

Preliminary figures request ³_A**H production in Run2020 FXT Au+Au 5.2 GeV**

Yulou Yan(USTC)

Apr,2024

• PA name: Yulou Yan <u>yulou@mail.ustc.edu.cn</u>

Supervisor email address:

Yifei Zhang: <u>ephy@ustc.edu.cn</u>

Hypernuclei production in heavy ion collisions

- \Rightarrow Y-N interaction \Rightarrow EOS of compact stars
- Production mechanism
 - \Rightarrow Thermal model
 - \Rightarrow Coalescence model
- Observables:
- \Rightarrow Energy dependence of hypernuclei yields at mid-rapidity
- ⇒ Rapidity dependence of hypernuclei yields

•First time systematically measuring the energy dependence of hypernuclei production

	information
Dataset	Data: production_13p5GeV_fixedTarget_2020 Star Library:P21id
Trigger	750000
Badrun	21034002,21034007 https://drupal.star.bnl.gov/STAR/pwg/common/bes-ii-run-qa/FXT-datasets
Rapidity convention	$y = -1^*(y_{lab} - y_{beam}), y_{beam} = -1.68$ at FXT 5.2 GeV
Vertex cuts	198 < Vz < 202 cm $\sqrt{(Vx + 0.3) * (Vx + 0.3) + (Vy + 2) * (Vy + 2)} < 2$
Centrality definition& pileup rejection	https://drupal.star.bnl.gov/STAR/system/files/2023_0718_AuAu5p2Cent.pdf
Number of events	~ 89M good events(0-80% centrality)
Embedding request id	0223001
Track Cuts	pion p_T >0.1 GeV/c He3 p >0.4 GeV/c nHitsFit>15 nHitsDedx>5 nHitsFit/nHitsMax ≥ 0.52

1) PID based on TPC dE/dx ${}^{3}_{A}H \rightarrow {}^{3}_{2}He + \pi^{-}$

• He3

• Pion:

2) Reconstruct ${}^{3}_{A}H$ candidates

- Reconstructed by KFParticle package
- Background reconstruction
 ⇒Rotate He3 10°-350° randomly, 20 times statistics
- Topological cuts

0-10%
>1
ldl>6
chi2topo<10
chi2ndf<2.2
chi2primary_pi>5
chi2prim_he>0

10-40% l>1 ldl >1, chi2topo<10 chi2ndf<4 chi2prim_pi>11 chi2prim_he>0

3) Efficiency correction

- We need to confirm that the topological variables in our data are well described by the embedding simulations To make a fair comparison, we need to weight the embedding simulations
- H3L p_T distribution is weighted with a boltzmann function
- H3L rapidity distribution is weighted with a quadratic function
- H3L lifetime are also weighted according to global average value
- Reconstructing the embedded H3L signals via the same procedure as data
- Corrected p_T spectra:

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \propto = \frac{N^{Raw} / (\epsilon^{reco} \times \epsilon^{PID})}{2\pi p_T \Delta p_T \Delta y}$$

4) dN/dy

(a) dN/dy

- Sum of yields in measured p_T region + unmeasured p_T region from function extrapolation
- Stat error: measured region * Fraction, Fraction = Integral(p_T >0)/Integral(measured p_T range) from fitting function

- Vary nHitsFit: nHitsFit>15, 17, 13
- Vary global average lifetime: H3L= 228.3±12.5 [ps]
- Vary raw count extraction
- Vary extrapolation function
- Vary the topological cuts
- Vary raw count extraction
 ⇒ Vary the Gaussian+Linear fitting range [2.97,3.02], [2.97,3.01], [2.96,3.02]
- Vary the topological cuts

0-10% 10-40% I >0,1, 3 I>0,1, 3 chi2topo<8,10,12 chi2ndf<1.5,2.2, 3.5 chi2primary_pi>3,5,7 chi2prim_pi>8,11,15 If {default,var1}

- ⇔sys.err = |default-var1|
- If {default,var1,var2}
- ⇔sys.err = (max-min)*0.5
- Total sys.err added quadratically
- Vary extrapolation function \Rightarrow function styles: $C \cdot m_T exp(-\frac{m_T}{T})$ boltzmann(default) $C \cdot exp(-\frac{m_T}{T}) \quad m_T \exp C \cdot exp(-\frac{p_T^2}{\mu}) \quad p_T \text{ Gaus}$ $C \cdot exp(-\frac{p_T^{3/2}}{\mu}) \quad p_T^{3/2} \exp C \cdot exp(-\frac{p_T^{3/2}}{\mu}) \quad p_T^{3/2} \exp C \cdot exp(-\frac{p_T \sin h\rho(r)}{T_{kin}}) + K_1(\frac{m_T \cosh \rho(r)}{T_{kin}})$ blast wave
 - \Rightarrow function parameters: Bootstrap

Red denotes cuts variations in systematic uncertainty study

dN/dy

	dndv(cen:0-10%:-1.3~-0.8)
Tracking efficiency	10.02%
H3L Lifetime	6.50%
Topological cuts	12.09%
Raw count extraction	10.20%
Extrapolation	30.22%
	dndy(cen:0-10%;-0.8~-0.3)
Tracking efficiency	11.95%
H3L Lifetime	5.39%
Topological cuts	14.93%
Raw count extraction	3.36%
Extrapolation	27.34%

dN/dy

dndy(cen:10-40%;-1.3~-0.8)Tracking efficiency10.01%H3L Lifetime3.43%Topological cuts9.00%Raw count extraction1.77%Extrapolation14.08%dndy(cen:10-40%;-0.8~-0.3)Tracking efficiency10.48%H3L Lifetime3.93%Topological cuts7.35%Paw agunt extraction4.92%		
Tracking efficiency10.01%H3L Lifetime3.43%Topological cuts9.00%Raw count extraction1.77%Extrapolation14.08%dndy(cen:10-40%;-0.8~-0.3)Tracking efficiency10.48%H3L Lifetime3.93%Topological cuts7.35%Paw agunt extraction4.92%		dndy(cen:10-40%;-1.3~-0.8)
H3L Lifetime3.43%Topological cuts9.00%Raw count extraction1.77%Extrapolation14.08%dndy(cen:10-40%;-0.8~-0.3)Tracking efficiency10.48%H3L Lifetime3.93%Topological cuts7.35%Park agunt extraction4.92%	Tracking efficiency	10.01%
Topological cuts9.00%Raw count extraction1.77%Extrapolation14.08%dndy(cen:10-40%;-0.8~-0.3)Tracking efficiency10.48%H3L Lifetime3.93%Topological cuts7.35%Park agunt outraction4.92%	H3L Lifetime	3.43%
Raw count extraction1.77%Extrapolation14.08%dndy(cen:10-40%;-0.8~-0.3)Tracking efficiency10.48%H3L Lifetime3.93%Topological cuts7.35%Park equat extraction4.92%	Topological cuts	9.00%
Extrapolation14.08%dndy(cen:10-40%;-0.8~-0.3)Tracking efficiency10.48%H3L Lifetime3.93%Topological cuts7.35%Park equipt extraction4.82%	Raw count extraction	1.77%
dndy(cen:10-40%;-0.8~-0.3)Tracking efficiency10.48%H3L Lifetime3.93%Topological cuts7.35%Park acuts outraction4.82%	Extrapolation	14.08%
Tracking efficiency10.48%H3L Lifetime3.93%Topological cuts7.35%Park count actraction4.82%		dndy(cen:10-40%;-0.8~-0.3)
H3L Lifetime 3.93% Topological cuts 7.35% Perm count extraction 4.82%	Tracking efficiency	10.48%
Topological cuts 7.35% Power opunt optraction 4.82%	H3L Lifetime	3.93%
Pow count extraction 4 929/	Topological cuts	7.35%
Raw count extraction 4.02 %	Raw count extraction	4.82%
Extrapolation 17.83%	Extrapolation	17.83%

Preliminary figures request

• p_T spectra in 0-10% and 10-40%, respectively.

Preliminary

•The dN/dy vs energy

⇒Assuming B.R. =23%

https://drupal.star.bnl.gov/STAR/system/files/H3L_branchingratio.pdf

•The dN/dy vs energy

⇒Assuming B.R. =23%

https://drupal.star.bnl.gov/STAR/system/files/H3L_branchingratio.pdf

• Rapidity dependence of H3L yields at 5.2 GeV comparing to those of other energies in 0-10% and 10-40%.

• Rapidity dependence of H3L yields at 5.2 GeV comparing to those of other energies in 0-10% and 10-40%.

(back up in case of future usage)

(back up in case of future usage)

Back up

The Barlow test method [2] is used to reduce the introduction of statistical fluctuations into the estimation of systematic uncertainties. The difference of the ${}^{3}_{\Lambda}$ H yields between the maximum (Y_{Max}) and minimum (Y_{Min}) of the re-calculated ${}^{3}_{\Lambda}$ H yields is

$$\Delta = |Y_{\text{Max}} - Y_{\text{Min}}| \tag{7}$$

Since Y_{Max} and Y_{Min} are calculated using the same dataset and have a strong correlation, the statistical uncertainty of Δ in Eq. 7 is :

$$\sigma_{\Delta} = \sqrt{\mid \sigma_{\text{Max}}^2 - \sigma_{\text{Min}}^2 \mid} \tag{8}$$

¹⁰¹ Where σ_{Max} and σ_{Min} are the statistical uncertainties with the maximum (Y_{Max}) and minimum (Y_{Min}) of the ¹⁰² re-calculated $^{3}_{\Lambda}$ H yields, respectively. If the difference between the variation Y_{Max} and the default result Y_{Min} is ¹⁰³ bigger than the statistical uncertainty:

$$\Delta = \mid Y_{\text{Max}} - Y_{\text{Min}} \mid > \sigma_{\Delta},\tag{9}$$

¹⁰⁴ then the systematic uncertainty from the same source is calculated by:

$$\Delta_i^{sys} = 0.5 * \sqrt{\left(Y_{\text{Max}} - Y_{\text{Min}}\right)^2 - |\sigma_{\text{Max}}^2 - \sigma_{\text{Min}}^2|} \tag{10}$$

If the difference between the variation Y_{Max} and the default result Y_{Min} is even smaller than the statistical uncertainty:

$$\Delta = |Y_{\text{Max}} - Y_{\text{Min}}| < \sigma_{\Delta}, \tag{11}$$

then this difference Δ is regarded as coming from the statistical fluctuation. This variation would not be included in the systematic uncertainties, which means the systematic uncertainty from this source is 0.

dN/dy

	dndy(cen:0-10%;-1.3~-0.8)
Tracking efficiency	10.00%
H3L Lifetime	4.77%
Topological cuts	10.78%
Raw count extraction	9.59%
Extrapolation	30.22%
	dndy(cen:0-10%;-0.8~-0.3)
Tracking efficiency	11.47%
H3L Lifetime	3.37%
Topological cuts	12.22%
Raw count extraction	0.00%
Extrapolation	27.34%

dN/dy

	dndy(cen:10-40%;-1.3~-0.8)
Tracking efficiency	10.00%
H3L Lifetime	2.11%
Topological cuts	8.31%
Raw count extraction	0.00%
Extrapolation	14.08%
	dndy(cen:10-40%;-0.8~-0.3)
	10.000/
	10.00%
H3L Lifetime	10.00% 0.00%
H3L Lifetime Topological cuts	10.00% 0.00% 0.00%
H3L Lifetime Topological cuts Raw count extraction	10.00% 0.00% 0.00% 0.00%
Hacking emiliency H3L Lifetime Topological cuts Raw count extraction Extrapolation	10.00% 0.00% 0.00% 17.83%

Analysis procedure

• 3.2 GeV(2019) H3L embedding: https://drupal.star.bnl.gov/STAR/starsimrequests/2022/Jul/30/hypernuclei-FXT-AuAu-32-GeV Using integrated p_T and rapidity range; after weighting of p_T distribution

Embedding data comparison

Yulou Yan

• 3.2 GeV(2019) H3L embedding: https://drupal.star.bnl.gov/STAR/starsimrequests/2022/Jul/30/hypernuclei-FXT-AuAu-32-GeV Using integrated p_T and rapidity range; after weighting of p_T distribution

• MC particles' p_T distribution is weighted with an boltzmann function

- MC particles' y distribution is weighted with a quadratic function
- Lifetime is weighted to H3L world average lifetime 228.3ps **Reconstuction efficiency**

$$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy} \qquad \propto = \frac{N^{Raw} / (\epsilon^{reco} \times \epsilon^{PID})}{2\pi p_T \Delta p_T \Delta y}$$

$$C \cdot m_T exp(-\frac{m_T}{T}) \text{ boltzmann(default)}$$

$$C \cdot exp(-\frac{m_T}{T_2}) \quad m_T \exp$$

$$C \cdot exp(-\frac{p_T^2}{\mu}) \quad p_T \text{ Gaus}$$

$$C \cdot exp(-\frac{p_T^{3/2}}{\mu}) \quad p_T^{3/2} \exp$$

$$\int_0^R r drm_T I_0(\frac{p_T sinh\rho(r)}{T_{kin}}) * K_1(\frac{m_T cosh\rho(r)}{T_{kin}}) \text{ blast wave}$$

•When fitting, option "I" is added.(fit range:0-4GeV/c) •dN/dy

 \Rightarrow Sum of yields in measured p_T region + unmeasured region p_T from function extrapolation.

 \Rightarrow Stat error: measured region * Fraction,

Fraction = Integral(p_T >0)/Integral(measured p_T range) from fitting function.

H3L spectra in 0-10% and 10-40%

