The 6th International Workshop on Future Tau Charm Facilities

FTCF, 2024, Guangzhou

Overview and perspective of light baryon radii and nucleon form factors

Feng-Kun Guo

Institute of Theoretical Physics,

Chinese Academy of Sciences

Based on

Yong-Hui Lin, FKG, U.-G. Meißner, PLB 856, 138887 (2024); PLB 858, 139023 (2024); Xiong-Hui Cao, FKG, Qu-Zhi Li, De-Liang Yao, arXiv:2411.13398

17-21 Nov. 2024

Electric form factor

P

• Electron scattering off a charge distribution

Form factor $F(q^2) = F(-\vec{q}^2)$ is the Fourier transform of the charge density in the Breit frame

$$\rho(\vec{r}) = \int \frac{d^3 q}{(2\pi)^3} F(-\vec{q}^2) \, e^{-i\vec{q}\cdot\vec{r}}$$

Charge radius

$$\langle r^2 \rangle = \frac{\int d^3 \vec{r} r^2 \rho(\vec{r})}{\int d^3 \vec{r} \rho(\vec{r})} = -6 \frac{F'(0)}{F(0)} \Rightarrow F(-\vec{q}^2) = F(0) \left(1 - \frac{\langle r^2 \rangle}{6} \vec{q}^2 + \cdots\right)$$

we have used $\int d^3 \vec{r} \rho(\vec{r}) = F(0)$ and $\int d^3 \vec{r} r^2 \rho(\vec{r}) = -6F'(0) \equiv -6\frac{dF(-\vec{q}^2)}{d\vec{q}^2}|_{\vec{q}^2=0}$

Proton EM form factor

Nucleon electromagnetic form factor

$$\begin{split} \langle N(p')|J_{\rm em}^{\nu}|N(p)\rangle &= \bar{u}(p') \left[\gamma^{\nu} F_1(q^2) - \frac{iF_2(q^2)}{2m_N} \sigma^{\mu\nu} q_{\mu} \right. \\ &+ i(\gamma^{\nu} q^2 \gamma_5 - 2m_N q^{\nu} \gamma_5) F_A(q^2) - \frac{F_3(q^2)}{2m_N} \sigma^{\mu\nu} q_{\mu} \gamma_5 \right] u(p) \end{split}$$

Lorentz invariant form factors (FFs)

 F_1 : Dirac FF; F_2 : Pauli FF; F_A : P-violating anapole FF; F_3 : P, CP-violating electric dipole FFSachs FFs $(t = q^2)$ Ernst, Sachs, Wali, PR 119, 1105 (1960); Sachs, PR 126, 2256 (1962) $G_E(t) = F_1(t) + \frac{t}{4m^2}F_2(t)$, $G_M(t) = F_1(t) + F_2(t)$

Fourier transforms of the charge and magnetization distributions in the Breit frame

$$G_E(t) = G_E(0) \left(1 + \frac{\langle r_E^2 \rangle}{6} t + \cdots \right)$$

 $G_E(0) = e_N$ (charge), $G_M(0) = \mu_N$ (magnetic moment)

Therefore, for a precise measurement of $\langle r_E^2 \rangle$, we need as small t as possible

Proton EM form factor

• Electron scattering

well by the following choices of size. At 188 Mev, the data are fitted accurately by an rms radius of $(7.0\pm2.4) \times 10^{-14}$ cm. At 236 Mev, the data are well fitted by an rms radius of $(7.8\pm2.4)\times10^{-14}$ cm. At 100 Mev the data are relatively insensitive to the radius but the experimental results are fitted by both choices given above. The 100-Mev data serve therefore as a valuable check of the apparatus. A compromise value fitting all the experimental results is $(7.4\pm2.4)\times10^{-14}$ cm. If the proton were a spherical ball of charge, this rms radius would indicate a true radius of 9.5×10^{-14} cm, or in round numbers 1.0×10^{-13} cm. It is to be noted that if our interpretation is correct the Coulomb law of force has not been violated at distances as small as 7×10^{-14} cm.

Proton charge radius

Spectroscopy method:

measuring the charge radius from Lamb shift of (muonic) hydrogen atom

FIG. 18. The proton charge radius $\langle r_{Ep}^2 \rangle^{1/2}$ as extracted from electron-scattering and spectroscopic experiments since 2010 and before 2020 together with CODATA-2014 and CODATA-2018 recommended values. Note the reinterpreted result from the Mainz ISR experiment was scheduled for publication in 2021. From Jingvi Zhou.

• The latest CODATA value: 0.84075(64) fm R. Mohr et al., arXiv:2409.03787

PRad measurement

spacelike region

W. Xiong et al. [PRad], Nature 575, 147 (2019)

$r_p = 0.831 \pm 0.007_{\text{stat}} \pm 0.012_{\text{syst}} \,\text{fm}$

■ Prad-II will cover $Q^2 \in [4 \times 10^{-5}, 0.06]$ GeV² H. Gao, M. Vanderhaeghen, RMP 94, 015002 (2022);

A. Gasparian et al. [PRad-II], arXiv:2009.10510; private communication with W.-Z. Xiong

Proton radius puzzle not yet completely solved.

Dispersive approach

Dispersive approach

Y.-H. Lin, H.-W. Hammer, U.-G. Meißner, PRL 128, 052002 (2022)

Dalitz decay

- Possibility to measure the proton FFs in the time-like "unphysical" region?
 - Dalitz decay $J/\psi \rightarrow p\bar{p}e^+e^-$ by measuring the e^+e^- distribution
 - **D** BESIII has $10^{10} J/\psi$ and $2.7 \times 10^9 \psi'$ BESIII, CPC 46, 074001 (2022)
 - \square STCF can collect $3.4 \times 10^{12} J/\psi$ and $6.4 \times 10^{11} \psi'$ per yearSTCF, Front. Phys. 19, 14701 (2024)
 - \square Can reach very small $q^2 \sim 4 m_e^2 = 1.05 \times 10^{-6} \text{ GeV}^2$
 - $\geq e^+$ and e^- can be efficiently detected as long as they have transverse momenta larger than a few tens of MeV (~50 MeV at BESIII from H.-B. Li)
 - ≻ Collinear $e^+e^- \Rightarrow$ threshold kinematics
 - More similar Dalitz decays:

 $\searrow J/\psi \to \pi^+\pi^-e^+e^-, K^+K^-e^+e^-$ $\ggg \psi' \to \Xi^-\overline{\Xi}^+e^+e^-, \ \psi' \to \Sigma^{\pm}\overline{\Sigma}^{\mp}e^+e^-$ $\searrow \dots$

Among all hyperons, only the Σ^- charge radius has been measured: 0.78 ± 0.10 fm , with Σ^- beam $^{0.2}$

Dalitz decay

Take $J/\psi \rightarrow p\bar{p}e^+e^-$ as an example

Problems:

- Requires final-state radiation (FSR) virtual photon, only a small portion from the whole decay events
 - method subtracting the major background and/or partial-wave analysis
- For FSR photon, measures transition FFs from some intermediate state A to $p\gamma^*$, proton is only part of A
 - to identify a region dominated by the proton pole
 - For large $m_{p\bar{p}}$, both $m_{p\gamma^*}$ and $m_{\bar{p}\gamma^*}$ are small, proton and antiproton pole dominance may work

 $J/\psi \to p\bar{p}\gamma$

R. Kappert, PhD thesis, Groningen U. (2022)

Decay mechanisms

Virtual photon emitted

□ from (anti-)charm quark, type X: diagrams (a) and (b)

- $\succ c\bar{c}$ → two gluons
 - type- X_c : η_c
 - type- $X_{u/d}$: light meson resonances such as X(1835), ...
- ▶ isospin symmetric: $\mathcal{A}_X(p\bar{p}e^+e^-) = \mathcal{A}_X(n\bar{n}e^+e^-)$ up to $\mathcal{O}(1\%)$
 - Isospin breaking effects: from quark mass difference $O\left(\frac{m_d m_u}{\Lambda_{\rm QCD}}\right)$ or from virtual photons $O(\alpha)$
 - Similarly, $\mathcal{A}_X(\Xi^-\bar{\Xi}^+e^+e^-) = \mathcal{A}_X(\Xi^0\bar{\Xi}^0e^+e^-)$, ...; + easier to detect neutral hyperons than neutrons

Decay mechanisms

Virtual photon emitted

□ from anti-light and light quarks, types Y and Z: diagrams (c) and (d)

➤ three gluons or a virtual photon

 \succ FSR $\gamma^* \rightarrow e^+ e^-$

- ➢ if proton is replaced by neutron, the FSR contribution is negligible at small q^2 : zero charge, $\langle (r_E^n)^2 \rangle = -0.1155(17) \text{ fm}^2$ PDG2024
- proton FF = antiproton FF

Subtraction of background

Differential decay widths

$$\frac{d\Gamma(J/\psi \to p\bar{p}e^+e^-)}{dm_{e^+e^-}dm_{p\bar{p}}d\cos\theta_p^*d\cos\theta_e^*d\phi} = \frac{|\vec{k}_{e^+e^-}||\vec{k}_p^*||\vec{k}_{e^-}|}{(2\pi)^6 16M_{J/\psi}^2} \frac{C(q^2)}{3} \sum_{\text{spins}} |\mathcal{M}|^2$$
$$|\mathcal{M}|^2 = |\mathcal{M}_{Y+Z}|^2 + 2\operatorname{Re}(\mathcal{M}_{Y+Z}\mathcal{M}_X^*) + |\mathcal{M}_X|^2$$
$$i\mathcal{M}_{(i)} = H_{(i)}^{\mu} \frac{-ig_{\mu\nu}}{q^2} \left[-ie\bar{u}_{s_{e^-}}(p_1)\gamma^{\nu}v_{s_{e^+}}(p_2)\right]$$
hadronic part leptonic part
$$\int_{e^-}^{\phi'=\phi} \int_{e^-}^{\phi'=\phi} \int_{e^-}^{\phi'=$$

\Box Sommerfeld factor resums poles of e^+e^- Coulomb bound states:

$$C(q^2) = \frac{y}{1 - e^{-y}}, \qquad y = \frac{\pi \alpha m_e}{k'_e}$$

Background subtraction

D For $J/\psi \rightarrow n\bar{n}e^+e^- : \mathcal{M} \approx \mathcal{M}_X$

- \blacktriangleright Background subtraction can in principle be achieved by subtracting out the $J/\psi \rightarrow$ $n\bar{n}e^+e^-$ (properly normalized) event distribution
- **D** Signal part: $|\mathcal{M}_{signal}|^2 \equiv |\mathcal{M}_{Y+Z}|^2 + 2 \operatorname{Re}(\mathcal{M}_{Y+Z}\mathcal{M}_X^*)$ all contains proton FF in the specific kinematic region

Selection of kinematic region

 $|p\rangle\langle p| + |N\pi\rangle\langle N\pi| + \cdots$

- Identify a region dominated by the proton and antiproton poles
 - □ Large $m_{p\bar{p}} \Rightarrow$ small $m_{p\gamma^*}$ and $m_{\bar{p}\gamma^*} \Rightarrow$ (anti-)proton dominance

□ Approximate $|N\pi\rangle\langle N\pi|$ + … by the lowest $N\pi$ resonance Δ^+ : $J/\psi \rightarrow \Delta^+ p$ + c. c., $\Delta^+ \rightarrow p\gamma^*$, check the region where the Δ contribution can be neglected

$$\frac{dR_{N/(N+\Delta)}}{dm_{e^+e^-}dm_{p\bar{p}}} = \int d\cos\theta_p^* d\cos\theta_e' d\phi \frac{d\Gamma_{Y+Z}^N}{d\Gamma_{Y+Z}^{N+\Delta}}$$

→ For $\psi' \rightarrow \Sigma^+ \overline{\Sigma}^- e^+ e^-$ and $\psi' \rightarrow \Xi^- \overline{\Xi}^+ e^+ e^-$, consider the $J^P = 3/2^+ \Sigma(1385)$ and $\Xi(1530)$ to estimate contributions from higher states

Selection of kinematic region

• Lower bound of the ratio $\frac{dR_{N/(N+\Delta)}}{dm_{e\overline{e}}dm_{p\overline{p}}}$ from types Y+Z

 \square always larger than 90% for $m_{p\bar{p}} \gtrsim 2.7 \text{ GeV}$

Sensitivity study for proton

- Estimate of the number of events
 - **C**onsider only the signal part $|\mathcal{M}_{signal}|^2 \equiv |\mathcal{M}_{Y+Z}|^2 + 2 \operatorname{Re}(\mathcal{M}_{Y+Z}\mathcal{M}_X^*)$
 - \blacksquare For type-X, consider only the η_c contribution
 - $\square \sim 3 imes 10^3$ events (BESIII) for $m_{e^+e^-} < 0.3~{
 m GeV}, m_{par{p}} > 2.7~{
 m GeV}$
- Sensitivity to the proton charge radius r_E^p of the $m_{e^+e^-}$ distribution normalized to a pointlike-proton assumption

Using 0.84 fm as input to generate synthetic Monte Carlo data, obtained ➤ 0.71(9) fm for BESIII configuration

0.845(7) fm for STCF configuration

Sensitivity study for hyperons

• For $\psi' \to \Sigma^+ \overline{\Sigma}^- e^+ e^-$

 Σ -pole dominates above 2.8 GeV

• For $\psi' \to \Xi^- \overline{\Xi}^+ e^+ e^-$

Sensitivity study for hyperons

• For $\psi' \to \Sigma^+ \overline{\Sigma}^- e^+ e^-$ using 0.8 fm as input

- For $\psi' \to \Xi^- \overline{\Xi}^+ e^+ e^-$ using 0.8 fm as input

Proton radius from dimuon photoproduction

Yong-Hui Lin, FKG, U.-G. Meißner, PLB 858, 139023 (2024)

- The muon-proton scattering value of the proton charge radius has not been measured
 - Planned experiments
 - ≻ MUSE @PSI, $Q^2 \in [0.002, 0.07]$ GeV²
 - ≻ AMBER @CERN, $Q^2 \in [0.001, 0.02]$ GeV²
 - \blacksquare It may be extracted from the dimuon photoproduction $\gamma p \rightarrow p \mu^+ \mu^-$

Proton radius from dimuon photoproduction

Yong-Hui Lin, FKG, U.-G. Meißner, PLB 858, 139023 (2024)

- Dimuon photoproduction $\gamma p \rightarrow p \mu^+ \mu^-$
 - \square Kinematical region of $-t = Q^2$

> The BH mechanism overwhelmingly dominates for small Q^2 and low $m_{l\bar{l}}^2$

Proton radius from dimuon photoproduction

- Dimuon photoproduction $\gamma p \rightarrow p \mu^+ \mu^-$
 - □ Integrated cross section for $t \in [0.001, 0.02]$ GeV²: O(100) nb
 - 5×10^6 events for a flux of 10^7 photons/s on a TPC target (~ 1 m long) in a few months
 - $EPS2 (BL31LEP): E_{\gamma} \in [1.3, 2.4] \text{ GeV}, < 2 \times 10^7 \text{ photons/s (with 355-nm UV Solid-state laser)} \\ \underline{https://www.rcnp.osaka-u.ac.jp/Divisions/np1-b/?LEPS2_%28BL31LEP%29}$
 - Much higher photon intensity at JAEA-ERL
 - ≻ ...

Nucleon gravitational FFs

Nucleon gravitational FFs Review: M. Polyakov, P. Schweitzer, IJMPA 22, 1830025 (2018) $\langle N(p')|\hat{T}^{\mu\nu}|N(p)\rangle$ $=\frac{1}{4m_{N}}\bar{u}(p')\left[A(t)P^{\mu}P^{\nu}+J(t)\left(iP^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}\right)+D(t)\left(\Delta^{\mu}\Delta^{\nu}-g^{\mu\nu}\Delta^{2}\right)\right]u(p)$ $\square \text{ Trace FF: } \Theta(t) = m_N \left[A(t) - \frac{t}{4m_N^2} \left(A(t) - 2J(t) + 3D(t) \right) \right]$ $E_v = (9.1, 9.25)$ 10-□ Normalizations: H-R-Y (b=0) H-R-Y (b=1) dinole fit 10- $E_{v} = (9.4, 9.55)$ 100 $\Theta(0) = m_N, A(0) = 1, J(0) = \frac{1}{2}$ (spin), 10-1 $J/\Psi = 007$ using M-Z approach D-term: D(0)J/Ψ – 007 using G-J-L approach 10^{-2} 10- $E_{v} = (9.7, 9.85)$ 100 da/dt (nb/GeV²) Extractions using near-threshold I/ψ A(k)photoproduction data based on two 0.2 models: 0.1 10- $E_{v} = (10.0, 10.15)$ 100 Holographic QCD 10- 10^{-1} GPD + VMD 10^{-2} -10^{-2} Duran et al. $[J/\psi-007]$, Nature 615, 813 (2023) 10-D(k) $E_{v} = (10.3, 10.45)$ 100 -10-1 10-1 10^{-2} - 10

> 0.5 1.0 1.5

 $E_{v} = (9.25, 9.4)$

 $E_{v} = (9.55, 9.7)$

 $E_{\nu} = (9.85, 10.0)$

 $E_{v} = (10.15, 10.3)$

 $E_{v} = (10.45, 10.6)$

|t| (GeV²)

 10^{-3}

|t| (GeV²)

2.0 2.5 3.0 3.5 4.0 4.5

 k^2 (GeV²)

Nucleon gravitational FFs

PP 1978

Xiong-Hui Cao, FKG, Qu-Zhi Li, De-Liang Yao, arXiv:2411.13398

 Gravitational FFs (GFFs) be model-independently predicted using data-driven dispersion relations + ChPT

ChPT: Donoghue, Leutwyler, ZPC 52, 343 (1991) LQCD: Hackett et al., PRD 108, 114504 (2023)

Nucleon gravitational FFs

Gravitational FFs (GFFs) be model-independently predicted using data-driven dispersion

$$\langle r_{\mathrm{E},p}^2 \rangle = (0.84075(64)\,\mathrm{fm})^2$$

Summary and outlook

- Novel proposals for measuring the charge radii of stable charged baryons
 - □ from the time-like region using the Dalitz decays $J/\psi \rightarrow p\bar{p}e^+e^-$, $\psi' \rightarrow \Sigma^+\bar{\Sigma}^-e^+e^$ and $\psi' \rightarrow \Xi^-\bar{\Xi}^+e^+e^-$
 - \succ can reach $|q^2| \sim 1.05 \times 10^{-6} \text{ GeV}^2$, smaller than all ep scattering experiments
 - \blacktriangleright measurements of Ξ^- , Σ^+ radii w/o hyperon beams
 - □ the muon-proton scattering value of the proton charge radius from $\gamma p \rightarrow p \mu^+ \mu^$ using the Bether-Heitler mechanism w/o using muon beams
- Nucleon gravitational FFs precisely determined using data-driven dispersive approach
 - □ challenging to measure experimentally

Thank you for your attention!