

Overview of Super Tau-Charm Facility (STCF)

Yangheng Zheng On behalf of the STCF working group University of Chinese Academy of Sciences

6th International Workshop on FTCF, November 18, 2024

Outline

D Introduction

D Project Promotion and Progress

D Physics Potential (updated)

Accelerator and Spectrometer (some highlights)

D Summary

Super Tau Charm Facility (STCF)

A factory producing massive tau lepton and hadrons, to unravel the mystery Quarks of how quarks form matter and the symmetries of fundamental interactions Forces **Dumping Ring Collier Ring** 150 m Linear Accelerator 800-1000 m Leptons ew generati Spectromete

- $E_{\rm cm}$ = 2-7 GeV, $\mathcal{L} > 0.5 \times 10^{35} \ {\rm cm}^{-2} \ {\rm s}^{-1}$
- Potential for upgrade to increase luminosity and realize polarized beam
- Site: 1 km², Hefei's suburban "Future Big Science City"

Tentative Project Schedule

- 14th five-years plan : Conceptual design and R&D of Key technology, 364 M CNY
- 15th five-years plan : Construction 6 years, 4.98 B CNY
- Operating for 10-15 years, upgrade for 3 years, operating again for ~10 years

Project Development and Advancement

Project Development and Advancement

Project Organization

International Advisory Committee (IAC) and National Consultative Committee (NCC)

Name (IAC, 22 members) tutions

(NCC, 24 members)

Guy Wilkinson (Chair)	Oxford
Frank Zimmermann (Co-chair)	CERN
Mikihiko Nakao	KEK
Alexander E. Bondar	Novosibirsk, IYF
Makoto Tobiyama	KEK
David G. Hitlin	Caltech
Stephen Lars Olsen	Chung Ang University
Marica E. Biagini	Frascati
Tord Johansson	Uppsala U.
Marek Karliner	Tel Aviv U.
Eugeny Levichev	Novosibirsk, IYF
Alexey Petrov	University of South Carolina
Tom Browder	Hawaii
Wolfgang Gradl	Mainz
Ikaros Bigi	Notre Dame
Antonio Pich	Valencia U., IFIC
Hongwei Zhao	Institute of Modern Physics, CAS
Zhentang Zhao	Shanghai Advanced Research Institute, CAS
Kuang-Ta Chao	Peking University
Yuanning Gao	Peking University
Yugang Ma	Fudan University
Bingsong Zou	Institute of Theoretical Physics, CAS

		-
组长	赵光达	北京大学
	赵红卫	中国科学院近物所
副组长	赵振堂	中国科学院上海高研院
	高原宁	北京大学
	蔡荣根	中国科学院理论所
	邓建军	中国工程物理研究院
	封东来	中国科学技术大学
	何多慧	中国科学技术大学
	何小刚	上海交通大学
	李建刚	中国科学院等离子体所
	柳卫平	南方科技大学
	罗民兴	北京计算科学研究中心
	马余刚	复旦大学
	欧阳晓平	西北核技术研究所
成员	欧阳钟灿	中国科学院理论所
	沈肖雁	中国科学院高能所
	史生才	中国科学院紫金山天文台
	万宝年	中国科学院等离子体所
	吴岳良	中国科学院大学
	夏佳文	中国科学院近物所
	向涛	中国科学院理论所
	许怒	中国科学院近物所
	詹文龙	中国科学院
	张肈西	中国科学院理论所
the second se	the second se	

1st International Advisory Committee meeting (face to face meeting for 2 days: Jan, 2024)

Report of first meeting of International Advisory Committee for the Super Tau Charm Facility

Maria Eurica Biagini⁻¹, Ikaros Bigi⁻², Alex Bondar⁻⁵, Tom Browder⁴, Kuang-Ta Chao⁴⁵, Yuanning Gao⁵, Wolfgang Grad¹⁶, David Hitlin⁻⁷, Tord Johanson⁴⁶, Marek Karliner⁴⁹, Lugeny Levichev¹, Yugang Ma⁴⁴⁰, Mikihiko Nakuo¹¹, Stephen Olsen⁻¹², Alexey Petrov¹¹¹, Antonio Pich¹¹⁴, Makoto Tobiyama¹¹¹, Guy Wilkinson¹⁻²⁶ Hongwei Zhao¹⁵, Zheutang Zhao⁴¹⁷, Frank Zimmermann¹¹¹⁶, Bingsong Zau¹¹⁶

¹ INEX. Encode National Laboratories, ⁵ University of Noise Dates, ² Bridler Justine of Nuclear Physics (INRP), ⁵ Distantly of Usersh, ⁵ Write J Invarying, ¹ Dishonova Granteng, Invarying Viera, ¹ Culturents Institute of Technology, ⁶ Oceania University, ⁵ Tel Asiar University, ¹⁰ Distant University, ¹⁴ High Energy Academic Research Organization (ORE), ¹⁶ Charge ang Laboratory, ¹⁶ University, ¹⁶ Stark, ¹⁶ Stark, ¹⁶ University, ¹⁶ High Energy Academic Research Displayment (ORE), ¹⁶ University, ¹⁶ University, ¹⁶ University, ¹⁶ Stark, ¹⁶ Stark, ¹⁶ University, ¹⁶ Stark, ¹⁶ Stark, ¹⁶ University, ¹⁶ University, ¹⁶ Stark, ¹⁶ University, ¹⁶ University, ¹⁶ Stark, ¹⁶ Stark, ¹⁶ University, ¹⁶ Constant, ¹⁶ University, ¹⁶ University,

Contains.
 * Attended meeting

2 Executive summary

STCF will be unique facility with a broad and impressive physics reach. It will allow for results of world-leading precision in many important topics, and has significant discovery potential. It will ideally complement the other facilities that are currently operational or are foreseen for the 2030s and 2040s, and will be of great interest to the international particle physics community. The principal challenge of the project lies in the accelerator. Here the intended luminosity will exceed by two orders of magnitude that previously achieved in the same energy regime. The IAC is pleased to recognise the significant progress on the STCF accelerator design that has occurred since the establishment of a dedicated Accelerator Division led by Prof. J.Y. Tang. The demands on the detector are less formidable, but should not be underestimated given the extreme event rate and size of data samples foreseen.

Team & International Collaboration

Ongoing efforts to strengthen collaboration with BINP, KEK, DRD and others, especially on accelerator development

Regular Meeting

Weekly or biweekly meeting

	M -		=		H	N=		in the second se	四	周五
上午		kantika Bauleo, takanta 3 Jan Tulia Akhuk		1942 913 - N. 1953 <u>- 2</u> 504 31 - 10 - 112 - 10 2041	ernen Arbenterforme S. S. Th. S. The	代報告記 1975年3月8日20日前 51:50-12:50 7月:5日 1月:5日	東京教会 王道時後、中国内部連邦制 第 9、41-12、20 明全、表明	NEIO Verköszne S. 53–12: LJ Danus, Raca		20月5日2 5 (19月1日) (20月15日2日) 201 - 55 (12月15) 201 - 60 201 - 60
下午	な変更な 数方に、全体の表現的合 1801年1月1日 2011年	開始な 法人間合明 <i>時、同合</i> 10:03-05:20 点明 (*)	辺辺県会 194月の第108月台 1951日 - 1952 1955日 1955日 1955日	電視2 使気中後間が、同会 22.00~16.00 留意り	製制会 した記録時期外取用会 12. 42-16. 42 命事業	erite 2 Edit officer under the 2 The officer of 2011		19.1942 > 344 (8.200-19) Hotalo 20.192 13 - 20-15 - 20 5-16 5-16	9,1532 16:422,743,841,844,85 16:52 14:30,17:30 742,5 742,5	開発会 他を選手的開会 141-00-17-00 気の時
		7334 Biner 1917 - Angels Main 1919 - Oli-1719 - Oli 1947 - Sala								2010年年 5707月日の12月1日日 10:00-12:0 月日午 25年7 月日午 25年7
晚上	200-92109 10:30-32:30 20:18									

Monthly or quarterly meeting

	=9	89	1 .9	六月	ta	A8	九月	+8	+-8	+=8
£4	特里亚(成后一十五五) STOTLEHY会 NP44_3[24日 2:00-10:00 此句平 外别女友: 421 177 003			 ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●			等単位:(第四一个/周囲) 57日78日今日 2703年4月9日 2703年4月24日 9:00-15:00 約25年 周期(安保): 433,377,029			
F	毎月(東西一个四一) 10件-020次は年 年 2024年3月25日 14:00-17:00 連続寺	毎月(東京一个町一) 10月~6月2月2日年 20月~6月2月2日 20月~月2日 14月1日 15月1日 11月11日 11月111日 11月111日 11月1111 11月1111 11月11111 11月11111 11月111111	●5月(武田一一个町一) 1858年(1955年)年 2058年(1955年)年 2054年(1975年) 14:20年17:20 上記書書	●5日(8月日一个月一) 1985年3月1日日日 2014年4月20日 1945年3月21日 1945年3月21日 1945年3月 1945 1945 1945 1945 1945 1945 1945 1945	●5日((8月日一个月一) (2013年) 2013年) 1月1日日 2014年) 月日日 1月1日 1月1日 1月1日 1月1日 1月1日 1月111日 1月111日 1月111日 1月111日 1月111日 1月111日 1月1111 1月1111 1月1111 1月1111 1月1111 1月1111 1月1111 1月11111 1月11111 1月11111 1月11111 1月11111 1月111111	母母(電母一个個一)) 取作4005785年年 2024年9月25日 14:00-12:00 後期中	●55(高度一个65一) 1925年4月31日 1410日-1710日 1410日-1710日 上記書記	45日(65日一十月一) 13535-571月日日 2524年10月25日 14:00-17:20 出行時:	低日(成成一代ス一) (1953年)(7月4日年 2024年) 月25日 14: 00-17: 20 出代記	毎月(東京一个月一) 田村(42)(27)(8 日 日 2024年)2月31日 14:00-17:00 地知寺
		50日(<u>豊</u> 紀一個時候) 音な形式(50度会) 2024 ^{年24月25日} 加盟	1925年(長山一朝鮮福) 1930年1月(1935年) 第111日 第111日	8月(第6一つ第五) 第6月22(紀元会) 2月24年5月22(紀元会) 2月24年5月23日 14:00年16:20 2月第	住日(日日一町村市) 諸(6月2(号昭2) 計算	61日(第16一)(第16) 第12月交(上元会) 2004年6月交(二元会会) 2014年6月21日 1月:00~1月:00 月前	10月(豊富一部新聞) 1992月1日(19月2日) 第4日	20月(田田一へ開始) 第64月2(紀第2) 2024年10月2(紀第2) 2124年10月2日 2124年10月2日 21日 21日 21日	20月(高紀一年禄道) 第55月2(号道2) ●77	6日(第15一个例末) 第12号会(上大会) 200時(1942年) 19:00-19:00 月前

International and Domestic Workshop

Time	Place	Content
2018.10	Hengyang (USC)	STCF
2019.03	Beijing (UCAS)	STCF: Physics
2019.07	Hefei (USTC)	STCF: Accelerator
2019.08	Hefei (USTC)	STCF: Phys. & simulations
2019.11	Beijing (UCAS)	STCF: CDR
2020.08	Hefei (USTC)	STCF: From CDR to TDR
2022.12	Guangzhou (SYSU)	STCF: R&D kick-off
2023.07	Zhengzhou (ZZU)	STCF: Collaboration
2024.07	Lanzhou (LZU)	STCF: 15 th -five-year plan

Site : Hefei Future Big Science City

....

100.00

Civil engineering design work is in progress

Financial Support

Year	Funding Agency (Institution)	Project Type	RMB
2018-2021	USTC	Double First-Class key project	20.0 M
2021-2026	CAS	International Partnership program	5.0 M
2022-2027	MOST	National Key R&D Program of China	17.5 M
2023-2025	Anhui/Hefei/USTC	Key Technology R&D Project	364.0 M
2023-2027	NSFC	Key Group Project	14.0 M
Total			420.5 M

Physics at the Tau-Charm Energy Region

Unique Features *τ***-c facilities:**

- Transition region between perturbative and non-perturbative QCD
- Threshold effects and quantum correlation of pair production of hadrons and τ leptons
- Rich resonance structures, large production X-sec for charmonium(-like) states and exotics

- Hadron form factors
- Y(2170) resonance
- Mutltiquark states with s quark
- R value / g-2 related

- Light hadron spectroscopy
- Gluonic and exotic states
- Processes of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- Physics with D mesons
- f_D and f_{D_s}
- $D^0 \overline{D}^0$ mixing
- Charm baryons

- Complete *XYZ* family
- Hidden-charm pentaquarks
- Search for di-charmonium states
- More charmed baryons
- Hadron fragmentation

Key Science Questions

Flagship Measurements at STCF

STCF aims to reveal the mystery of how quarks form matter and the symmetry of fundamental interactions

Scientific question: how quarks form matter

- Hadron generation: fragmentation and energy correlator
- Exotic hadronic states and more

Scientific question: symmetry of fundamental interactions

- CP violation in the hyperon decay
- Precise measurements of Strong phases in D decays
- New physics search: Ds -> mu nu

The main considerations:

- 1. The uniqueness of the topics, aiming to avoid direct competition with Belle II and LHCb;
- 2. The ease of understanding by the general public, which is beneficial for gaining project approval in China;
- 3. Potential synergies with other experiments such as EIC/EicC, creating a win-win situation. For these reasons, these topics are ranked at the top.

Hadron Generation

STCF energy region offers a unique opportunity to probe the fundamental mysteries in particle physics: the confinement transition from quarks to hadrons

 STCF energy range will provide a multidimensional accurate measurement of the process of quark smashing into hadrons generated by electron-positron collisions

 Recent breakthroughs in energy correlator studies have revealed that the time evolution of quark hadronization leaves a distinct signature in the angular separation of correlated hadron pairs. The energy region of STCF provides an unprecedented window into the phase space where this transition unfolds, enabling precision measurements of fundamental QCD quantities such as the strong coupling constant and hadron formation time

Exotic Hadronic States and More

STCF will provide a unique platform for clarifying the mass spectrum of charmed hadrons, and further exploring the physical mechanism of quark confinement and the realization of chiral symmetry breaking in heavy hadrons

- A large number of hadrons will be produced near or far from the threshold region, characterized by rich structure and strong quantum correlation
- STCF will establish a complete XYZ lineage, and searching for strange hadronic states such as charmonium and pentaquark states
- Above 5 GeV, a large number of charmonium-like excited states, along with a large number of excited states of charm hadrons, will be generated, providing an experimental basis for establishing reliable and accurate mass spectra of charmed hadron spectroscopy

CP Violation in the Hyperons

The CPV studies at STCF will greatly help to understand the mechanism of CP symmetry, discover new sources of CP violation and new physical laws

- Billions of quantum-entangled hyperon-antihyperon pairs produced by J/ψ decay at STCF, with clean topology and clear initial polarization, providing a unique opportunity for the test of CP symmetry in hyperons
- The statistical sensitivity of the CP symmetry in hyperon decay will be examined with a precision of 10^{-4} , while 10^{-5} if electron polarization 80%. SM prediction $10^{-4} \sim 10^{-5}$. The world best sensitivity

CP Violation in the Hyperons

The systematic uncertainties are challenging, three different categories :

Those can be studied with the control samples

- Data/MC difference in tracking, PID etc \rightarrow Two orders in magnitude improve of control sample \rightarrow 10⁻⁴ or better
- Input-output check \rightarrow Larger MC statistics \rightarrow negligible

Those can be improved by optimizing the detector design, MC tool and reconstrucing

- Kinematic fits, photon noise, background etc \rightarrow Novel MC tool and reco

Those associated with the theoretical calculation (next-to-leading order effects)

- NLO of production → using complete form factor description → negligible
- Procession of magnetic moment/de-coherence \rightarrow including the effects in MC \rightarrow negligible

The systematical uncertainty for hyperon CPV at STCF is expected at the order 10⁻⁴ or better, innovative measurements to minimize systematic are also desired

better

.Jn→ 10⁻⁴ ?

Precision Measurements and Rare Decays

STCF physics opportunities :

- improve the current precisions of many important measurements by ~1 order of magnitude
- enhance sensitivities to various rare or forbidden decays by ~2 orders of magnitude

Full Simulation Studies

The offline software OSCAR is ready to perform the fully simulation for the studies of

physics sensitivity and detector performance as well as the detection design optimization

- Benchmark process for XYZ particles: $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, as well as checking the tracking efficiency, vertex resolution and kinematic fit.
- Benchmark process for hyperon CP symmetry test: $J/\psi \rightarrow \Lambda \overline{\Lambda}$, as well as checking the tracking efficiency and resolution of particles away from interaction point, and the secondary vertex fit.
- Benchmark process for Collins effect: $e^+e^- \rightarrow \pi^+\pi^-/KK+X$, as well as checking the MC generator, PID efficiency and mis-ID of charged particles.
- Process that including a neutral π^0 : $D^0 \to K^- \pi^- \pi^0$, as well as checking the efficiency and resolution of neutral particles.
- Process that used to study π/μ separation: $D^0 \rightarrow \pi \mu \nu$
- Process that used to study the $K^0 \overline{K}^0$ system: $J/\psi \to K_s K \pi$

Shortage of Computing resource

Accelerator

Challenges:

Please see Prof. Jingyu Tang's talk for details

Super-high luminosity, high-quality (high-current, low emittance) e+/e- beams collision (extremely low β^*), IR strong nonlinearity and collective effects; stable operation...

Progress on Accelerator Physics Design

IR physics design

- The key and challenge for STCF accelerator
- New collision scheme: beam param (I_b , ε_x ; nm spot at IP), crossing angle, correlation with the B-B effect [Luminosity need]
- Special optics: Final Focus + Crab Waist (Telescope-Mini β, dispersion, phase advance) [Complexity]
- Strong nonlinearity: Local CC for extreme-low β, fringe-field, crab sextupoles → very small DA and MA [very short beam lifetime]
- Complex MDI: SC magnets, vacuum, cryostat, beam monitors, interface with detector [Iterations]

Parameters	Units	STCF
Optimal beam energy, E	GeV	2
Circumference, C	m	871.76
Crossing angle, 2θ	mrad	60
Revolution period, T	μs	2.908
Horizontal emittance, $\varepsilon_{\chi}/\varepsilon_{y}$	nm	6.857/0.034
Coupling, k		0.50%
Beta functions at IP, β_x/β_y	mm	40/0.6
Beam size at IP, σ_x/σ_y	μ m	16.56/0.143
Betatron tune, v_x / v_y		32.55/29.57
Momentum compaction factor, α_p	10 ⁻⁴	12.322
Energy spread, σ_e	10 ⁻⁴	8.986
Beam current, I	А	2
Number of bunches, n_b		726
Particles per bunch, N _b	10 ¹⁰	5.00
Single-bunch charge	nC	8.01
Energy loss per turn, U ₀	keV	406.8
Damping time, $\tau_x / \tau_y / \tau_z$	ms	28.4/28.6/14.4
RF frequency, <i>f_{RF}</i>	MHz	499.333
Harmonic number, h		1452
RF voltage, V_{RF}	MV	1.8
Synchrotron tune, v_z		0.0158
Bunch length, σ_z	mm	9.72
RF bucket height, δ_{RF}	%	1.47
Piwinski angle, ϕ_{pwi}	rad	17.61
Beam-beam parameter, ξ_x/ξ_y		0.0027/0.082
Hour-glass factor, F_h		0.87

→ Take advantage of a new machine, experiences and lessons from SuperKEKB → better design

From preliminary study phase to R&D phase

- Preliminary study phase (from 2018 to mid 2023)
 - Very limited manpower (small-portion part-time, students, retired consultants): preliminary conceptual design on the STCF accelerator
 - Supporting the STCF study project
- Key R&D phase (since August 2023)
 - The National Synchrotron Radiation Laboratory (NSRL) has fully engaged in the project, acting as a co-supporter of the STCF initiative.
 - NSRL is focusing on the constr. of HALF (a 4G synchrotron light source, 2023.5 to 2028.9), still limited manpower
 - Domestic collaborations have expanded, with contributions from 8 institutions providing roughly half of the current manpower.
 - About 90 persons, half are students

Spectrometer

Challenges:

Please see Prof. Jianbei Liu's talk for details

Highly efficient and precise reconstruction of exclusive final states under the extreme conditions of high event rate, large dynamic range, and high radiative hardness

Progress on Inner Tracker

μ Rgroove, low material ~0.23%X₀, hit rate of 400 kHz/ch

ASIC Specs	Demands
Charge Range	40 fC
Charge precision	\sim 1 fC RMS
Time precision	< 10 ns RMS
Max. event rate	4 MHz

Progress on PID

A RICH Prototype with liquid C6F14 (n~1.3) radiator

THGEM

热压接Micromegas

气体腔室

丝型漂移阴极

Radiator purifying

Csl coating

设计图及样机实物

512-channel readout board using the self-developed ASIC

A full-sized DTOF prototype, with time resolution <21 ps by cosmic rays

	Hammeters B10754
	Hamamatsu R10754
•	灵敏面积: 23×23 mm ²
•	像素分布: 4×4 阵列
	像素大小: 5.5×5.5 mm ²
	米 満ち 井田: 200 850 850

>10 增益非均匀性: 14% (o/µ) · 时间性能:~27 ps

高地站

金属化方形小阳极

效率: 25%@λ=400 nm

25-221109

5-231127 4000

6000

8000

ad anode output charge (mC/cm²)

2.2cm

10000

Progress on EMC

Increase light yields and reduce the pile up effects, time capability is expected

A prototype to verify the energy and time resolution

A waveform digitization electronics (CSA + Shape + ADC) for the waveform and time resolution

A waveform fitting with multiple templates to effectively mitigate the pileup effect

Test Beam Campaign

DTOF and EMC prototypes are combined in a single TDAQ system for test beams

Summary

- STCF has a rich physics program with breakthrough potential in the studies of how quarks form matter and symmetry of fundamental interactions (CPV), and beyond. It is, therefore, an important project in the precision frontier of HEP and of great interest to the international HEP community.
- With the strong backing from the local governments, the key technology R&D project is progressing as expected in the past few month, and significant progress has been made. The project organization has been further strengthened, and the flagship physics objectives have been refined.
- Aiming for construction approval from central government during the 15th Five-Year Plan (2026-2030). The proposal is currently in preparation, with the initial draft totaling ~ 1,000 pages, and is expected to be completed by early 2025
- Expanding international collaboration and exploring synergies with other projects are crucial. All forms of collaboration are welcome

Thank you !

Preliminary Construction Cost

Sub-Systems	Construction Budget (million RMB)
Accelerator - Injector	850
Accelerator – Collider Rings	2, 500
Detector	750
Civil Construction	880
Total	4, 980

Preliminary Construction Cost

Sub-Systems	Construction Budget (million RMB)
Accelerator - Injector	850
Accelerator – Collider Rings	2, 500
Detector	750
Civil Construction	880
Total	4, 980

Exotic Hadronic States and More

CP Violation in the Hyperons

Great opportunity for Systematic measurement of the EDMs of the hyperon family!

µ: magnetic dipole momentd: electric dipole moment

Non-zero EDM will violate P and Tsymmetry: T violation $\leftrightarrow CP$ violation, if CPT holds

(a)Sensitivity of $Re(d_B)$ and $Im(d_B)$

These results will provide strong constraints on the theoretical model and achieve the world best precision ever.

Unique Data Samples

CME (GeV) Lumi (ab⁻¹)

1

1

3.097

3.670

Samples

 J/ψ

 $\tau^+\tau^-$

τ-leptons		iu yea	ai 5 uata i	ancii	hiohos	bai
Light Hadrons Charmed Hadron	× XYZ	10 10	ars data t	akon	nronos	
		5 2-7	Several ab ⁻¹ of hig	h-energy dat	a, details depende	nt on scan results
	4.0-	-7.0 3	, , , , , , , , , , , , , , , , , , ,	scan with 1	0 MeV steps, 1 fb	⁻¹ /point
η η' Λ Σ Ξ τ D^0 D^+ D_{s} Λ_{c} J/ψ γ	ψ(3686) X(3872) Y(4220) Zc(3900)		$\tau^{+}\tau^{-}$	34	3.4×10^{9}	Single tag
		1	$\Lambda_c \Lambda_c$	0.56	$5.6 \times 10^{\circ}$ 6.4×10^{7}	Single tog
	4.6	30	$\psi(3686)\pi^{+}\pi^{-}$	0.033	3.3×10^{7}	
		20 1	$\tau^+\tau^-$	3.5	3.5×10^9	
	44'	20 1	$\psi(3686)\pi^{+}\pi^{-}$	0.040	4.0×10^{7}	
	4.3	60 1	$\tau^+\tau^-$	3.5	3.5×10^{9}	
Ž – – – – – – – – – – – – – – – – – – –		60 1	$\psi(3686)\pi^{+}\pi^{-}$	0.058	5.8×10^{7}	
			$\gamma X(3872)$	5.0	5.0 × 10	
	4.2	30 1	$J/\psi\pi^{+}\pi^{-}$	3.6	3.6×10^9	
· · · · · · · · · · · · · · · · · · ·			$\tau^+\tau^-$	3.6	3.6×10^9	
	4.1	80 1	$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$		1.3×10^{8}	Single tag
			$D_{s}^{+*}D_{s}^{-}+\text{c.c.}$	0.90	9.0×10^{8}	
	STCF(1 ab ¹)		$\tau^+ \tau^-$	3.5	3.5×10^9	
	Bellell(50 ab ⁻¹) 4.00	09 1	$D^+ D^-$	0.20	2.0×10^{8}	$CI_{D^0D^0} = -$
BESIII 1 year STCF: 1 year (1 ab ⁻¹) Bellell: 50 ab ⁻¹	BESIII		$D^{*0}D^{0} + c.c$ $D^{*0}\overline{D}^{0} + c.c$	4.0	1.4×10^{2} 2.6 × 10 ⁹	$CP_{D^0\bar{D}^0} = +$
			$\tau^{+}\tau^{-}$	2.9	2.9×10^9	CD
			$D^+ \overline{D}^-$		5.5×10^{8}	Single tag
	3.7	70 1	$D^0 ar{D}^0$		7.9×10^{8}	Single tag
			$D^+ \overline{D}^-$	2.8	2.8×10^{9}	
			$\frac{\varphi(5000)}{D^0\bar{D}^0}$	3.6	$\frac{2.6 \times 10}{3.6 \times 10^9}$	
factory for XYZ, hyperons and light	hadrons	80 1	$\tau^+\tau^-$ $\mu(3686) \rightarrow \tau^+\tau^-$	2.5	2.5×10^{9}	
	2.4	96 1	$\psi(3686)$	640	6.4×10^{11}	

Not only a *τ*-charm factory, but also a

No. of Events

 3.4×10^{12}

 2.4×10^{9}

Remarks

 $\sigma(nb)$

3400

2.4

Exotic Hadronic States and More

- Threshold production provides the unique opportunities to measure the time-like Electromagnetic form factors as well as the inner structure of nucleon.
- STCF will improve the measurement with 1-2 order in precision, will reveal nearthreshold cross section singularity as well as the G_E and G_M behavior, such as the oscillation when it varied with the center-of-mass energy, the evolution of the phase