

- GPUs are cheaper for the required throughput 325k CHF.
- Also save costs on network 250k CHF.
 - GPU: directly use PCIE40 on Event Builder (EB) nodes for free.
 - CPU: additional 32Tb/s EB-HLT1 connection. (4TB/s readout)

Da Yu Tou (Tsinghua University)

Allen: GPU event processing at LHCb

Future Tau Charm Facilities

27 / 45

CPU based HLT1 DAQ

GPU based HLT1 DAQ

• Same physics efficiency but save 575k CHF, $\sim 20\%$ cost of filter farm.

- Computing and Software for Big Science 6 (2022) 1, 1
- Estimated in 2021, numbers might have changed by $\sim 10\%$.

Relevance for STCF

- GPU-based HLT1 is cheaper to CPU-based.
 - Needs enough parallelism for high throughput I think this is doable in e⁺e⁻ colliders but needs different implementation from LHCb.
 - Performant code needs different programming skills.
- HLT2 features:
 - Offline quality reconstruction: offline reconstruction uses same software.
 - Selective persistency: only save information relevant for analysis.
- Real time alignment and calibration
 - HLT1 and HLT2 reconstruction uses offline quality detector alignment and calibration.

- The Run 3 LHCb experiment, initially designed for *b*, *c* physics operates a fully software trigger.
 - Real-time analysis in the software trigger significantly improves efficiencies, even at higher luminosity of Run 3 data-taking.
 - Flexible design allows LHCb to support a broad range of physics program, heavy ion to heavy bosons.
- Allen, a GPU based trigger has been commissioned at the LHCb experiment.
 - High throughput data processing with lower costs than CPU solution.
 - The Allen framework is designed to run on GPUs.
 - Successfully taking data at design luminosity.

32 / 45

High Level Trigger 2 - Goals and Design

- Goal: Perform best possible reconstruction and reduce data rate to 10 GB/s.
- Complete pattern recognition, track fit, vertexing and PID.
- Currently have $\mathcal{O}(4000)$ trigger lines written by analysts for broad range of physics programs.
 - Structure of arrays to fully benefit from SIMD CPUs.
 - Throughput oriented (ThOr) functors agnostic to input/output type.
 - Functor cache instead of just-in-time compilation.
 - Event scheduler handles data dependencies with composite node (OR, AND, NOT). <u>CERN-THESIS-2020-331</u>

High Level Trigger 2 - Turbo Persistency

- HLT2 has 10 GB/s output but O(4000) trigger lines.
- Reduce event sizes by only saving information relevant to physics analysis.
- Flexible settings for analyst to choose what to persist.
- Used extensively in Run 2.

High Level Trigger 2 - Turbo Persistency

- Expand Turbo in Run 3.
 - Triggers with Turbo persistency account for ~ 70% of events triggered by LHCb.
 - But they only use 25% of HLT2 output data bandwidth!

High Level Trigger 2 - Turbo Persistency

- Expand Turbo in Run 3.
 - Triggers with Turbo persistency account for ~ 70% of events triggered by LHCb.
 - But they only use 25% of HLT2 output data bandwidth!

- Unlike full events, Turbo events cannot re-run reconstruction.
 - Need best possible alignment and calibration during HLT2.
 - Run alignment and calibration in real-time before HLT2.
 - HLT1 output is stored in a *O*(10) PB buffer.

Alignment and Calibration

- Real time alignment and calibration pioneered in Run 2.
 - Alignment for VELO, UT, SciFi, RICH mirrors and MUON.
 - Calibration for RICH, ECAL and HCAL.
- Critical for HLT2, especially Turbo selective persistency.

Alignment and Calibration - VELO

- Based on Analyzer and Iterator:
 - Analyzer runs reconstruction and calculates alignment constants.
 - Iterator updates it and checks for convergence.

Alignment and Calibration - VELO

- Based on Analyzer and Iterator:
 - Analyzer runs reconstruction and calculates alignment constants.
 - Iterator updates it and checks for convergence.
- VELO alignment significantly reduces VELO hit residual.
 - Results in improved vertex resolution for triggers and physics analysis.

LHCB-FIGURE-2024-009

Alignment and Calibration - SciFi

- SciFi alignment significantly improves hit residual and track χ^2 .
 - Results in improved momentum resolution.

LHCB-FIGURE-2024-009

π^0 Calibrations

• Calibration of ECAL brings $\pi^0 \to \gamma \gamma$ peak closer to PDG value 134.977 MeV.

HLT 1 Cost Breakdown

• 20% cost savings with GPU farm.

• Figure from

Computing and Software for Big Science 6 (2022) 1, 1.

Item	CPU-only	hybrid	Difference
Event Builder nodes	1000	1000	0
HLT1 network	275	25	250
HLT1 compute	450	125	325
Storage for 1 MHz output	575	575	0
Sub-total	2300	1725	575
Storage add. cost 2 MHz output	575	575	0
Total	2875	2300	575

Table 4: Indicative overall cost of the HLT1 implementations including contingency in units of the reference "Quanta" CPU server node used for the HLT during Run 2 datataking. Numbers have been rounded to reflect inevitable order(10%) fluctuations in real-world costs depending on the context of any given purchase.

Alignment and Calibration

JINST 19 (2024) 05, P05065

- Different subdetectors require different statistics of tracks or physics signal to align and calibrate.
 - VELO closes every pp fill \rightarrow per-fill alignment.
 - RICH is sensitive to temperature and pressure ightarrow per-run

Da Yu Tou (Tsinghua University) Allen: GPU event processing at LHCb Future Tau Charm Facilities 41/45

JINST 19 (2024) 05, P05065

- LHCb has 250m optical fibres sending data from underground detector to custom data centre on the surface.
- Modular data centre hosts the HLT1 and HLT2 trigger farms.

LHCb Track Definitions

- Long tracks are the most important track types for physics analysis because they have vertex and momentum measurements.
- Downstream tracks have higher fake track rates but they are important for decays with neutral *s* hadrons, $K_s^0 \rightarrow \pi\pi$ and $\Lambda^0 \rightarrow p\pi$.

Machine Learning in RTA

• Lipschitz NN. arxiv:2112.00038

- Small and fast.
- Robust and monotonic.
- Used in PID and trigger selections. LHCB-FIGURE-2024-003

arXiv:2407.12119

- Use GNN to reconstruct tracks in the VELO.
- Paper in review, should on arXiv in a few weeks.

Machine Learning in RTA

- GNN for VELO tracking:
 - Hits are nodes.
 - Connections between hits are edges.
 - Edge connections \rightarrow triplet.