

STCF Detector Design and R&D

Jianbei Liu

On behalf of the STCF detector group

University of Science and Technology of China **State Key Laboratory of Particle Detection and Electronics**

The 6th International Workshop on Future Tau Charm Facilities, 2024 SYSU, Guangzhou, China Nov. 18, 2024

STCF Detector Layout

Physics Requirements

Highly efficient and precise reconstruction of exclusive final states produced in 2-7 GeV e+e- collisions

- Precise measurement of low-p particles (<1GeV/c) → low mass</p>
- **Excellent PID**: π/K and μ/π separation up to 2 GeV

Process	Physics Interest	Optimized	Requirements
		Subdetector	
$ au o K_s \pi u_{ au},$	CPV in the τ sector,		acceptance: 93% of 4π ; trk. eff
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in the hyperon sector,	ITK+MDC	> 99% at p_T > 0.3 GeV/c; > 90% at p_T
$D_{(s)}$ tag	Charm physics		$\sigma_p/p = 0.5\%$, $\sigma_{\gamma\phi} = 130 \mu\text{m}$ at 1 (
$e^+e^- \rightarrow KK + X,$	Fragmentation function,	PID	π/K and K/π misidentification rate
$D_{(s)}$ decays	CKM matrix, LQCD etc.	FID	PID efficiency of hadrons > 97%
$ au ightarrow \mu \mu \mu, au ightarrow \gamma \mu,$	cLFV decay of τ ,		μ/π suppression power over 30 at $p <$
$D_s ightarrow \mu \nu$	CKM matrix, LQCD etc.	PID+MOD	μ efficiency over 95% at $p = 1$ G
$ au o \gamma \mu$,	cLFV decay of τ ,	EMC	$\sigma_E/E \approx 2.5\%$ at $E = 1 \text{ GeV}$
$\psi(3686) \to \gamma \eta(2S)$	Charmonium transition	LIVIC	$\sigma_{\rm pos} \approx 5 \ {\rm mm} \ {\rm at} \ E = 1 \ {\rm GeV}$
$e^+e^- ightarrow nar{n}$,	Nucleon structure		$\sigma_T = -\frac{300}{2}$ ns
$D_0 \rightarrow K_L \pi^+ \pi^-$	Unity of CKM triangle		$\sqrt{p^3(\text{GeV}^3)}$ P ⁵

Beam-induced Backgrounds

Inner most detector layer: ~3.5 kGy/y, ~2×10¹¹ 1MeV n-eq/cm²/y, ~1 MHz/cm² The major challenge is to maintain or even enhance the state of the art performance of τ -c detectors in much harsher experimental conditions.

STCF Detector Conceptual Design

Solid Angle Coverage : 94%•4 π (θ ~20°)

- Inner tracker (ITK, two options)
 - MPGD: cylindrical MPGD
 - Silicon: CMOS MAPS
- Central tracker (MDC)
 - Main drift chamber
- * PID
 - Barrel: **RICH** with CsI-MPGD
 - Endcaps: DIRC-like TOF (DTOF)
- ✤ EMC
 - pure CsI + APD
- Muon detector (MUD)
 - RPC + scintillator strips
- * Magnet
 - Super-conducting solenoid, 1 T

STCF Physics & Detector CDR

82 institutions, 453 authors arXiv:2303.15790

FRONTIERS OF PHYSICS

STCF conceptual design report (Volume 1): Physics & detector

M. Achasov³, X. C. Ai⁸², R. Aliberti³⁸, Q. An^{63,72}, X. Z. Bai^{63,72}, Y. Bai⁶², O. Baki V. Blinov^{3,50,51}, V. Bobrovnikov^{3,51}, D. Bodrov^{23,60}, A. Bogomyagkov³, A. Bon Z. H. Bu⁷³, F. M. Cai²⁰, H. Cai⁷⁷, J. J. Cao²⁰, Q. H. Cao⁵⁴, X. Cao³³, Z. Cao^{63,72}, K. T. Chao⁵⁴, D. Y. Chen⁶², H. Chen⁸¹, H. X. Chen⁶², J. F. Chen⁵⁸, K. Chen⁶, L. P. Chen⁷⁸, S. L. Chen⁶, S. M. Chen⁶⁶, S. Chen⁶⁹, S. P. Chen⁶⁹, W. Chen⁶⁴, X. Ch X. R. Chen³³, Y. Chen³², Y. Q. Chen³⁶, H. Y. Cheng³⁴, J. Cheng⁴⁸, S. Cheng²⁸, J. P. Dai⁸⁰, L. Y. Dai²⁸, X. C. Dai⁵⁴, D. Dedovich³⁹, A. Denig^{19,38}, I. Denisenko³ D. Z. Ding⁵⁸, L. Y. Dong³², W. H. Dong^{63,72}, V. Druzhinin³, D. S. Du^{63,72}, Y. J. D L. M. Duan³³, D. Epifanov³, Y. L. Fan⁷⁷, S. S. Fang³², Z. J. Fang^{63,72}, G. Fedoto X. Feng⁵⁴, Y. T. Feng^{63,72}, J. L. Fu⁶⁹, J. Gao⁵⁹, P. S. Ge⁷³, C. Q. Geng¹⁵, L. S. Ge L. Gong⁴³, T. Gong²¹, B. Gou³³, W. Gradl³⁸, J. L. Gu^{63,72}, A. Guevara⁴, L. C. Gu F. K. Guo^{4,69,2}, J. C. Guo^{63,72}, J. Guo⁵⁹, Y. P. Guo¹¹, Z. H. Guo¹⁶, A. Guskov³⁹, M. Han^{63,72}, X. Q. Hao²⁰, J. B. He⁶⁹, S. Q. He^{63,72}, X. G. He⁵⁹, Y. L. He²⁰, Z. B. H B. L. Hou^{63,72}, T. J. Hou⁷⁴, Y. R. Hou⁶⁹, C. Y. Hu⁷⁴, H. M. Hu³², K. Hu⁵⁷, R. J. Hu J. Hua⁶¹, G. S. Huang^{63,72}, J. S. Huang⁴⁷, M. Huang⁶⁹, Q. Y. Huang⁶⁹, W. Q. H X. J. Huang³³, Y. B. Huang¹⁴, Y. S. Huang⁶⁴, N. Hüsken³⁸, V. Ivanov³, Q. P. Ji²⁰ Z. K. Jia^{63,72}, H. B. Jiang⁷⁷, J. Jiang⁵⁷, S. Z. Jiang¹⁴, J. B. Jiao⁵⁷, Z. Jiao²⁴, H. J. X. S. Kang⁴³, B. C. Ke⁸², M. Kenzie⁵, A. Khoukaz⁷⁶, I. Koop^{3,50,51}, E. Kravchenk Y. Lei⁶⁰, E. Levichev³, C. H. Li⁴², C. Li⁵⁵, D. Y. Li³³, F. Li^{63,72}, G. Li⁵⁵, G. Li¹⁵, H. B H. N. Li⁶¹, H. J. Li²⁰, H. L. Li²⁷, J. M. Li^{63,72}, J. Li³², L. Li⁵⁶, L. Li⁵⁹, L. Y. Li^{63,72}, N. L R. H. Li³⁰, S. Li⁵⁹, T. Li⁵⁷, W. J. Li²⁰, X. Li³³, X. H. Li⁷⁴, X. Q. Li⁶, X. H. Li^{63,72}, Y. Li⁷ H. Liang^{63,72}, J. H. Liang⁶¹, Y. T. Liang³³, G. R. Liao¹³, L. Z. Liao²⁵, Y. Liao⁶¹, C. X. S. Lin^{63,72}, B. J. Liu³², C. W. Liu¹⁵, D. Liu^{63,72}, F. Liu⁶, G. M. Liu⁶¹, H. B. Liu¹⁴, J. B. Liu^{63,72}, K. Liu⁴¹, K. Y. Liu⁴³, K. Liu⁵⁹, L. Liu^{63,72}, Q. Liu⁶⁹, S. B. Liu^{63,72}, T. Li Y. Liu⁸², Y. L. Liu^{63,72}, Z. Q. Liu⁵⁷, Z. Y. Liu⁴¹, Z. W. Liu⁴⁵, I. Logashenko³, Y. Lor J. X. Lu², N. Lu^{63,72}, Q. F. Lü²⁶, Y. Lu⁷, Y. Lu⁶⁹, Z. Lu⁶², P. Lukin³, F. J. Luo⁷⁴, T. I H. J. Lyu²⁴, X. R. Lyu⁶⁹, J. P. Ma³⁵, P. Ma³³, Y. Ma¹⁵, Y. M. Ma³³, F. Maas^{19,38}, S. Z. X. Meng⁷⁰, R. Mitchell²⁹, A. Nefediev⁴⁰, Y. Nefedov³⁹, S. L. Olsen^{22,53}, Q. O G. Pakhlova^{23,52}, X. Pan⁶⁰, Y. Pan⁶², E. Passemar^{29,65,67}, Y. P. Pei^{63,72}, H. P. Pen X. Y. Peng⁸, X. J. Peng⁴¹, K. Peters¹², S. Pivovarov³, E. Pyata³, B. B. Qi^{63,72}, Y. Y. Qian³³, C. F. Qiao⁶⁹, J. J. Qin⁷⁴, J. J. Qin^{63,72}, L. Q. Qin¹³, X. S. Qin⁵⁷, T. L. C C. F. Redmer³⁸, H. Y. Sang^{63,72}, M. Saur⁵⁴, W. Shan²⁶, X. Y. Shan^{63,72}, L. L. Sha L. Shekhtman³, C. P. Shen¹¹, J. M. Shen²⁸, Z. T. Shen^{63,72}, H. C. Shi^{63,72}, X. D. A. Sokolov³, J. J. Song²⁰, W. M. Song³⁶, Y. Song^{63,72}, Y. X. Song¹⁰, A. Sukhare L. Sun⁷⁷, X. M. Sun⁶, Y. J. Sun^{63,72}, Z. P. Sun³³, J. Tang⁶⁴, S. S. Tang^{63,72}, Z. B. J. S. Tian⁷⁸, Y. Tian³³, Y. Tikhonov³, K. Todyshev^{3,51}, T. Uglov⁵², V. Vorobyev³, B. L. Wang⁶⁹, B. Wang^{63,72}, D. Y. Wang⁵⁴, G. Y. Wang²¹, G. L. Wang¹⁷, H. L. W J. H. Wang^{63,72}, J. C. Wang^{63,72}, M. L. Wang³², R. Wang^{63,72}, R. Wang³³, S. B. W. P. Wang^{63,72}, X. C. Wang²⁰, X. D. Wang⁷⁴, X. L. Wang^{63,72}, X. L. Wang²⁰, X.

REPORT Volume 19 / Issue 1 / 14701 / 2024

$na^{39} \Delta Barnvakov^{3,50}$
dar ³ L Pouko ³⁹
O Character 20
Q. Chang ²⁰ ,
L. Chen ²⁰ ,
hen ⁷⁴ , X. F. Chen ⁵⁸ ,
T. G. Cheng ² ,
⁹ , J. M. Dias ⁴ ,
Du ⁷⁷ , Z. G. Du ⁴¹ ,
vich ³ , C. Q. Feng ^{63,72} ,
eng^2 , A. Gilman ⁷¹ .
μ^{26} A O Guo ³³
K Han ⁶⁹ Han ^{63,72}
L^{33} 7 Y Hong ²⁰
⁶⁰ , X. H. Hu ⁵ , Y. C. Hu ¹⁶ ,
uang ^{os} , X. I. Huang ^{or} ,
⁷ , J. J. Jia ⁽⁴ , S. Jia ⁹² ,
Jing ⁶⁹ , X. L. Kang ⁸ ,
:0 ^{3,51} , A. Kuzmin ³ ,
3. Li ^{32,69} , Н. Li ^{63,72} ,
.i ⁶⁴ , P. R. Li ⁴¹ ,
⁷⁹ , Y. Y. Li ⁷² , Z. J. Li ³³ ,
X. Lin ⁶⁹ , D. X. Lin ³³ ,
J. Liu ⁵⁴ , J. J. Liu ⁷⁴ ,
u ¹¹ , X. Liu ⁴¹ , Y. W. Liu ^{63,72} ,
ng ^{63,72} , C. G. Lu ³³ .
100^{11} X E 100^{6}
$Malde^{71}$ D Matvienko ³
$\mu_{\rm Van} a^{32,63}$ P Pakhlov ²³
$a^{63.72}$ L Pape ²⁷
Q C:6372 M/ D C:am69
Q. Qi ^{65,12} , W. B. Qian ⁶⁸ ,
2iu ³³ , J. Rademacker ⁶⁸ ,
ng ²⁰ , M. Shao ^{53,72} ,
Shi ^{63,72} , B. Shwartz ³ ,
ev ^{3,51} , J. F. Sun ²⁰ ,
「ang ^{63,72} , C. H. Tian ^{63,72} ,
, B. D. Wan ¹⁵ ,
/ang ⁶¹ , J. Wang ⁴⁹ ,
Wang ⁵⁹ , W. Wang ⁵⁹ ,
. P. Wang ² , X. F. Wang ⁴¹ ,

3.2	Experi	imental Conditions
	3.2.1	Machine Parameters
	3.2.2	Machine Detector Interface
	3.2.3	Beam Background
	3.2.4	Conclusion
3.3	Detect	tor Design Overview
	3.3.1	General Considerations
	3.3.2	Overall Detector Concept
3.4	Inner 7	Tracker (ITK)
	3.4.1	Introduction
	3.4.2	Performance Requirements and Technology Choices
	3.4.3	μRWELL-based Inner Tracker
	3.4.4	MAPS-based Inner Tracker
	3.4.5	Pileup and Radiation Effects
	3.4.6	Conclusion and Outlook
3.5	Main l	Drift Chamber (MDC)
	3.5.1	Introduction
	3.5.2	Conceptual Design of the MDC
	3.5.3	MDC Simulation and Optimization
	3.5.4	Expected Performance
	3.5.5	Pileup and Radiation Effects
	3.5.6	Readout Electronics
	3.5.7	Conclusion
3.6	Particl	le Identification in the Barrel (RICH)
210	3.6.1	Introduction
	3.6.2	RICH Detector Concept
	363	RICH Detector Performance Simulation 112
	364	Detector Lavout
	365	Readout Electronics
	366	Summary and Outlook
37	Particl	le Identification in the Endcan (DTOE)
5.7	371	Introduction 110
	372	DTOF Concentual Design
	373	DTOF Performance Simulation [2]
	374	DTOF Structure Optimization 126
	375	Background Simulation 120
	376	Readout Electronics
	377	Summary and Outlook
29	5.7.7	Magnatic Calorimatar (EMC)
5.0	2.8.1	Introduction [222]
	2.0.1	EMC Conceptual Design
	2.0.2	Evrected Defermence of the EMC
	2.8.5	Expected renominance of the EMC
	5.8.4	Prieup Milligation
	5.8.5	Readout Electronics
	3.8.6	EMU K&D
	3.8.7	Summary

Tracking System : ITK + MDC

Tracking Performance with Full Simulation

Tracking performance for single particles

Tracking performance in physics events

- High tracking efficiency achieved even in presence of beam background
- Momentum resolution meets the physics requirement and is much less impacted by beam background compared to tracking efficiency.

 The lower tracking efficiency in physics events is due to the kinematic distribution of the particle concerned in the events. For example, the pion+ in the events gets much more forward when its momentum goes down.

• The tracking efficiency is robust against beam background and low hit efficiency degradation.

PID, EMC, MUD

Barrel PID: A RICH detector using MPGD
 E
 (THGEM with CsI + MM) for photon detection

Material budget < 0.3X₀

Endcap PID: A DIRC-like high-resolution TOF detector
 (DTOF ~ 30ps), quartz plate + MCP-maPMT

EMC: A pure-CsI crystal calorimeter to tackle a high level of background (~1MHz/ch)

- Crystal size
 28cm (15X0)
 5×5cm²
- ~ 8670 crystals
- 4 large area APDs (1×1cm²) to enhance light yield

MUD: A RPC-scintillator hybrid detector to optimize muon and neutral hadron ID

Performance with Full Simulation (and beam background)

PID: Pion ID eff. >97% @ mis-ID (K->pi)=2%

EMC pileup removal with waveform fitting

EMC energy resolution

Muon ID eff. @ pi suppression=30

eff. ~> 90% when p ~>1GeV/c

EMC position resolution

ITK-MPGD: µRGroove

µRGroove : A single-stage MPGD involving no stretching or tensioning, 2D strip ulletreadout without charge sharing (large S/N), high rate with fast grounding, easy to make a cylinder, low mass, low production cost

High-rate readout ASIC for MPGD (averaged hit rate of 400 kHz/ch)

ASIC Specs	Demands
Charge Range	40 fC
Charge precision	\sim 1 fC RMS
Time precision	< 10 ns RMS
Max. event rate	4 MHz

ITK-MPGD R&D

Development of low mass electrodes

Fabricating cylindrical structure

ASIC design and development

Tested the ASIC chip by feeding simulated detector output pulses to the chip at 4MHz with 35pF

Inner Layer Prototype

- Built a cylindrical µRGroove prototype for the ITK inner most layer
- Tested the prototype with ⁵⁵Fe source in lab and SPS muon beam at CERN
- Effective gain~5000-10000 for most sectors
- **Spatial resolution < 100 um and efficiency > 95%**
- The detector design and fabrication will be optimized in many aspects based on the prototyping experience

ITK-MAPS

- Aiming for a low-power MAPS chip design (required for a low-mass system) with lacksquaretiming and charge measurement capability: position, time and charge (TOT)
- Low mass outweighs position resolution: exploring large pixel size to reduce power ulletdensity

- **CMOS techniques being explored:** ullet
 - TowerJazz 180nm
 - (HR epi),
 - **NexChip FCIS/BCIS 90nm** (LR epi)
 - GSMC 130nm (HR substrate)

Collection

time(ns)

20.56

89.72

74.57

1.81

2.47

Collected

charge (e)

2039.81

2477.65

1089.64

1969.85

1952.04

Super Pixel Design

- Combining non-adjacent pixels: avoid ToT loss
- Super pixel with 6×12 pixel array
 - 6 sets of digital readout logic

– When cluster size < 3X4, no ToT loss occurs

Providing both high position and high time resolutions for low power consumption \bullet

Additional 3-bit for group address

ITK MAPS Designs

CHIP5验证芯片

GSMC 130nm (Shanghai, China) Taped out in Sep. 2024

Simulated performance

	-	
		-
		-
1000		
		H
	-	
191		-
		H
		н

	TJ-MAPS	GSMC-MAPS
Current	800 nA/pix	120*6 nA/pix
Supply Voltage	1.8 V	1.2 V
Threshold	309.0 e⁻	153.8 e⁻
ENC	11.4 e⁻	5.1 e⁻
Mismatch	5.7 e⁻	5.8 e⁻
<i>t_r</i> @400 e ⁻	200 ns	81 ns

Items	Power consumption	Notes			
Analog in pixel matrix	~26 mW/cm ²	Strip-based			
Analog in pixel matrix	~15 mW/cm ²	Pixel-based			
Timestamp clock distribution	12.2 mW/cm ²				
Dynamic power consumption	$2.4 \text{ m}/\text{M/cm}^2$	with a data rate of 8.7			
of the pixel matrix	2.4 mvv/cm-	MHz/cm ²			
Periphery	23.5 mW	32MHz event rate			
PLL, serializer, LVDS	39 mW	x 2 data/clock output			
Analog configuration	20 mW				
Total	222.6 mW	Strip-based			
Iotai	184.6 mW	Pixel-based			

– Strip-based: 55.7 mW/cm2 - Pixel-based: 46.2 mW/cm2

Main Drift Chamber

BESⅢ

定位子

- Preliminary mechanical design and structural analysis ullet
- Big challenges from super-small cells (5mm*5mm, distance between wires ~2.5mm) ullet
- **Ongoing R&D on feedthroughs, wires and chamber stringing**

MDC Readout Electronics

- Challenge: irregular pulse signals overlapping at high rates
- Attempt to separate overlapping pulses with waveform digitizing readout. A lot of effort on separation algorithm development and readout optimization.
- Developed readout circuit with discrete components (TIA + shaper + ADC). ASIC design also underway.

Optimized ADC specs: 14 bit, sampling rate 125 MSPS, bandwidth 650 MHz

Readout board (16 chs) being tested

PID Barrel: RICH Detector R&D

Fabrication of 30cm*30cm RICH prototype

Radiator purifying

RICH Readout ASIC

Design specs: $\sigma_{\rm t}$ < 1ns @20fC&20pF, event rate ~ 100 kHz, 32 channels

Design iterations

First version

512-channel readout board using the self-developed ASIC

Test results

Design with 64 channels is underway

PID Endcap: A full-sized DTOF prototype

石英清洗和安装

用吸盘将晶体放入清洗装置

组装清洗装置

吊装搬运晶体

晶体侧边涂黑

- 单光子灵敏
- 高增益: >106
- 增益非均匀性: 14% (σ/μ)

Detector assembling

安装晶体

安装柔性背板

安装前端版

般运至宇宙线测试平台

探测器安装完毕

安装风扇和探测器外壳

洁净室拆卸清洗装置

Hamamatsu R10754

- 灵敏面积: 23×23 mm²
- 像素分布: 4×4 阵列
- 像素大小: 5.5×5.5 mm²
- 光谱响应范围: 200-850 nm
- 量子效率: 25%@λ=400 nm

时间性能:~27 ps

Quartz radiator cleaning and mounting

放入超声水箱

招声清洗

搬运转移出水箱

Dtof-meanT

DTOF R&D on MCP-maPMT and Readout ASICs

 MCP-maPMT: a critical component of

 Two ASICs designed for MCP-maPMT the DTOF technology
 Two ASICs designed for MCP-maPMT

MCP-PM

- Designed and produced 1-inch MCPmaPMT with 16 annodes, TTS < 40 ps
- Intensive R&D on techniques (ALD and electron scrubbing) to produce long-life MCP-PMT (target >10 C/cm²)

- FET (taped out), target ~ 15 ps
- TDC (taped out), target ~ 15 ps

Application of DTOF in Barrel

- Conceptual design of barrel PID based on the DTOF technology
- Design optimization by scanning a variety of key design parameters
- Performance with full simulation mostly meet PID requirements
- More studies and work are planned

FOF technology y design parameters ID requirements

pion_kaon separation power

																1.00				_	6
	4.25	4.57	4.63	4.58	4.56	4.54	4.57	4.47	4.57	4.50	4.62	4.54	4.42	4.40	4.31	4.08	4.06	3.81	3.63		
	4.33	4.62	4.54	4.58	4.50	4.54	4.58	4.58	4.55	4.55	4.49	4.60	4.48	4.48	4.43	4.24	4.01	3.70	3.58		
	4.54	4.49	4.61	4.58	4.48	4.65	4.54	4.72	4.74	4.57	4.62	4.58	4.41	4.50	4.30	4.16	3.86	3.74	3.51	_	55
80	4.51	4.58	4.55	4.54	4.61	4.81	4.71	4.69	4.72	4.74	4.62	4.57	4.49	4.42	4.11	3.99	3.70	3.61	3.33		0.0
00	4.64	4.71	4.72	4.73	4.74	4.75	4.69	4.81	4.76	4.66	4.41	4.66	4.41	4.28	4.10	3.91	3.63	3.47	3.24		
	4.57	4.79	4.70	4.70	4.83	4.86	4.72	4.67	4.77	4.56	4.61	4.50	4.27	4.08	3.94	3.75	3.57	3.35	3.11	a second	-
	_4.72	4.88	4.61	4.80	4.86	4.78	4.67	4.79	4.70	4.73	4.53	4.33	4.25	4.03	3.85	3.68	3.49	3.33	3.16		5
	4.82	4.85	4.83	4.90	4.80	4.75	4.73	4.72	4.73	4.64	4.43	4.26	4.14	3.96	3.83	3.75	3.43	3.31	3.12		
70	4.98	4.64	5.04	4.85	4.94	4.77	4.75	4.79	4.66	4.54	4.37	4.22	4.08	4.00	3.76	3.64	3.45	3.33	3.13		
	-5.05	5.01	5.03	4.93	4.92	4.85	4.82	4.80	4.64	4.48	4.36	4.19	4.03	3.88	3.84	3.63	3.46	3.24	3.08	_	4.5
	-5.00	5.07	5.32	5.04	4.99	4.85	4.91	4.97	4.68	4.44	4.44	4.24	4.07	3.88	3.78	3.61	3.43	3.27	3.00		
	5.08	5.07	5.24	5.07	4.97	5.09	4.98	4.92	4.81	4.47	4.36	4.17	3.92	3.78	3.56	3.45	3.29	3.10	2.96		
	5.12	5.35	5.15	5.24	5.18	5.13	4.97	4.92	4.67	4.38	4.31	4.11	3.90	3.80	3.58	3.35	3.20	3.01	2.89		4
60	5.19	5.33	5.50	5.36	5.02	5.14	4.92	4.92	4.57	4.47	4.38	4.12	3.97	3.67	3.49	3.23	3.14	2.99	2.76		1
	5.22	5.69	5.51	5.36	5.38	5.38	5.12	4.84	4.65	4.48	4.38	4.11	3.86	3.70	3.49	3.31	3.11	2.89	2.72		
		5.55	5.51	5.41	5.36	5.19	5.07	4.95	4.64	4.55	4.35	4.04	3.87	3.61	3.51	3.19	3.02	2.91	2.69	1	35
		6.07	5.80	5.33	5.43	5.28	5.03	4.67	4.65	4.55	4.40	4.18	3.85	3.64	3.34	3.37	3.16	3.01	2.84		0.0
50		5.92	5.78	5.58	5.47	5.20	4.91	4.78	4.60	4.45	4.37	4.39	4.03	3.76	3.58	3.30	3.09	2.91	2.82		
50		5.78	5.73	5.95	5.48	5.22	5.01	5.12	4.86	4.79	4.45	4.30	4.05	3.80	3.58	3.40	3.29	3.24	3.02		2
		-	5.76	5.70	5.68	5.55	5.27	5.14	5.03	4.69	4.50	4.39	4.09	3.92	3.86	3.66	3.53	3.48	3.31		3
	L		5.81	5.81	5.88	5.43	5.28	5.19	5.24	4.79	4.71	4.57	4.19	4.10	3.87	3.64	3.61	3.32	3.26		
	L		5.82	5.63	5.72	5.62	5 38	5 38	5.21	5.10	4.67	4.45	4.18	4.11	3.90	3.69	3.49	3 32	3.16		
40	<u> </u>		0.01	6.10	5.75	5 75	5.64	5 35	5.16	5.06	4.74	4.52	4.24	3.97	3.74	3.55	3.34	3.11	2.93	_	2.5
	F			5.76	6.06	6.11	5.60	5.75	5 32	5.20	4.95	4.55	4.47	3.94	3.62	3.24	2.95	2.69	2.47		
	F	T.		0.70	6.31	5 87	5.83	5.80	5 50	516	4.54	4 14	3.78	3.62	3.16	2.87	2.63	2.84	2.25		
		-			1 4.91	1.0	0.00	1.4	1 0.90	1.0	-	1.0	1 2.10		2.10	2.2	1 4.95	24	4.40		2
		0.8		1		1.2		1.4		1.0		1.0		2		2.2		2.4			
																N	iomen	tum (C	Sev/c)		

pCsI EMC : Light yield and timing studies

A major R&D task : enhancing light yield

pCsI EMC : Pileup mitigation and electronics

Waveform fitting to remove pileup noise (~1 MHz/ch) and extract signals

Development of waveform digitization electronics (CSA + shaper + ADC)

Dynamic range: $3 \text{ MeV} \sim 3 \text{ GeV}$ ENE: ~ 0.4 MeV Time resolution : < 150 ps@1GeV

5×5 pCsI EMC Prototype

MUD R&D

Fabrication and performance studies of large-sized scintillator strips and glass RPC ullet

Design of readout ASICs (FEE +TDC) is underway. First version of the EFF chip already available. Readout electronics with discrete components has been developed for detector testing and characterization

Gas-tight check

Trigger and DAQ

Physics event rate ~ 400 kHz

Component	Num. of channels	Readout time window	Event size (B)	Total (B/s)
ITK (Silicon)	50M	500 ns	14300	5.72G
ITK (µRWELL)	10552	500 ns	17232	6.89G
MDC	11520	$1 \mu s$	20400	8.16G
PID (RICH)	518400	500 ns	15600	6.24G
PID (DTOF)	6912	500 ns	7380	2.95G
EMC	8670	500 ns	15000	6.00G
MUD	41280	500 ns	262	105M
Total(Silicon)	50.6M	-	72.9k	29.2G
Total(µRWELL)	594k	-	75.9k	30.4G

Raw data rate ~ 200 GB/s , after L1 trigger~ 30 GB/s (latest estimates: ~30 GB/s, ~ 10 GB/s) , HLT is required, anyway.

Trigger Algorithms and hardware Development

- MDC 2D and 3D tracking algorithms, EMC clustering algorithms, global trigger algorithms.
- **PFGA programming to realize the algorithms**

 Design of trigger electronics and development of core hardware components

Global Trigger Study

Trigger channel	Physics signal	Energy point	No. of tracks should(is) matched	No. of matched tracks in Endcap	No. of matched tracks in Barrel	Signal trigger rate	Background trigger rate(kHz)	Signal trigger rate
	$e^+e^- \rightarrow \pi^+\pi^-$ Jpsi; Jpsi $\rightarrow e^+e^-$	4.26GeV	3550 (2811)	448 (93)	3102 (2718)	949/952 (≥3)		99.7%
	$e^+e^- \rightarrow \pi^+\pi^-$ Jpsi; Jpsi $\rightarrow \mu^+\mu^-$	4.26GeV	3518 (2765)	452 (122)	3066 (2643)	944/948 (≥3)		99.6%
	$e^+e^- \rightarrow \tau^+ \tau^-$	4.26GeV	1717 (1448)	186 (54)	1531 (1394)	867/879 (≥2)		98.6%
Charged	$e^+e^- \rightarrow \pi^+\pi^-$ Jpsi; Jpsi $\rightarrow \Lambda \Lambda$	3.097GeV	2550 (1917)	220 (67)	2330 (1850)	905/918 (≥3)		98.6%
Channels	$e^+e^- \rightarrow \pi^+\pi^-$ Jpsi; Jpsi $\rightarrow \Xi \Xi$	3.097GeV	2713 (2067)	198 (66)	2515 (2031)	912/922 (≥5)	21.3	98.9%
	$e^+e^- \rightarrow K^+K^-Jpsi; Jpsi \rightarrow l^+l^-$	4.682GeV	3515 (2641)	365 (90)	3150 (2551)	954/964 (≥3)		99.0%
	$e^+e^- \rightarrow D_0 \overline{D_0}$	3.773GeV	3387 (2644)	312 (73)	3075 (2571)	3075 (2571) 954/954 (≥3)		100%
	$e^+e^- \rightarrow D^+ D^-$	3.773GeV	4031 (2707)	274 (64)	2640 (2643)	979/983 (≥3)		99.6%
	$e^+e^- \rightarrow D_s^+ D_s^-$	4.04GeV	4770 (3312)	462 (98)	4308 (3214)	933/936 (≥5)		99.7%
	J/psi-> gam invisable	3.097GeV	-	-	-	542/546 (≥1&&gam_momentum>=1)		99.7%
Neutral Channels	e+e> n nbar	3.097GeV	-	-	-	538/564 (≥2&&Nbar≥1&&EDep≥0.4)	67.0	95.4%
	e+e> gam n nbar	3.097GeV	-	-	-	611/613 (≥2&&Nbar≥1&&EDep ≥1)	07.0	99.7%
	e+e> gam n nbar(ISR)	3.713GeV	-	-	-	550/555 (≥2&&Nbar≥1&&EDep≥0.7)		99.1%

DAQ Software Design and Hardware Development

- Software and firmware architecture based on Data-Matrix: flow processing, heterocomputing, standard interfaces and protocols, global pipeline
- **Development of core electronics boards: CROB-PXI, CROB-PCIe, FMCP optical** interface board

FPGA XCKU115

板載DDR4

CROB-PXI board

FMCP optical interface board

Clock and Data Transmission

Master-slave clock distribution scheme : ulletullet~ **5**ps

1850 µm 激光器驱动芯片单通道模拟核心版图基本完成

TIA跨导接收芯片单通道模拟核心基本完成

High-speed data transmission : ~ 5Gpbs

Clock management block and SerDes block taped out

Combined Beam Test

A test beam campaign for a combined system (DTOF, EMC, DAQ)

DTOF Prototype

Detector Mechanical Design

General structure

- STCF detector conceptual design studies in the past few years have culminated with the publication of the physics and detector CDR.
- The STCF project has moved on to the technology R&D stage with strong support from local governments and USTC. A full STCF R&D program has been established and is rapidly moving forward.
- Intense R&D activities are underway on the baseline detector concept targeting key technologies of all sub-detectors. Significant progress has been made and some systems have reached milestones.
- Some sub-systems not covered in this talk: detector magnet, detector control system, luminosity monitors ...
- A lot of synergy with other projects to explore

Please join us if you are interested Still a lot of room to contribute and play an important role

Thank you !

