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Complexity3 of Modern HEP Experiments

The CERN accelerator complex
Complexe des accélérateurs du CERN
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Complex phenomena Complex machines

Complex detectors
and reconstruction

Stochastic processes — intractable likelihood (matrix element, parton shower, detector simulation... result in
latent variables)



Typical Analysis Pipeline

z ~ f(z)
Multidimensional
stochastic variables
(often latent)

z ~ p(Z|:L', 9)
Sensor readouts

s = A[£(0)]
Low-dim summary for
inference

(0) = Rl2,0,v(0)]

High-level features



https://indico.cern.ch/event/1291157/contributions/5892384/

Determining Multiple Parameters

= Determining multiple parameters ~ fitting a function

m The optimisation of a detector or a reconstruction chain is conceptually the same thing

= To perform this optimisation we need to know %:

how does our photon efficiency change w.r.t. the reconstruction parameters 6?
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= Gradients can be calculated
= Numerically: unfeasible for many parameters

= Algorithmically: requires unbroken gradients throughout the whole chain: every step needs to
be differentiable

= Differentiable programming



Differentiable Programming

(a) Forward pass >

= Differentiable programming is used by, but is independent of ML

= At its core: in any operation, include a way to access its gradient w.r.t. all
parameters (if it exists): auto differentiation

= Auto-differentiation is neither pure numeric nor pure symbolic
differentiation

= Numerical differentiation is not feasible for large optimisation

problems
= Fully symbolic differentiation can easily become not feasible from
computational point of view
= In most cases, back propagationis used (A — X — L)
= Calculate the numerical values of b = d L /dz using the analytic gradient of the operation

= Calculate the numerical values of b - dz/d A in the same way



What is MODE about?
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Use differentiable programming to optimise particle
physics detectors given a quantification of the physics
target(s) and the detector cost
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The MODE Goals

= "We aim to create a versatile, scalable, customizable infrastructure, where a generic
detector design task can be encoded, along with all the players (pattern reco, nuisances,
cost constraints, a well constructed objective function)”

= Then automatic scanning of the space of design solutions becomes possible!

m This doesn’t replace the work of the physicist! We aim at extending the physicist’s
abilities by producing design assistance tools, focusing on diagnostic tools and
visualizations for interpretability

= We don’t propose the one optimal solution to a given problem, we aim at proposing a
distribution of solutions in a region of optimality, to assist design choices!

= Optimization targets are not only strictly physics-related (e.g. significances): we
consider also financial cost and other constraints in the optimization



The MODE Goals

m We identified and started studying some relatively simple use cases: muon
tomography detector optimization, calorimeter optimization

= Plan to proceed to other simple use cases (e.g. small detectors for HL-LHC),
providing proofs of concept of increasing complexity

m "Every problem is difficult if you want to solve it well and make an impact"



TomOpt: Muon Scattering Tomography Optimization

* Region of space where detectors
can move

Volume modelling

B
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= Differential optimization =

minimisation of loss function £(a,,)

= where a,, are detector parameters

= L(an)

» Gradient descent : a1 = Qp

= inference error + constraints

— VL (an)

L+

L4

Muon propagation

Muons: (p.x.y,z.0,9)
Hits are generated in
the detector panels.
Trajectories
reconstructed

The scattering points
are found using the
POCA
Closest
method.

Approach)
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Passive volume mapping
POCA points let us pinpoint the .
area of the volume in which the .
muon has scattered. .

Averaging the scattering angles . . :
and momenta of the muons one g .
can estimate the value of the . '
radiation length in that area. ‘ :
The precision of this computation is . .
subject to the spatial resolution of g -
the detectors and the number of '
voxels of the passive volume. |-
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Repeat

loop

optimisation
until
VL(an) =0
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Detector optimisation

Learnable parameters (x, y, z, dx, dy)
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Reproduced from [1]
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Automatic Optimization of O-PPAC

(Parallel-Plate Avalanche Counter with Optical Readout) Collmatorfength ()
53 SIPMs per aray | e I

SiPM area (A)

SiPM array

Collimators

y coordinate (10 cm)

1. Define parameters of interest: o _
= CollimatorLength (L) K

= Pressure of the scintillating gas (p) PPAC effective area

2. Set loss function:
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= Fully-Connected NN with 3 layers

—
10 /

m 64 neurons per layer
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https://iopscience.iop.org/article/10.1088/1748-0221/13/10/P10006
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(13 configurations are provided by SWGO collaboration)

» The Southern Wide-Field Gamma Observatory (SWGO) is
planned to be built at high altitude in south America.

» The optimization goal is to arrange N = (O(6000) tanks
of Cherenkov detectors that SWGO plans to deploy

= Full configuration space is highly-dimensional: R?*N -3

Credit: Richard White, MPIK
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Calorimeters Optimization

A few quantities

Mony pixels, detector elements, hits

A few quantities

Very complex surrogate model

v Much simpler surrogate model

Layered Material Cuboid - Iteration 1

Layered Material Cuboid - Iteration 454
m— Pb — Ph
. — Absorbers
Calorimeters: i —Fe
— PHWO4
Polystyrene Sensors
= Complex showers g Polystyrene
* 7 g
. . . w 6 7
m  So far designs relatively simple &3 s :
. . . . § 3 & 4
= Good place to invest in systematic gradient- 2 23
0 1
based optimization .8 0
3 ° v
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= Length < 180 cm “
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Robust Reconstruction Models for ECal Optimization

Module granularity from Reco model inputs
15 x 15 to 255 x 255 cells? Particle generator

, GEANT4 simulatior = Raw energy deposits
i . : X, Y, z, E(px, py, pz) e
b ’ 2 ' > Targets: E, hit position

0 10 20
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Alexey Boldyrev | Design of Experiments Using ML | FTCF Workshop Guangzhou 2024 15/23



Future Muon Collider Calorimeter Optimization

Beam Induced Background (BIB) problem for TeV-scale muon collider
= BIB simulation at 1.5 TeV center-of-mass energy

= Energy deposits in ECal

m Reference design is CRILIN for ECal
= Arrayof 1 x 1 x 4.5cm?® PbF5 voxels arranged in a dodecahedron
= 5 ]ayers per wedge

= Modular design

=  Optimizing photon reconstruction efficiency and material cost
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Hadron Calorimeters

1. Toward Particle ID in Granular HCal: XGBoost—based reco prov1des 64% accuracy inp / 73 PID

Material: PbVW04 .
Segmentation: 100x100x 100 cells
Cell size: 3x3x12 mm?

= T

2. Neuromorphic Readout for Homogeneous HCal

= First ever attempt to use neuromorphic solutions for calorimetry readout

= Development of multi-nanowire photodetector for physical readout

Employ Spiking Neural Network for precise energy measurement and for particle identification



Neuromorphic Computing TN

output spiking neuron j

input sp[kir)g neuron i
"Computing approach that mimics the structure and function ( ZWITL“* ).

dji
of the human brain using artificial neurons and synapses”
C. Mead. “Neuromorphic electronic systems” (1990)

iLI_I_/

Approach is applied to develop hardware trigger for UHE neutrino detection



Previous MODE Workshops
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https://indico.cern.ch/event/1022938/overview
https://indico.cern.ch/event/1145124/overview
https://indico.cern.ch/event/1242538/overview
https://indico.cern.ch/event/1380163/overview

We’re Waiting You at Fifth MODE Workshop in 2025
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Want to Join MODE Collaboration?

m According to the collaboration Statute, you need to:

m  be interested in our research plan, and to produce research in that area
»  bring competence of relevance, or vow to acquire it

m aim to contribute to it within your (time and resource) possibilities

m [f you are interested, send the MODE Steering board (Dorigo, Donini,
Giammanco, Ratnikov, Vischia) an email with confirmation of the above and a
short bio/CV: chances are we’ll get you in!

https://mode-collaboration.github.io


https://mode-collaboration.github.io/

Conclusions

Maximum extraction
of scientific value

Assist with a

Challenge current

design concepts landscape of

* solutions
MODKE

Make generators

Modular pipelines
powered by autodiff

differentiable where
possible

Create and guide a
multidisciplinary
community






