Dark Photon

Zuowei Liu

Nanjing University

USTC, April 18, 2023

Outline

- Toy model
- Realistic model
- Phenomenology studies
- Accelerator searches
- Cosmo/astro probes

Two mechanisms for dark photon

Two mechanisms for dark photon

Two mechanisms to generate dark photon (DP):

- ► Kinetic mixing (KM)¹
- Mass mixing (MM)²

¹Holdom, PLB 166, 196 (1986); Foot & He, PLB 267, 509 (1991). ²Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf

Hypercharge portal

Toy model

[&]amp; Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf

Consider 2 gauge bosons $A_{1\mu}$ and $A_{2\mu}$ corresponding to two U(1) gauge groups. Consider the following the Lagrangian $\mathcal{L}=\mathcal{L}_0+\mathcal{L}_1$

³We usually take δ as a small parameter.

Consider 2 gauge bosons $A_{1\mu}$ and $A_{2\mu}$ corresponding to two U(1) gauge groups. Consider the following the Lagrangian $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$ where

$$\mathcal{L}_0 = -\frac{1}{4} F_{1\mu\nu} F_1^{\mu\nu} - \frac{1}{4} F_{2\mu\nu} F_2^{\mu\nu} - \frac{\delta}{2} F_{1\mu\nu} F_2^{\mu\nu}, \tag{1}$$

³We usually take δ as a small parameter.

Consider 2 gauge bosons $A_{1\mu}$ and $A_{2\mu}$ corresponding to two U(1) gauge groups. Consider the following the Lagrangian $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$ where

$$\mathcal{L}_{0} = -\frac{1}{4} F_{1\mu\nu} F_{1}^{\mu\nu} - \frac{1}{4} F_{2\mu\nu} F_{2}^{\mu\nu} - \frac{\delta}{2} F_{1\mu\nu} F_{2}^{\mu\nu}, \qquad (1)$$

$$\mathcal{L}_{1} = J_{1\mu} A_{1}^{\mu} + J_{2\mu} A_{2}^{\mu}, \qquad (2)$$

where

³We usually take δ as a small parameter.

Consider 2 gauge bosons $A_{1\mu}$ and $A_{2\mu}$ corresponding to two U(1) gauge groups. Consider the following the Lagrangian $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$ where

$$\mathcal{L}_{0} = -\frac{1}{4}F_{1\mu\nu}F_{1}^{\mu\nu} - \frac{1}{4}F_{2\mu\nu}F_{2}^{\mu\nu} - \frac{\delta}{2}F_{1\mu\nu}F_{2}^{\mu\nu}, \qquad (1)$$
$$\mathcal{L}_{1} = J_{1\mu}A_{1}^{\mu} + J_{2\mu}A_{2}^{\mu}, \qquad (2)$$

where

►
$$F_{i\mu\nu} = \partial_{\mu}A_{i\nu} - \partial_{\nu}A_{i\mu}$$
 is the field strength,

³We usually take δ as a small parameter.

Consider 2 gauge bosons $A_{1\mu}$ and $A_{2\mu}$ corresponding to two U(1) gauge groups. Consider the following the Lagrangian $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$ where

$$\mathcal{L}_{0} = -\frac{1}{4}F_{1\mu\nu}F_{1}^{\mu\nu} - \frac{1}{4}F_{2\mu\nu}F_{2}^{\mu\nu} - \frac{\delta}{2}F_{1\mu\nu}F_{2}^{\mu\nu}, \qquad (1)$$
$$\mathcal{L}_{1} = J_{1\mu}A_{1}^{\mu} + J_{2\mu}A_{2}^{\mu}, \qquad (2)$$

where

•
$$F_{i\mu\nu} = \partial_{\mu}A_{i\nu} - \partial_{\nu}A_{i\mu}$$
 is the field strength,

• δ is the kinetic mixing parameter. ³

³We usually take δ as a small parameter.

Consider 2 gauge bosons $A_{1\mu}$ and $A_{2\mu}$ corresponding to two U(1) gauge groups. Consider the following the Lagrangian $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$ where

$$\mathcal{L}_{0} = -\frac{1}{4} F_{1\mu\nu} F_{1}^{\mu\nu} - \frac{1}{4} F_{2\mu\nu} F_{2}^{\mu\nu} - \frac{\delta}{2} F_{1\mu\nu} F_{2}^{\mu\nu}, \qquad (1)$$
$$\mathcal{L}_{1} = J_{1\mu} A_{1}^{\mu} + J_{2\mu} A_{2}^{\mu}, \qquad (2)$$

where

•
$$F_{i\mu\nu} = \partial_{\mu}A_{i\nu} - \partial_{\nu}A_{i\mu}$$
 is the field strength,

• δ is the kinetic mixing parameter. ³

► $J_{1\mu}$ $(J_{2\mu})$ is the current that couples to $A_{1\mu}$ $(A_{2\mu})$. If we identify $A_{1\mu}$ $(A_{2\mu})$ as the gauge boson in the dark (SM) sector, then $J_{1\mu}$ $(J_{2\mu})$ is the dark (SM) sector current.

³We usually take δ as a small parameter.

Define (omit the Lorentz index)

$$V \equiv \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \quad J \equiv \begin{pmatrix} J_1 \\ J_2 \end{pmatrix}, \tag{3}$$

Define (omit the Lorentz index)

$$V \equiv \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \quad J \equiv \begin{pmatrix} J_1 \\ J_2 \end{pmatrix}, \tag{3}$$

The Lagragian can be rewritten as follows

$$\mathcal{L}_0 = -\frac{1}{4} F_{1\mu\nu} F_1^{\mu\nu} - \frac{1}{4} F_{2\mu\nu} F_2^{\mu\nu} - \frac{\delta}{2} F_{1\mu\nu} F_2^{\mu\nu}$$

Define (omit the Lorentz index)

$$V \equiv \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \quad J \equiv \begin{pmatrix} J_1 \\ J_2 \end{pmatrix}, \tag{3}$$

The Lagragian can be rewritten as follows

$$\begin{aligned} \mathcal{L}_{0} &= -\frac{1}{4} F_{1\mu\nu} F_{1}^{\mu\nu} - \frac{1}{4} F_{2\mu\nu} F_{2}^{\mu\nu} - \frac{\delta}{2} F_{1\mu\nu} F_{2}^{\mu\nu} \\ &= -\frac{1}{4} \begin{pmatrix} F_{1\mu\nu} & F_{2\mu\nu} \end{pmatrix} \begin{pmatrix} 1 & \delta \\ \delta & 1 \end{pmatrix} \begin{pmatrix} F_{1}^{\mu\nu} \\ F_{2}^{\mu\nu} \end{pmatrix} \equiv -\frac{1}{4} V_{\mu\nu}^{T} K V^{\mu\nu}, \end{aligned}$$

Define (omit the Lorentz index)

$$V \equiv \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \quad J \equiv \begin{pmatrix} J_1 \\ J_2 \end{pmatrix}, \tag{3}$$

The Lagragian can be rewritten as follows

$$\mathcal{L}_{0} = -\frac{1}{4} F_{1\mu\nu} F_{1}^{\mu\nu} - \frac{1}{4} F_{2\mu\nu} F_{2}^{\mu\nu} - \frac{\delta}{2} F_{1\mu\nu} F_{2}^{\mu\nu}$$

$$= -\frac{1}{4} \left(F_{1\mu\nu} \quad F_{2\mu\nu} \right) \begin{pmatrix} 1 & \delta \\ \delta & 1 \end{pmatrix} \begin{pmatrix} F_{1}^{\mu\nu} \\ F_{2}^{\mu\nu} \end{pmatrix} \equiv -\frac{1}{4} V_{\mu\nu}^{T} K V^{\mu\nu},$$

$$\mathcal{L}_{1} = J_{1\mu} A_{1}^{\mu} + J_{2\mu} A_{2}^{\mu} = J_{\mu} V^{\mu}$$
(4)

Define (omit the Lorentz index)

$$V \equiv \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}, \quad J \equiv \begin{pmatrix} J_1 \\ J_2 \end{pmatrix}, \tag{3}$$

The Lagragian can be rewritten as follows

$$\mathcal{L}_{0} = -\frac{1}{4} F_{1\mu\nu} F_{1}^{\mu\nu} - \frac{1}{4} F_{2\mu\nu} F_{2}^{\mu\nu} - \frac{\delta}{2} F_{1\mu\nu} F_{2}^{\mu\nu}$$

$$= -\frac{1}{4} \left(F_{1\mu\nu} \quad F_{2\mu\nu} \right) \begin{pmatrix} 1 & \delta \\ \delta & 1 \end{pmatrix} \begin{pmatrix} F_{1}^{\mu\nu} \\ F_{2}^{\mu\nu} \end{pmatrix} \equiv -\frac{1}{4} V_{\mu\nu}^{T} K V^{\mu\nu},$$

$$\mathcal{L}_{1} = J_{1\mu} A_{1}^{\mu} + J_{2\mu} A_{2}^{\mu} = J_{\mu} V^{\mu}$$
(4)

To correctly interpret the physics, we need to put the kinetic terms in the canonical form, namely transforming K to an identity matrix.

Put the kinetic terms in the canonical form

To put the kinetic energy term in its canonical form, one may use the transformation

$$V^{\mu} = \begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = G_0 \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix} \equiv G_0 E^{\mu}$$
⁽⁵⁾

where the LHS (RHS) is the original (new) basis, and

$$G_0 = \begin{pmatrix} \frac{1}{\sqrt{1-\delta^2}} & 0\\ \frac{-\delta}{\sqrt{1-\delta^2}} & 1 \end{pmatrix}.$$
 (6)

Put the kinetic terms in the canonical form

To put the kinetic energy term in its canonical form, one may use the transformation

$$V^{\mu} = \begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = G_0 \begin{pmatrix} A^{\prime \mu} \\ A^{\mu} \end{pmatrix} \equiv G_0 E^{\mu}$$
⁽⁵⁾

where the LHS (RHS) is the original (new) basis, and

$$G_0 = \begin{pmatrix} \frac{1}{\sqrt{1-\delta^2}} & 0\\ \frac{-\delta}{\sqrt{1-\delta^2}} & 1 \end{pmatrix}.$$
 (6)

This is because

$$G_0^T K G_0 = G_0^T \begin{pmatrix} 1 & \delta \\ \delta & 1 \end{pmatrix} G_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 (7)

Put the kinetic terms in the canonical form

To put the kinetic energy term in its canonical form, one may use the transformation

$$V^{\mu} = \begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = G_0 \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix} \equiv G_0 E^{\mu}$$
⁽⁵⁾

where the LHS (RHS) is the original (new) basis, and

$$G_0 = \begin{pmatrix} \frac{1}{\sqrt{1-\delta^2}} & 0\\ \frac{-\delta}{\sqrt{1-\delta^2}} & 1 \end{pmatrix}.$$
 (6)

This is because

$$G_0^T K G_0 = G_0^T \begin{pmatrix} 1 & \delta \\ \delta & 1 \end{pmatrix} G_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 (7)

Now we have

$$\mathcal{L}_0 = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu}.$$
(8)

[9/64]

• G_0 is not orthogonal; it is the GL(2) group.

- G_0 is not orthogonal; it is the GL(2) group.
- \blacktriangleright The G_0 that canonically diagonalizes the kinetic terms is not unique.

- G_0 is not orthogonal; it is the GL(2) group.
- \blacktriangleright The G_0 that canonically diagonalizes the kinetic terms is not unique.

This is because the transformation $G = G_0 O$ instead of G_0 would do as well where O is an orthogonal matrix

$$O = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}.$$
 (9)

- G_0 is not orthogonal; it is the GL(2) group.
- \blacktriangleright The G_0 that canonically diagonalizes the kinetic terms is not unique.

This is because the transformation $G = G_0 O$ instead of G_0 would do as well where O is an orthogonal matrix

$$O = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}.$$
 (9)

$$G^{T}KG = (G_{0}O)^{T}K(G_{0}O) = O^{T}(G_{0}^{T}KG_{0})O = O^{T}O = 1,$$
(10)

- G_0 is not orthogonal; it is the GL(2) group.
- \blacktriangleright The G_0 that canonically diagonalizes the kinetic terms is not unique.

This is because the transformation $G = G_0 O$ instead of G_0 would do as well where O is an orthogonal matrix

$$O = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}.$$
 (9)

$$G^{T}KG = (G_{0}O)^{T}K(G_{0}O) = O^{T}(G_{0}^{T}KG_{0})O = O^{T}O = 1,$$
(10)

$$G = G_0 O = \begin{pmatrix} \frac{\cos\theta}{\sqrt{1-\delta^2}} & -\frac{\sin\theta}{\sqrt{1-\delta^2}}\\ \sin\theta - \frac{\delta\cos\theta}{\sqrt{1-\delta^2}} & \cos\theta + \frac{\delta\sin\theta}{\sqrt{1-\delta^2}} \end{pmatrix}$$
(11)

which has an additional free parameter θ .

[10/64]

$$\mathcal{L}_0 = -\frac{1}{4} E_{\mu\nu} E^{\mu\nu} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu},$$

$$\mathcal{L}_{0} = -\frac{1}{4} E_{\mu\nu} E^{\mu\nu} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu}, \qquad (12)$$
$$\mathcal{L}_{1} = J_{\mu} G E^{\mu} = J_{\mu} G_{0} O E^{\mu}$$

$$\mathcal{L}_{0} = -\frac{1}{4} E_{\mu\nu} E^{\mu\nu} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu}, \qquad (12)$$
$$\mathcal{L}_{1} = J_{\mu} G E^{\mu} = J_{\mu} G_{0} O E^{\mu}$$
$$= A'^{\mu} \left[\frac{\cos \theta}{\sqrt{1 - \delta^{2}}} J_{1\mu} + \left(\sin \theta - \frac{\cos \theta \delta}{\sqrt{1 - \delta^{2}}} \right) J_{2\mu} \right]$$

$$\mathcal{L}_{0} = -\frac{1}{4}E_{\mu\nu}E^{\mu\nu} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu}, \qquad (12)$$
$$\mathcal{L}_{1} = J_{\mu}GE^{\mu} = J_{\mu}G_{0}OE^{\mu}$$
$$= A'^{\mu} \left[\frac{\cos\theta}{\sqrt{1-\delta^{2}}}J_{1\mu} + \left(\sin\theta - \frac{\cos\theta\delta}{\sqrt{1-\delta^{2}}}\right)J_{2\mu}\right]$$
$$+ A^{\mu} \left[-\frac{\sin\theta}{\sqrt{1-\delta^{2}}}J_{1\mu} + \left(\cos\theta + \frac{\sin\theta\delta}{\sqrt{1-\delta^{2}}}\right)J_{2\mu}\right]. \qquad (13)$$

With the general transformation $G = G_0 O$, the total Lagrangian $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1$ becomes

$$\mathcal{L}_{0} = -\frac{1}{4} E_{\mu\nu} E^{\mu\nu} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu}, \qquad (12)$$

$$\mathcal{L}_{1} = J_{\mu} G E^{\mu} = J_{\mu} G_{0} O E^{\mu}$$

$$= A'^{\mu} \left[\frac{\cos\theta}{\sqrt{1 - \delta^{2}}} J_{1\mu} + \left(\sin\theta - \frac{\cos\theta\delta}{\sqrt{1 - \delta^{2}}} \right) J_{2\mu} \right]$$

$$+ A^{\mu} \left[-\frac{\sin\theta}{\sqrt{1 - \delta^{2}}} J_{1\mu} + \left(\cos\theta + \frac{\sin\theta\delta}{\sqrt{1 - \delta^{2}}} \right) J_{2\mu} \right]. \qquad (13)$$

Kinetic terms are in the canonical form

$$\mathcal{L}_{0} = -\frac{1}{4} E_{\mu\nu} E^{\mu\nu} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu}, \qquad (12)$$
$$\mathcal{L}_{1} = J_{\mu} G E^{\mu} = J_{\mu} G_{0} O E^{\mu}$$
$$= A'^{\mu} \left[\frac{\cos \theta}{\sqrt{1 - \delta^{2}}} J_{1\mu} + \left(\sin \theta - \frac{\cos \theta \delta}{\sqrt{1 - \delta^{2}}} \right) J_{2\mu} \right]$$
$$+ A^{\mu} \left[-\frac{\sin \theta}{\sqrt{1 - \delta^{2}}} J_{1\mu} + \left(\cos \theta + \frac{\sin \theta \delta}{\sqrt{1 - \delta^{2}}} \right) J_{2\mu} \right]. \qquad (13)$$

- Kinetic terms are in the canonical form
- Both bosons interact with both currents

$$\mathcal{L}_{0} = -\frac{1}{4} E_{\mu\nu} E^{\mu\nu} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu}, \qquad (12)$$

$$\mathcal{L}_{1} = J_{\mu} G E^{\mu} = J_{\mu} G_{0} O E^{\mu}$$

$$= A'^{\mu} \left[\frac{\cos\theta}{\sqrt{1-\delta^{2}}} J_{1\mu} + \left(\sin\theta - \frac{\cos\theta\delta}{\sqrt{1-\delta^{2}}}\right) J_{2\mu} \right]$$

$$+ A^{\mu} \left[-\frac{\sin\theta}{\sqrt{1-\delta^{2}}} J_{1\mu} + \left(\cos\theta + \frac{\sin\theta\delta}{\sqrt{1-\delta^{2}}}\right) J_{2\mu} \right]. \qquad (13)$$

- Kinetic terms are in the canonical form
- Both bosons interact with both currents
- Interactions with current (matter) depend on 2 paras: θ and δ. So one has the freedom (namely θ) to choose the basis.

Case 1: $\theta = 0$.

$$\mathcal{L}_{1} = A^{\prime \mu} \left[\frac{1}{\sqrt{1 - \delta^{2}}} J_{1\mu} - \frac{\delta}{\sqrt{1 - \delta^{2}}} J_{2\mu} \right] + A^{\mu} J_{2\mu}.$$

$$\begin{pmatrix} A_{1}^{\mu} \\ A_{2}^{\mu} \end{pmatrix} = V^{\mu} = G_{0} E^{\mu} = \begin{pmatrix} \frac{1}{\sqrt{1 - \delta^{2}}} & 0 \\ \frac{-\delta}{\sqrt{1 - \delta^{2}}} & 1 \end{pmatrix} \begin{pmatrix} A^{\prime \mu} \\ A^{\mu} \end{pmatrix}$$
(15)

Case 1: $\theta = 0$.

$$\mathcal{L}_{1} = A^{\prime \mu} \left[\frac{1}{\sqrt{1 - \delta^{2}}} J_{1\mu} - \frac{\delta}{\sqrt{1 - \delta^{2}}} J_{2\mu} \right] + A^{\mu} J_{2\mu}.$$
(14)
$$\begin{pmatrix} A_{1}^{\mu} \\ A_{2}^{\mu} \end{pmatrix} = V^{\mu} = G_{0} E^{\mu} = \begin{pmatrix} \frac{1}{\sqrt{1 - \delta^{2}}} & 0 \\ \frac{-\delta}{\sqrt{1 - \delta^{2}}} & 1 \end{pmatrix} \begin{pmatrix} A^{\prime \mu} \\ A^{\mu} \end{pmatrix}$$
(15)

• Because $A_{1\mu} = \frac{1}{\sqrt{1-\delta^2}} A'^{\mu}$ is the gauge boson in the hidden sector, we can identify A' as the dark photon, which interacts with both the dark current $J_{1\mu}$ and the SM current $J_{2\mu}$.

Case 1: $\theta = 0$.

$$\mathcal{L}_{1} = A^{\prime \mu} \left[\frac{1}{\sqrt{1 - \delta^{2}}} J_{1\mu} - \frac{\delta}{\sqrt{1 - \delta^{2}}} J_{2\mu} \right] + A^{\mu} J_{2\mu}.$$
(14)
$$\begin{pmatrix} A_{1}^{\mu} \\ A_{2}^{\mu} \end{pmatrix} = V^{\mu} = G_{0} E^{\mu} = \begin{pmatrix} \frac{1}{\sqrt{1 - \delta^{2}}} & 0 \\ \frac{-\delta}{\sqrt{1 - \delta^{2}}} & 1 \end{pmatrix} \begin{pmatrix} A^{\prime \mu} \\ A^{\mu} \end{pmatrix}$$
(15)

Because A_{1μ} = 1/(√1 - δ²) A^{'μ} is the gauge boson in the hidden sector, we can identify A' as the dark photon, which interacts with both the dark current J_{1μ} and the SM current J_{2μ}.
 Then A_μ is the ordinary photon, which interacts only with the SM current J_{2μ}.

Case 2: $\theta = \arctan\left[\delta/\sqrt{1-\delta^2}\right]$ $\begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \begin{pmatrix} 1 & -\frac{\delta}{\sqrt{1-\delta^2}} \\ 0 & \frac{1}{\sqrt{1-\delta^2}} \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$ (16) $\mathcal{L}_1 = A^{\mu} \left[\frac{1}{\sqrt{1-\delta^2}} J_{2\mu} - \frac{\delta}{\sqrt{1-\delta^2}} J_{1\mu} \right] + A'^{\mu} J_{1\mu}.$ (17)
Case 2: $\theta = \arctan\left[\delta/\sqrt{1-\delta^2}\right]$ $\begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \begin{pmatrix} 1 & -\frac{\delta}{\sqrt{1-\delta^2}} \\ 0 & \frac{1}{\sqrt{1-\delta^2}} \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$ $L_1 = A^{\mu} \left[\frac{1}{\sqrt{1-\delta^2}} J_{2\mu} - \frac{\delta}{\sqrt{1-\delta^2}} J_{1\mu}\right] + A'^{\mu} J_{1\mu}.$ (16)

▶ Because $A_{1\mu} = A'_{\mu} - A_{\mu}\delta/\sqrt{1-\delta^2}$, we still identify A'_{μ} as the dark photon.

Case 2: $\theta = \arctan\left[\delta/\sqrt{1-\delta^2}\right]$

$$\begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \begin{pmatrix} 1 & -\frac{\delta}{\sqrt{1-\delta^2}} \\ 0 & \frac{1}{\sqrt{1-\delta^2}} \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$$
(16)

$$\mathcal{L}_{1} = A^{\mu} \left[\frac{1}{\sqrt{1 - \delta^{2}}} J_{2\mu} - \frac{\delta}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right] + A^{\prime \mu} J_{1\mu}.$$
 (17)

Because A_{1μ} = A'_μ − A_μδ/√(1 − δ²), we still identify A'_μ as the dark photon.
 Then A_μ is the SM photon.

Case 2: $\theta = \arctan\left[\delta/\sqrt{1-\delta^2}\right]$

$$\begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \begin{pmatrix} 1 & -\frac{\delta}{\sqrt{1-\delta^2}} \\ 0 & \frac{1}{\sqrt{1-\delta^2}} \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$$
(16)

$$\mathcal{L}_{1} = A^{\mu} \left[\frac{1}{\sqrt{1 - \delta^{2}}} J_{2\mu} - \frac{\delta}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right] + A^{\prime \mu} J_{1\mu}.$$
 (17)

- Because $A_{1\mu} = A'_{\mu} A_{\mu}\delta/\sqrt{1-\delta^2}$, we still identify A'_{μ} as the dark photon.
- Then A_{μ} is the SM photon.
- A'_{μ} interacts only with the dark current $J_{1\mu}$.

Case 2: $\theta = \arctan\left[\delta/\sqrt{1-\delta^2}\right]$

$$\begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \begin{pmatrix} 1 & -\frac{\delta}{\sqrt{1-\delta^2}} \\ 0 & \frac{1}{\sqrt{1-\delta^2}} \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$$
(16)

$$\mathcal{L}_{1} = A^{\mu} \left[\frac{1}{\sqrt{1 - \delta^{2}}} J_{2\mu} - \frac{\delta}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right] + A^{\prime \mu} J_{1\mu}.$$
(17)

- ► Because $A_{1\mu} = A'_{\mu} A_{\mu}\delta/\sqrt{1-\delta^2}$, we still identify A'_{μ} as the dark photon.
- Then A_{μ} is the SM photon.
- A'_{μ} interacts only with the dark current $J_{1\mu}$.
- A_{μ} interacts with both the SM current $J_{2\mu}$ and the dark current $J_{1\mu}$.

Case 2: $\theta = \arctan\left[\delta/\sqrt{1-\delta^2}\right]$

$$\begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \begin{pmatrix} 1 & -\frac{\delta}{\sqrt{1-\delta^2}} \\ 0 & \frac{1}{\sqrt{1-\delta^2}} \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$$
(16)

$$\mathcal{L}_{1} = A^{\mu} \left[\frac{1}{\sqrt{1 - \delta^{2}}} J_{2\mu} - \frac{\delta}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right] + A^{\prime \mu} J_{1\mu}.$$
(17)

• Because $A_{1\mu} = A'_{\mu} - A_{\mu}\delta/\sqrt{1-\delta^2}$, we still identify A'_{μ} as the dark photon.

- Then A_{μ} is the SM photon.
- A'_{μ} interacts only with the dark current $J_{1\mu}$.
- A_{μ} interacts with both the SM current $J_{2\mu}$ and the dark current $J_{1\mu}$.
- Coupling between A_{μ} and $J_{1\mu}$ is proportional to the kinetic mixing parameter δ .

Case 2: $\theta = \arctan\left[\delta/\sqrt{1-\delta^2}\right]$

$$\begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \begin{pmatrix} 1 & -\frac{\delta}{\sqrt{1-\delta^2}} \\ 0 & \frac{1}{\sqrt{1-\delta^2}} \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$$
(16)

$$\mathcal{L}_{1} = A^{\mu} \left[\frac{1}{\sqrt{1 - \delta^{2}}} J_{2\mu} - \frac{\delta}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right] + A^{\prime \mu} J_{1\mu}.$$
(17)

▶ Because $A_{1\mu} = A'_{\mu} - A_{\mu}\delta/\sqrt{1-\delta^2}$, we still identify A'_{μ} as the dark photon.

- Then A_{μ} is the SM photon.
- A'_{μ} interacts only with the dark current $J_{1\mu}$.
- A_{μ} interacts with both the SM current $J_{2\mu}$ and the dark current $J_{1\mu}$.
- Coupling between A_μ and J_{1μ} is proportional to the kinetic mixing parameter δ. ⇒ hidden matter is millicharged if δ is small.

Mass

So far we have not written down mass terms for the gauge bosons. To make the dark photon massive, mass terms are needed. The general mass terms are

$$\mathcal{L}_{\rm m} = \frac{1}{2} m_1^2 A_{1\mu} A_1^{\mu} + \frac{1}{2} m_2^2 A_{2\mu} A_2^{\mu} + m_1 m_2 A_{1\mu} A_2^{\mu}.$$
(18)

Mass

So far we have not written down mass terms for the gauge bosons. To make the dark photon massive, mass terms are needed. The general mass terms are

$$\mathcal{L}_{\rm m} = \frac{1}{2}m_1^2 A_{1\mu}A_1^{\mu} + \frac{1}{2}m_2^2 A_{2\mu}A_2^{\mu} + m_1 m_2 A_{1\mu}A_2^{\mu}.$$
 (18)

Write the mass terms in a matrix form:

$$\mathcal{L}_{\rm m} = \frac{1}{2} V_{\mu} M^2 V^{\mu},\tag{19}$$

$$M^{2} = \begin{pmatrix} m_{1}^{2} & m_{1}m_{2} \\ m_{1}m_{2} & m_{2}^{2} \end{pmatrix} \equiv m_{1}^{2} \begin{pmatrix} 1 & \epsilon \\ \epsilon & \epsilon^{2} \end{pmatrix}$$
(20)

where $\epsilon \equiv m_2/m_1$.

Mass

So far we have not written down mass terms for the gauge bosons. To make the dark photon massive, mass terms are needed. The general mass terms are

$$\mathcal{L}_{\rm m} = \frac{1}{2}m_1^2 A_{1\mu}A_1^{\mu} + \frac{1}{2}m_2^2 A_{2\mu}A_2^{\mu} + m_1 m_2 A_{1\mu}A_2^{\mu}.$$
 (18)

Write the mass terms in a matrix form:

$$\mathcal{L}_{\rm m} = \frac{1}{2} V_{\mu} M^2 V^{\mu},\tag{19}$$

$$M^{2} = \begin{pmatrix} m_{1}^{2} & m_{1}m_{2} \\ m_{1}m_{2} & m_{2}^{2} \end{pmatrix} \equiv m_{1}^{2} \begin{pmatrix} 1 & \epsilon \\ \epsilon & \epsilon^{2} \end{pmatrix}$$
(20)

where $\epsilon \equiv m_2/m_1$.

Note that the determinant of M^2 is zero so that one of the eigenvalue is zero, which can be identified as the photon mass (this is a must for a successful NP construction); the other (massive) eigenvalue is the dark photon mass-square.

Diagnolizing the mass matrix
$$M^2$$
 fixes θ : $\theta = \arctan\left[\frac{\epsilon\sqrt{1-\delta^2}}{1-\epsilon\delta}\right]$.

Diagnolizing the mass matrix
$$M^2$$
 fixes θ : $\theta = \arctan\left[\frac{\epsilon\sqrt{1-\delta^2}}{1-\epsilon\delta}\right]$.

$$\begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} \begin{pmatrix} \frac{1-\delta\epsilon}{\sqrt{1-\delta^2}} & -\epsilon \\ \frac{\epsilon-\delta}{\sqrt{1-\delta^2}} & 1 \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$$
(21)

Diagnolizing the mass matrix
$$M^2$$
 fixes θ : $\theta = \arctan\left[\frac{\epsilon\sqrt{1-\delta^2}}{1-\epsilon\delta}\right]$.
 $\begin{pmatrix} A_1^{\mu}\\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} \begin{pmatrix} \frac{1-\delta\epsilon}{\sqrt{1-\delta^2}} & -\epsilon\\ \frac{\epsilon-\delta}{\sqrt{1-\delta^2}} & 1 \end{pmatrix} \begin{pmatrix} A'^{\mu}\\ A^{\mu} \end{pmatrix}$ (21)

$$\mathcal{L}_1 = \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^2}} \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^2}} J_{2\mu} + \frac{1 - \delta\epsilon}{\sqrt{1 - \delta^2}} J_{1\mu} \right) A^{\prime \mu}$$

Diagnolizing the mass matrix
$$M^2$$
 fixes θ : $\theta = \arctan\left[\frac{\epsilon\sqrt{1-\delta^2}}{1-\epsilon\delta}\right]$.
 $\begin{pmatrix} A_1^{\mu}\\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} \begin{pmatrix} \frac{1-\delta\epsilon}{\sqrt{1-\delta^2}} & -\epsilon\\ \frac{\epsilon-\delta}{\sqrt{1-\delta^2}} & 1 \end{pmatrix} \begin{pmatrix} A'^{\mu}\\ A^{\mu} \end{pmatrix}$ (21)

$$\mathcal{L}_{1} = \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^{2}}} J_{2\mu} + \frac{1 - \delta\epsilon}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right) A^{\prime \mu} + \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(J_{2\mu} - \epsilon J_{1\mu} \right) A^{\mu}.$$
(22)

Diagnolizing the mass matrix
$$M^2$$
 fixes θ : $\theta = \arctan\left[\frac{\epsilon\sqrt{1-\delta^2}}{1-\epsilon\delta}\right]$.

$$\begin{pmatrix} A_1^{\mu} \\ A_2^{\mu} \end{pmatrix} = V^{\mu} = GE^{\mu} = \frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} \begin{pmatrix} \frac{1-\delta\epsilon}{\sqrt{1-\delta^2}} & -\epsilon \\ \frac{\epsilon-\delta}{\sqrt{1-\delta^2}} & 1 \end{pmatrix} \begin{pmatrix} A'^{\mu} \\ A^{\mu} \end{pmatrix}$$
(21)
$$\mathcal{L}_1 = \frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} \left(\frac{\epsilon-\delta}{\sqrt{1-\delta^2}} J_{2\mu} + \frac{1-\delta\epsilon}{\sqrt{1-\delta^2}} J_{1\mu}\right) A'^{\mu} + \frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} (J_{2\mu} - \epsilon J_{1\mu}) A^{\mu}.$$
(22)

DP A' and photon A interact with both currents: J_1 (dark) and J_2 (SM).

Take a closer at the interaction.

$$\mathcal{L}_1 = \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^2}} \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^2}} J_{2\mu} + \frac{1 - \delta\epsilon}{\sqrt{1 - \delta^2}} J_{1\mu} \right) A^{\prime \mu}$$

⁴Recall that millicharge is the electric charge of the dark sector matter, so it is the coupling between the dark sector current $J_{1\mu}$ and the SM photon A^{μ} .

Take a closer at the interaction.

$$\mathcal{L}_{1} = \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^{2}}} J_{2\mu} + \frac{1 - \delta\epsilon}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right) A^{\prime \mu} + \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(J_{2\mu} - \epsilon J_{1\mu} \right) A^{\mu}.$$
(23)

⁴Recall that millicharge is the electric charge of the dark sector matter, so it is the coupling between the dark sector current $J_{1\mu}$ and the SM photon A^{μ} .

Take a closer at the interaction.

$$\mathcal{L}_{1} = \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^{2}}} J_{2\mu} + \frac{1 - \delta\epsilon}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right) A^{\prime \mu} + \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(J_{2\mu} - \epsilon J_{1\mu} \right) A^{\mu}.$$
(23)

▶ Millicharge vanishes when $\epsilon \to 0$. ⁴

⁴Recall that millicharge is the electric charge of the dark sector matter, so it is the coupling between the dark sector current $J_{1\mu}$ and the SM photon A^{μ} .

Take a closer at the interaction.

$$\mathcal{L}_{1} = \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^{2}}} J_{2\mu} + \frac{1 - \delta\epsilon}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right) A^{\prime \mu} + \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(J_{2\mu} - \epsilon J_{1\mu} \right) A^{\mu}.$$
(23)

- ▶ Millicharge vanishes when $\epsilon \to 0$. ⁴
- ▶ If DP is massive, kinetic mixing alone does not lead to millicharged dark matter

⁴Recall that millicharge is the electric charge of the dark sector matter, so it is the coupling between the dark sector current $J_{1\mu}$ and the SM photon A^{μ} .

Take a closer at the interaction.

$$\mathcal{L}_{1} = \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^{2}}} J_{2\mu} + \frac{1 - \delta\epsilon}{\sqrt{1 - \delta^{2}}} J_{1\mu} \right) A^{\prime \mu} + \frac{1}{\sqrt{1 - 2\delta\epsilon + \epsilon^{2}}} \left(J_{2\mu} - \epsilon J_{1\mu} \right) A^{\mu}.$$
(23)

- Millicharge vanishes when $\epsilon \to 0$.⁴
- ▶ If DP is massive, kinetic mixing alone does not lead to millicharged dark matter
- ▶ If DP is massive, mass mixing alone generates millicharged dark matter.

⁴Recall that millicharge is the electric charge of the dark sector matter, so it is the coupling between the dark sector current $J_{1\mu}$ and the SM photon A^{μ} .

Realistic model

[&]amp; Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf

StkSM

For realistic model, one has to extend the SM, which has the gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y.$

[◊] Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf

StkSM

For realistic model, one has to extend the SM, which has the gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y.$

We consider the extended electroweak sector with the gauge group $SU(2)_L \times U(1)_Y \times U(1)_X$, where both kinetic mixing and Stueckelberg mass mixing between the 2 U(1)'s are present.

[◊] Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf

StkSM

For realistic model, one has to extend the SM, which has the gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$.

We consider the extended electroweak sector with the gauge group $SU(2)_L \times U(1)_Y \times U(1)_X$, where both kinetic mixing and Stueckelberg mass mixing between the 2 U(1)'s are present.

Assume that the SM fields do not carry $U(1)_X$ quantum numbers, and the fields in the hidden sector does not carry quantum numbers of the SM gauge group. The 2 mixings terms are the only connections between the 2 sectors.

[◊] Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf

We first review the SM and Higgs.

We first review the SM and Higgs.

Because the new $U(1)_X$ only mixes with the hypercharge (the hypercharge portal), we focus on the electroweak sector. See e.g., section 20.2 of Peskin & Schroeder.

We first review the SM and Higgs.

Because the new $U(1)_X$ only mixes with the hypercharge (the hypercharge portal), we focus on the electroweak sector. See e.g., section 20.2 of Peskin & Schroeder.

The covariant derivative of the Higgs field ϕ in the SM is

$$D_{\mu}\phi = \left(\partial_{\mu} - ig_2 A^a_{\mu} \frac{\sigma^a}{2} - ig_Y B_{\mu}Y\right)\phi,\tag{24}$$

where σ^a are the Pauli matrices, A^a_μ and B_μ are, respectively, the $SU(2)_L$ and $U(1)_Y$ gauge bosons, and Y is the hypercharge quantum number. For the Higgs doublet, Y = 1/2.

We first review the SM and Higgs.

Because the new $U(1)_X$ only mixes with the hypercharge (the hypercharge portal), we focus on the electroweak sector. See e.g., section 20.2 of Peskin & Schroeder.

The covariant derivative of the Higgs field ϕ in the SM is

$$D_{\mu}\phi = \left(\partial_{\mu} - ig_2 A^a_{\mu} \frac{\sigma^a}{2} - ig_Y B_{\mu}Y\right)\phi,\tag{24}$$

where σ^a are the Pauli matrices, A^a_μ and B_μ are, respectively, the $SU(2)_L$ and $U(1)_Y$ gauge bosons, and Y is the hypercharge quantum number. For the Higgs doublet, Y = 1/2.

Higgs VEV
$$\langle \phi
angle = rac{1}{\sqrt{2}} egin{pmatrix} 0 \ v \end{pmatrix}$$
.

Neutral gauge boson masses in the SM

The gauge boson masses arise from the $(D_{\mu}\phi)^{\dagger}(D^{\mu}\phi)$ term:

$$\mathcal{L}_{\text{mass}} = \frac{1}{2} \begin{pmatrix} 0 & v \end{pmatrix} \left(g_2 A^a_\mu \frac{\sigma^a}{2} + \frac{1}{2} g_Y B_\mu \right) \left(g_2 A^{b\mu} \frac{\sigma^b}{2} + \frac{1}{2} g_Y B^\mu \right) \begin{pmatrix} 0 \\ v \end{pmatrix}$$
(25)

Neutral gauge boson masses in the SM

The gauge boson masses arise from the $(D_{\mu}\phi)^{\dagger}(D^{\mu}\phi)$ term:

$$\mathcal{L}_{\text{mass}} = \frac{1}{2} \begin{pmatrix} 0 & v \end{pmatrix} \left(g_2 A^a_\mu \frac{\sigma^a}{2} + \frac{1}{2} g_Y B_\mu \right) \left(g_2 A^{b\mu} \frac{\sigma^b}{2} + \frac{1}{2} g_Y B^\mu \right) \begin{pmatrix} 0 \\ v \end{pmatrix}$$
(25)

This then leads to

$$\mathcal{L}_{\text{mass}} = \frac{1}{2} \frac{v^2}{4} \left[g_2^2 \left(A_{\mu}^1 \right)^2 + g_2^2 \left(A_{\mu}^2 \right)^2 + \left(-g_2 A_{\mu}^3 + g_Y B_{\mu} \right)^2 \right]$$
(26)

Neutral gauge boson masses in the SM

The gauge boson masses arise from the $(D_{\mu}\phi)^{\dagger}(D^{\mu}\phi)$ term:

$$\mathcal{L}_{\text{mass}} = \frac{1}{2} \begin{pmatrix} 0 & v \end{pmatrix} \left(g_2 A^a_\mu \frac{\sigma^a}{2} + \frac{1}{2} g_Y B_\mu \right) \left(g_2 A^{b\mu} \frac{\sigma^b}{2} + \frac{1}{2} g_Y B^\mu \right) \begin{pmatrix} 0 \\ v \end{pmatrix}$$
(25)

This then leads to

$$\mathcal{L}_{\text{mass}} = \frac{1}{2} \frac{v^2}{4} \left[g_2^2 \left(A_{\mu}^1 \right)^2 + g_2^2 \left(A_{\mu}^2 \right)^2 + \left(-g_2 A_{\mu}^3 + g_Y B_{\mu} \right)^2 \right]$$
(26)

Keeping only the neutral gauge bosons, we write the mass terms in the matrix from:

$$\mathcal{L}_{\text{mass}} \supset \frac{1}{2} \frac{v^2}{4} \begin{pmatrix} A_{\mu}^3 & B_{\mu} \end{pmatrix} \begin{pmatrix} g_2^2 & -g_2 g_y \\ -g_2 g_y & g_y^2 \end{pmatrix} \begin{pmatrix} A_{\mu}^3 \\ B_{\mu} \end{pmatrix}.$$
 (27)

This mass matrix can be diagonalized by the weak mixing angle θ_W where $\tan \theta_W = g_Y/g_2$, leading to a massive Z boson and a massless photon. Note that the determinant of the mass matrix is zero, which ensures the existence of a massless eigenstate.

The orthogonal mass matrix is

$$\begin{pmatrix} B\\A^3 \end{pmatrix} = O\begin{pmatrix} A\\Z \end{pmatrix} = \begin{pmatrix} \cos\theta_W & -\sin\theta_W\\\sin\theta_W & \cos\theta_W \end{pmatrix} \begin{pmatrix} A\\Z \end{pmatrix}$$
(28)

where A is the massless eigenstate (photon) and Z is the massive eigenstate, and $\tan\theta_W=g_Y/g_2$ such that

$$\cos \theta_W = \frac{g_2}{\sqrt{g_2^2 + g_Y^2}}, \quad \sin \theta_W = \frac{g_Y}{\sqrt{g_2^2 + g_Y^2}},$$
 (29)

The orthogonal mass matrix is

$$\begin{pmatrix} B\\A^3 \end{pmatrix} = O\begin{pmatrix} A\\Z \end{pmatrix} = \begin{pmatrix} \cos\theta_W & -\sin\theta_W\\\sin\theta_W & \cos\theta_W \end{pmatrix} \begin{pmatrix} A\\Z \end{pmatrix}$$
(28)

where A is the massless eigenstate (photon) and Z is the massive eigenstate, and $\tan\theta_W=g_Y/g_2$ such that

$$\cos \theta_W = \frac{g_2}{\sqrt{g_2^2 + g_Y^2}}, \quad \sin \theta_W = \frac{g_Y}{\sqrt{g_2^2 + g_Y^2}},$$
 (29)

$$\begin{pmatrix} A \\ Z \end{pmatrix} = O^T \begin{pmatrix} B \\ A^3 \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} B \\ A^3 \end{pmatrix}$$
(30)

The orthogonal mass matrix is

$$\begin{pmatrix} B\\A^3 \end{pmatrix} = O\begin{pmatrix} A\\Z \end{pmatrix} = \begin{pmatrix} \cos\theta_W & -\sin\theta_W\\\sin\theta_W & \cos\theta_W \end{pmatrix} \begin{pmatrix} A\\Z \end{pmatrix}$$
(28)

where A is the massless eigenstate (photon) and Z is the massive eigenstate, and $\tan\theta_W=g_Y/g_2$ such that

$$\cos \theta_W = \frac{g_2}{\sqrt{g_2^2 + g_Y^2}}, \quad \sin \theta_W = \frac{g_Y}{\sqrt{g_2^2 + g_Y^2}},$$
 (29)

$$\begin{pmatrix} A \\ Z \end{pmatrix} = O^T \begin{pmatrix} B \\ A^3 \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} B \\ A^3 \end{pmatrix}$$
(30)

▶ photon, $m_A = 0$, $A = c_W B + s_W A^3$

The orthogonal mass matrix is

$$\begin{pmatrix} B\\A^3 \end{pmatrix} = O\begin{pmatrix} A\\Z \end{pmatrix} = \begin{pmatrix} \cos\theta_W & -\sin\theta_W\\\sin\theta_W & \cos\theta_W \end{pmatrix} \begin{pmatrix} A\\Z \end{pmatrix}$$
(28)

where A is the massless eigenstate (photon) and Z is the massive eigenstate, and $\tan\theta_W=g_Y/g_2$ such that

$$\cos \theta_W = \frac{g_2}{\sqrt{g_2^2 + g_Y^2}}, \quad \sin \theta_W = \frac{g_Y}{\sqrt{g_2^2 + g_Y^2}},$$
 (29)

$$\begin{pmatrix} A \\ Z \end{pmatrix} = O^T \begin{pmatrix} B \\ A^3 \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} B \\ A^3 \end{pmatrix}$$
(30)

Couplings to SM fermions

The neutral current interaction with the SM fermions is given by

$$\mathcal{L}_{\rm NC} = \bar{f}_L i \gamma^\mu D_\mu f_L + (L \leftrightarrow R),$$

Couplings to SM fermions

The neutral current interaction with the SM fermions is given by

$$\mathcal{L}_{\rm NC} = \bar{f}_L i \gamma^\mu D_\mu f_L + (L \leftrightarrow R),$$

= $\bar{f}_L i \gamma^\mu \left(\partial_\mu - i g_2 A^3_\mu \frac{\sigma^3}{2} - i g_Y B_\mu Y \right) f_L + (L \leftrightarrow R),$ (31)

where D_{μ} is the covariant derivative with respect to the $SU(2)_L \times U(1)_Y$ gauge group.
Couplings to SM fermions

The neutral current interaction with the SM fermions is given by

$$\mathcal{L}_{\rm NC} = \bar{f}_L i \gamma^\mu D_\mu f_L + (L \leftrightarrow R),$$

= $\bar{f}_L i \gamma^\mu \left(\partial_\mu - i g_2 A^3_\mu \frac{\sigma^3}{2} - i g_Y B_\mu Y \right) f_L + (L \leftrightarrow R),$ (31)

where D_{μ} is the covariant derivative with respect to the $SU(2)_L \times U(1)_Y$ gauge group.

Consider electron: for
$$e_L$$
, we have $\frac{\sigma^3}{2} = -\frac{1}{2}$, $Y = -\frac{1}{2}$; for e_R , we have $\frac{\sigma^3}{2} = 0$, $Y = -1$.
 $\mathcal{L}_{\mathrm{NC}} \supset \bar{e}_L \gamma^{\mu} \left(g_2 A^3_{\mu} \frac{\sigma^3}{2} + g_Y B_{\mu} Y \right) e_L + (L \leftrightarrow R)$

Couplings to SM fermions

The neutral current interaction with the SM fermions is given by

$$\mathcal{L}_{\rm NC} = \bar{f}_L i \gamma^\mu D_\mu f_L + (L \leftrightarrow R),$$

= $\bar{f}_L i \gamma^\mu \left(\partial_\mu - i g_2 A^3_\mu \frac{\sigma^3}{2} - i g_Y B_\mu Y \right) f_L + (L \leftrightarrow R),$ (31)

where D_{μ} is the covariant derivative with respect to the $SU(2)_L \times U(1)_Y$ gauge group.

Consider electron: for
$$e_L$$
, we have $rac{\sigma^3}{2}=-rac{1}{2}$, $Y=-rac{1}{2}$; for e_R , we have $rac{\sigma^3}{2}=0$, $Y=-1$.

$$\mathcal{L}_{\rm NC} \supset \bar{e}_L \gamma^{\mu} \left(g_2 A_{\mu}^3 \frac{\sigma^3}{2} + g_Y B_{\mu} Y \right) e_L + (L \leftrightarrow R)$$

$$= -\bar{e}_L \gamma^{\mu} \left(g_2 A_{\mu}^3 \frac{1}{2} + g_Y B_{\mu} \frac{1}{2} \right) e_L - \bar{e}_R \gamma^{\mu} \left(g_Y B_{\mu} \right) e_R$$
(32)

[22/64]

$$\mathcal{L}_{\rm NC} \supset -\bar{e}_L \gamma^\mu \left(g_2 \left(s_W A_\mu + c_W Z_\mu \right) \frac{1}{2} + g_Y \left(c_W A_\mu - s_W Z_\mu \right) \frac{1}{2} \right) e_L$$

$$\mathcal{L}_{\mathrm{NC}} \supset -\bar{e}_L \gamma^{\mu} \left(g_2 \left(s_W A_{\mu} + c_W Z_{\mu} \right) \frac{1}{2} + g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \frac{1}{2} \right) e_L \\ - \bar{e}_R \gamma^{\mu} \left(g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \right) e_R$$

$$\begin{aligned} \mathcal{L}_{\rm NC} &\supset -\bar{e}_L \gamma^{\mu} \left(g_2 \left(s_W A_{\mu} + c_W Z_{\mu} \right) \frac{1}{2} + g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \frac{1}{2} \right) e_L \\ &- \bar{e}_R \gamma^{\mu} \left(g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \right) e_R \\ &= -A_{\mu} \left[\bar{e}_L \gamma^{\mu} \left(g_{2} s_W \frac{1}{2} + g_Y c_W \frac{1}{2} \right) e_L + \bar{e}_R \gamma^{\mu} \left(g_Y c_W \right) e_R \right] \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{\rm NC} \supset &-\bar{e}_L \gamma^{\mu} \left(g_2 \left(s_W A_{\mu} + c_W Z_{\mu} \right) \frac{1}{2} + g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \frac{1}{2} \right) e_L \\ &- \bar{e}_R \gamma^{\mu} \left(g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \right) e_R \\ &= &- A_{\mu} \left[\bar{e}_L \gamma^{\mu} \left(g_2 s_W \frac{1}{2} + g_Y c_W \frac{1}{2} \right) e_L + \bar{e}_R \gamma^{\mu} \left(g_Y c_W \right) e_R \right] \\ &- Z_{\mu} \left[\bar{e}_L \gamma^{\mu} \left(g_2 \left(c_W \right) \frac{1}{2} + g_Y \left(-s_W \right) \frac{1}{2} \right) e_L + \bar{e}_R \gamma^{\mu} \left(g_Y \left(-s_W \right) \right) e_R \right] \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{\rm NC} \supset &-\bar{e}_L \gamma^{\mu} \left(g_2 \left(s_W A_{\mu} + c_W Z_{\mu} \right) \frac{1}{2} + g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \frac{1}{2} \right) e_L \\ &- \bar{e}_R \gamma^{\mu} \left(g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \right) e_R \\ &= &- A_{\mu} \left[\bar{e}_L \gamma^{\mu} \left(g_2 s_W \frac{1}{2} + g_Y c_W \frac{1}{2} \right) e_L + \bar{e}_R \gamma^{\mu} \left(g_Y c_W \right) e_R \right] \\ &- Z_{\mu} \left[\bar{e}_L \gamma^{\mu} \left(g_2 \left(c_W \right) \frac{1}{2} + g_Y \left(-s_W \right) \frac{1}{2} \right) e_L + \bar{e}_R \gamma^{\mu} \left(g_Y \left(-s_W \right) \right) e_R \right] \\ &= &- A_{\mu} \frac{g_2 g_Y}{\sqrt{g_2^2 + g_Y^2}} \left[\bar{e}_L \gamma^{\mu} e_L + \bar{e}_R \gamma^{\mu} e_R \right] \end{aligned}$$

$$\mathcal{L}_{\rm NC} \supset -\bar{e}_L \gamma^{\mu} \left(g_2 \left(s_W A_{\mu} + c_W Z_{\mu} \right) \frac{1}{2} + g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \frac{1}{2} \right) e_L - \bar{e}_R \gamma^{\mu} \left(g_Y \left(c_W A_{\mu} - s_W Z_{\mu} \right) \right) e_R = -A_{\mu} \left[\bar{e}_L \gamma^{\mu} \left(g_2 s_W \frac{1}{2} + g_Y c_W \frac{1}{2} \right) e_L + \bar{e}_R \gamma^{\mu} \left(g_Y c_W \right) e_R \right] - Z_{\mu} \left[\bar{e}_L \gamma^{\mu} \left(g_2 \left(c_W \right) \frac{1}{2} + g_Y \left(-s_W \right) \frac{1}{2} \right) e_L + \bar{e}_R \gamma^{\mu} \left(g_Y \left(-s_W \right) \right) e_R \right] = -A_{\mu} \frac{g_2 g_Y}{\sqrt{g_2^2 + g_Y^2}} \left[\bar{e}_L \gamma^{\mu} e_L + \bar{e}_R \gamma^{\mu} e_R \right] - Z_{\mu} \left[\frac{g_2^2 - g_Y^2}{2\sqrt{g_2^2 + g_Y^2}} \bar{e}_L \gamma^{\mu} e_L - \frac{g_Y^2}{\sqrt{g_2^2 + g_Y^2}} \bar{e}_R \gamma^{\mu} e_R \right]$$
(33)

[23/64]

Photon coupling

The coupling between photon and electron is

$$\mathcal{L}_{\rm NC} \supset -A_{\mu} \frac{g_2 g_Y}{\sqrt{g_2^2 + g_Y^2}} \left[\bar{e}_L \gamma^{\mu} e_L + \bar{e}_R \gamma^{\mu} e_R \right] \equiv e Q_e A_{\mu} \bar{e} \gamma^{\mu} e \tag{34}$$

Photon coupling

The coupling between photon and electron is

$$\mathcal{L}_{\rm NC} \supset -A_{\mu} \frac{g_2 g_Y}{\sqrt{g_2^2 + g_Y^2}} \left[\bar{e}_L \gamma^{\mu} e_L + \bar{e}_R \gamma^{\mu} e_R \right] \equiv e Q_e A_{\mu} \bar{e} \gamma^{\mu} e \tag{34}$$

Thus we find that $Q_e = -1$ and

$$e = \frac{g_2 g_Y}{\sqrt{g_2^2 + g_Y^2}}, \quad \text{or} \quad \frac{1}{e^2} = \frac{1}{g_2^2} + \frac{1}{g_Y^2},$$
 (35)

The total Lagrangian is

$$\mathcal{L}_{\rm StkSM} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$
(36)

$$\Delta \mathcal{L} \supset -\frac{1}{4} C_{\mu\nu} C^{\mu\nu} - \frac{\delta}{2} C_{\mu\nu} B^{\mu\nu} + \frac{1}{2} (\partial_{\mu}\sigma + m_1 C_{\mu} + m_2 B_{\mu})^2 + g_X J_X^{\mu} C_{\mu}.$$
(37)

The total Lagrangian is

$$\mathcal{L}_{\rm StkSM} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$
(36)

where

$$\Delta \mathcal{L} \supset -\frac{1}{4} C_{\mu\nu} C^{\mu\nu} - \frac{\delta}{2} C_{\mu\nu} B^{\mu\nu} + \frac{1}{2} (\partial_{\mu}\sigma + m_1 C_{\mu} + m_2 B_{\mu})^2 + g_X J_X^{\mu} C_{\mu}.$$
(37)

• B_{μ} is the $U(1)_Y$ gauge field (the SM hypercharge)

The total Lagrangian is

$$\mathcal{L}_{\rm StkSM} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$
(36)

where

$$\Delta \mathcal{L} \supset -\frac{1}{4} C_{\mu\nu} C^{\mu\nu} - \frac{\delta}{2} C_{\mu\nu} B^{\mu\nu} + \frac{1}{2} (\partial_{\mu}\sigma + m_1 C_{\mu} + m_2 B_{\mu})^2 + g_X J_X^{\mu} C_{\mu}.$$
(37)

B_µ is the *U*(1)_Y gauge field (the SM hypercharge)
 C_µ is the *U*(1)_X gauge field (the dark boson)

[25/64]

The total Lagrangian is

$$\mathcal{L}_{\rm StkSM} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$
(36)

$$\Delta \mathcal{L} \supset -\frac{1}{4} C_{\mu\nu} C^{\mu\nu} - \frac{\delta}{2} C_{\mu\nu} B^{\mu\nu} + \frac{1}{2} (\partial_{\mu}\sigma + m_1 C_{\mu} + m_2 B_{\mu})^2 + g_X J_X^{\mu} C_{\mu}.$$
(37)

- B_{μ} is the $U(1)_{Y}$ gauge field (the SM hypercharge)
- C_{μ} is the $U(1)_X$ gauge field (the dark boson)
- $g_X(J_X)$ is the gauge coupling (current) in the hidden sector

The total Lagrangian is

$$\mathcal{L}_{\rm StkSM} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$
(36)

$$\Delta \mathcal{L} \supset -\frac{1}{4} C_{\mu\nu} C^{\mu\nu} - \frac{\delta}{2} C_{\mu\nu} B^{\mu\nu} + \frac{1}{2} (\partial_{\mu}\sigma + m_1 C_{\mu} + m_2 B_{\mu})^2 + g_X J_X^{\mu} C_{\mu}.$$
(37)

- B_{μ} is the $U(1)_{Y}$ gauge field (the SM hypercharge)
- C_{μ} is the $U(1)_X$ gauge field (the dark boson)
- $g_X(J_X)$ is the gauge coupling (current) in the hidden sector
- σ is the axion field (in the Stueckelberg mechanism), which is charged under both $U(1)_X$ and $U(1)_Y$.

The total Lagrangian is

$$\mathcal{L}_{\rm StkSM} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$
(36)

$$\Delta \mathcal{L} \supset -\frac{1}{4} C_{\mu\nu} C^{\mu\nu} - \frac{\delta}{2} C_{\mu\nu} B^{\mu\nu} + \frac{1}{2} (\partial_{\mu}\sigma + m_1 C_{\mu} + m_2 B_{\mu})^2 + g_X J_X^{\mu} C_{\mu}.$$
(37)

- B_{μ} is the $U(1)_{Y}$ gauge field (the SM hypercharge)
- C_{μ} is the $U(1)_X$ gauge field (the dark boson)
- $g_X(J_X)$ is the gauge coupling (current) in the hidden sector
- σ is the axion field (in the Stueckelberg mechanism), which is charged under both $U(1)_X$ and $U(1)_Y$.
- m_1 and $m_2 = m_1 \epsilon$ are the mass terms (in the Stueckelberg mechanism)

The total Lagrangian is

$$\mathcal{L}_{\rm StkSM} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$
(36)

$$\Delta \mathcal{L} \supset -\frac{1}{4} C_{\mu\nu} C^{\mu\nu} - \frac{\delta}{2} C_{\mu\nu} B^{\mu\nu} + \frac{1}{2} (\partial_{\mu}\sigma + m_1 C_{\mu} + m_2 B_{\mu})^2 + g_X J_X^{\mu} C_{\mu}.$$
(37)

- B_{μ} is the $U(1)_{Y}$ gauge field (the SM hypercharge)
- C_{μ} is the $U(1)_X$ gauge field (the dark boson)
- $g_X(J_X)$ is the gauge coupling (current) in the hidden sector
- σ is the axion field (in the Stueckelberg mechanism), which is charged under both $U(1)_X$ and $U(1)_Y$.
- m_1 and $m_2 = m_1 \epsilon$ are the mass terms (in the Stueckelberg mechanism)
- $\blacktriangleright \delta$ is the kinetic mixing parameter

The total Lagrangian is

$$\mathcal{L}_{\rm StkSM} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$
(36)

$$\Delta \mathcal{L} \supset -\frac{1}{4} C_{\mu\nu} C^{\mu\nu} - \frac{\delta}{2} C_{\mu\nu} B^{\mu\nu} + \frac{1}{2} (\partial_{\mu}\sigma + m_1 C_{\mu} + m_2 B_{\mu})^2 + g_X J_X^{\mu} C_{\mu}.$$
(37)

- B_{μ} is the $U(1)_{Y}$ gauge field (the SM hypercharge)
- C_{μ} is the $U(1)_X$ gauge field (the dark boson)
- $g_X(J_X)$ is the gauge coupling (current) in the hidden sector
- σ is the axion field (in the Stueckelberg mechanism), which is charged under both $U(1)_X$ and $U(1)_Y$.
- m_1 and $m_2 = m_1 \epsilon$ are the mass terms (in the Stueckelberg mechanism)
- $\blacktriangleright \delta$ is the kinetic mixing parameter
- $\blacktriangleright \epsilon$ is the mass mixing parameter

Stueckelberg mass terms

The Stueckelberg mass terms

$$\frac{1}{2}(\partial_{\mu}\sigma + m_1C_{\mu} + m_2B_{\mu})^2$$
 (38)

are invariant under the $U(1)_X \times U(1)_Y$ gauge transformations. ⁵

 $^{^5{\}rm The}$ Stueckelberg mechanism can be viewed as the U(1) Higgs mechanism with the Higgs boson mass taken to be infinity.

Stueckelberg mass terms

The Stueckelberg mass terms

$$\frac{1}{2}(\partial_{\mu}\sigma + m_1C_{\mu} + m_2B_{\mu})^2$$
(38)

are invariant under the $U(1)_X \times U(1)_Y$ gauge transformations. ⁵

 $U(1)_Y$ gauge transformation:

$$\delta_Y B_\mu = \partial_\mu \lambda_Y, \quad \delta_Y C_\mu = 0, \quad \delta_Y \sigma = -m_2 \lambda_Y.$$
(39)

 $^{^5{\}rm The}$ Stueckelberg mechanism can be viewed as the U(1) Higgs mechanism with the Higgs boson mass taken to be infinity.

Stueckelberg mass terms

The Stueckelberg mass terms

$$\frac{1}{2}(\partial_{\mu}\sigma + m_1C_{\mu} + m_2B_{\mu})^2$$
(38)

are invariant under the $U(1)_X \times U(1)_Y$ gauge transformations. ⁵

 $U(1)_Y$ gauge transformation:

$$\delta_Y B_\mu = \partial_\mu \lambda_Y, \quad \delta_Y C_\mu = 0, \quad \delta_Y \sigma = -m_2 \lambda_Y.$$
(39)

 $U(1)_X$ gauge transformation:

$$\delta_X B_\mu = 0, \quad \delta_X C_\mu = \partial_\mu \lambda_X, \quad \delta_X \sigma = -m_1 \lambda_X. \tag{40}$$

 $^5{\rm The}$ Stueckelberg mechanism can be viewed as the U(1) Higgs mechanism with the Higgs boson mass taken to be infinity.

The StkSM model has a nondiagonal kinetic matrix (K) and a nondiagonal mass matrix (M^2), and in the unitary gauge in the basis $V^T = (C, B, A^3)$,

$$K = \begin{pmatrix} 1 & \delta & 0\\ \delta & 1 & 0\\ 0 & 0 & 1 \end{pmatrix},$$
 (41)

$$M^{2} = \begin{pmatrix} m_{1}^{2} & m_{1}^{2}\epsilon & 0\\ m_{1}^{2}\epsilon & m_{2}^{2}\epsilon^{2} + \frac{1}{4}g_{Y}^{2}v^{2} & -\frac{1}{4}g_{Y}g_{2}v^{2}\\ 0 & -\frac{1}{4}g_{Y}g_{2}v^{2} & +\frac{1}{4}g_{2}^{2}v^{2} \end{pmatrix}$$

(42)

⁶The mixings between the 2 U(1)'s do not alter the W mass directly. But the changes on the neutral gauge bosons affect the W mass indirectly; see e.g., Du, ZL, Nath, 2204.09024 [hep-ph]

The StkSM model has a nondiagonal kinetic matrix (K) and a nondiagonal mass matrix (M^2), and in the unitary gauge in the basis $V^T = (C, B, A^3)$,

$$K = \begin{pmatrix} 1 & \delta & 0\\ \delta & 1 & 0\\ 0 & 0 & 1 \end{pmatrix},$$
 (41)

$$M^{2} = \begin{pmatrix} m_{1}^{2} & m_{1}^{2}\epsilon & 0\\ m_{1}^{2}\epsilon & m_{2}^{2}\epsilon^{2} + \frac{1}{4}g_{Y}^{2}v^{2} & -\frac{1}{4}g_{Y}g_{2}v^{2}\\ 0 & -\frac{1}{4}g_{Y}g_{2}v^{2} & +\frac{1}{4}g_{2}^{2}v^{2} \end{pmatrix}$$

▶ 3 NP parameters: δ , m_1 , and ϵ

(42)

⁶The mixings between the 2 U(1)'s do not alter the W mass directly. But the changes on the neutral gauge bosons affect the W mass indirectly; see e.g., Du, ZL, Nath, 2204.09024 [hep-ph]

The StkSM model has a nondiagonal kinetic matrix (K) and a nondiagonal mass matrix (M^2), and in the unitary gauge in the basis $V^T = (C, B, A^3)$,

$$K = \begin{pmatrix} 1 & \delta & 0\\ \delta & 1 & 0\\ 0 & 0 & 1 \end{pmatrix},$$
 (41)

$$M^{2} = \begin{pmatrix} m_{1}^{2} & m_{1}^{2}\epsilon & 0\\ m_{1}^{2}\epsilon & m_{2}^{2}\epsilon^{2} + \frac{1}{4}g_{Y}^{2}v^{2} & -\frac{1}{4}g_{Y}g_{2}v^{2}\\ 0 & -\frac{1}{4}g_{Y}g_{2}v^{2} & +\frac{1}{4}g_{2}^{2}v^{2} \end{pmatrix}$$

(42)

3 NP parameters: δ, m₁, and ε
v is the Higgs VEV

⁶The mixings between the 2 U(1)'s do not alter the W mass directly. But the changes on the neutral gauge bosons affect the W mass indirectly; see e.g., Du, ZL, Nath, 2204.09024 [hep-ph]

The StkSM model has a nondiagonal kinetic matrix (K) and a nondiagonal mass matrix (M^2), and in the unitary gauge in the basis $V^T = (C, B, A^3)$,

$$K = \begin{pmatrix} 1 & \delta & 0\\ \delta & 1 & 0\\ 0 & 0 & 1 \end{pmatrix},$$
 (41)

$$M^{2} = \begin{pmatrix} m_{1}^{2} & m_{1}^{2}\epsilon & 0\\ m_{1}^{2}\epsilon & m_{2}^{2}\epsilon^{2} + \frac{1}{4}g_{Y}^{2}v^{2} & -\frac{1}{4}g_{Y}g_{2}v^{2}\\ 0 & -\frac{1}{4}g_{Y}g_{2}v^{2} & +\frac{1}{4}g_{2}^{2}v^{2} \end{pmatrix}$$
(42)

▶ 3 NP parameters: δ , m_1 , and ϵ

 \blacktriangleright v is the Higgs VEV

6

▶ g_2 and g_Y are the gauge couplings of the $SU(2)_L$ and $U(1)_Y$ groups

⁶The mixings between the 2 U(1)'s do not alter the W mass directly. But the changes on the neutral gauge bosons affect the W mass indirectly; see e.g., Du, ZL, Nath, 2204.09024 [hep-ph]

Simultaneous diagonalization of the kinetic & mass matrices

A simultaneous diagonalization of the kinetic & mass matrices can be obtained by the transformation $G = G_0 O$, which is a combination of the a GL(3) transformation (G_0) and an orthogonal transformation (O). This allows one to work in the diagonal basis, denoted by E where $E^T = (Z', Z, A)$, through the transformation $V = GE = G_0 OE$.

 $[\]diamond$ Go to Eq. (54) for photon couplings.

Simultaneous diagonalization of the kinetic & mass matrices

A simultaneous diagonalization of the kinetic & mass matrices can be obtained by the transformation $G = G_0 O$, which is a combination of the a GL(3) transformation (G_0) and an orthogonal transformation (O). This allows one to work in the diagonal basis, denoted by E where $E^T = (Z', Z, A)$, through the transformation $V = GE = G_0 OE$.

$$G_{0} = \begin{pmatrix} \frac{1}{\sqrt{1-\delta^{2}}} & 0 & 0\\ -\frac{\delta}{\sqrt{1-\delta^{2}}} & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

(43)

 $[\]diamond$ Go to Eq. (54) for photon couplings.

Simultaneous diagonalization of the kinetic & mass matrices

A simultaneous diagonalization of the kinetic & mass matrices can be obtained by the transformation $G = G_0 O$, which is a combination of the a GL(3) transformation (G_0) and an orthogonal transformation (O). This allows one to work in the diagonal basis, denoted by E where $E^T = (Z', Z, A)$, through the transformation $V = GE = G_0 OE$.

$$G_0 = \begin{pmatrix} \frac{1}{\sqrt{1-\delta^2}} & 0 & 0\\ -\frac{\delta}{\sqrt{1-\delta^2}} & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(43)

The matrix O is then defined by the diagonalization of the mass matrix

$$M_D^2 = O^T (G_0^T M^2 G_0) O.$$
(44)

[28/64]

 $[\]diamond$ Go to Eq. (54) for photon couplings.

Thus the matrix to be diagonalized by ${\cal O}$ is

$$G_0^T M^2 G_0 = \begin{pmatrix} \frac{4m_1^2(1-\delta\epsilon)^2 + \delta^2 g_Y^2 v^2}{4(1-\delta^2)} & \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} \\ \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & m_1^2\epsilon^2 + \frac{1}{4}g_Y^2 v^2 & -\frac{1}{4}g_2 g_Y v^2 \\ \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} & -\frac{1}{4}g_2 g_Y v^2 & \frac{1}{4}g_2^2 v^2 \end{pmatrix}$$
(45)

Thus the matrix to be diagonalized by ${\cal O}$ is

$$G_0^T M^2 G_0 = \begin{pmatrix} \frac{4m_1^2(1-\delta\epsilon)^2 + \delta^2 g_Y^2 v^2}{4(1-\delta^2)} & \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} \\ \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & m_1^2\epsilon^2 + \frac{1}{4}g_Y^2 v^2 & -\frac{1}{4}g_2 g_Y v^2 \\ \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} & -\frac{1}{4}g_2 g_Y v^2 & \frac{1}{4}g_2^2 v^2 \end{pmatrix}$$
(45)

▶ The determinant of the mass matrix is zero. (Why?)

Thus the matrix to be diagonalized by O is

$$G_0^T M^2 G_0 = \begin{pmatrix} \frac{4m_1^2(1-\delta\epsilon)^2 + \delta^2 g_Y^2 v^2}{4(1-\delta^2)} & \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} \\ \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & m_1^2\epsilon^2 + \frac{1}{4}g_Y^2 v^2 & -\frac{1}{4}g_2 g_Y v^2 \\ \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} & -\frac{1}{4}g_2 g_Y v^2 & \frac{1}{4}g_2^2 v^2 \end{pmatrix}$$
(45)

The determinant of the mass matrix is zero. (Why?)

▶ So it has a massless mode, which is the SM photon.

Thus the matrix to be diagonalized by O is

$$G_0^T M^2 G_0 = \begin{pmatrix} \frac{4m_1^2(1-\delta\epsilon)^2 + \delta^2 g_Y^2 v^2}{4(1-\delta^2)} & \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} \\ \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & m_1^2\epsilon^2 + \frac{1}{4}g_Y^2 v^2 & -\frac{1}{4}g_2 g_Y v^2 \\ \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} & -\frac{1}{4}g_2 g_Y v^2 & \frac{1}{4}g_2^2 v^2 \end{pmatrix}$$
(45)

- The determinant of the mass matrix is zero. (Why?)
- ► So it has a massless mode, which is the SM photon.
- lt also has 2 massive modes: Z and Z' (or A').

Thus the matrix to be diagonalized by O is

$$G_0^T M^2 G_0 = \begin{pmatrix} \frac{4m_1^2(1-\delta\epsilon)^2 + \delta^2 g_Y^2 v^2}{4(1-\delta^2)} & \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} \\ \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & m_1^2\epsilon^2 + \frac{1}{4}g_Y^2 v^2 & -\frac{1}{4}g_2 g_Y v^2 \\ \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} & -\frac{1}{4}g_2 g_Y v^2 & \frac{1}{4}g_2^2 v^2 \end{pmatrix}$$
(45)

- The determinant of the mass matrix is zero. (Why?)
- ► So it has a massless mode, which is the SM photon.
- lt also has 2 massive modes: Z and Z' (or A').
- ▶ We label the additional massive mode as Z' (A') if its mass is larger (smaller) than the Z boson.

The massless mode

It is not difficult to find the eigenvector of the massless mode:

$$A = \frac{1}{N} \begin{pmatrix} -\sqrt{1 - \delta^2} g_2 \epsilon \\ g_2 (1 - \delta \epsilon) \\ g_Y \end{pmatrix} \equiv \begin{pmatrix} O_{13} \\ O_{23} \\ O_{33} \end{pmatrix}$$
(46)

$$N = \sqrt{g_2^2 \left(1 - 2\delta\epsilon + \epsilon^2\right) + g_Y^2}.$$
 (47)

The massless mode

It is not difficult to find the eigenvector of the massless mode:

$$A = \frac{1}{N} \begin{pmatrix} -\sqrt{1 - \delta^2} g_2 \epsilon \\ g_2 (1 - \delta \epsilon) \\ g_Y \end{pmatrix} \equiv \begin{pmatrix} O_{13} \\ O_{23} \\ O_{33} \end{pmatrix}$$
(46)

where

$$N = \sqrt{g_2^2 \left(1 - 2\delta\epsilon + \epsilon^2\right) + g_Y^2}.$$
 (47)

The components of the photon eigenvector are the elements of the orthogonal matrix O.

$$V = \begin{pmatrix} C \\ B \\ A^3 \end{pmatrix} \to V = G_0 \tilde{V} = G_0 \begin{pmatrix} \tilde{C} \\ \tilde{B} \\ A^3 \end{pmatrix} \to V = G_0 \tilde{V} = G_0 O E = G_0 O \begin{pmatrix} Z' \\ Z \\ A \end{pmatrix}$$
(48)

[30/64]

Neutral current interaction

The neutral current interaction with the visible sector fermions is given by

$$\mathcal{L}_{\rm NC} = \bar{f}_L i \gamma^\mu D_\mu f_L + (L \leftrightarrow R), \tag{49}$$

where D_{μ} is the covariant derivative with respect to the $SU(2)_L \times U(1)_Y \times U(1)_X$ gauge group.
Neutral current interaction

The neutral current interaction with the visible sector fermions is given by

$$\mathcal{L}_{\rm NC} = \bar{f}_L i \gamma^\mu D_\mu f_L + (L \leftrightarrow R), \tag{49}$$

where D_{μ} is the covariant derivative with respect to the $SU(2)_L \times U(1)_Y \times U(1)_X$ gauge group.

Because the SM fields are not charged under $U(1)_X$, the covariant derivative includes only the $SU(2)_L$ gauge coupling g_2 and the $U(1)_Y$ gauge coupling g_Y .

$$\mathcal{L}_{\rm NC} = \bar{f}_L i \gamma^\mu \left(\partial_\mu - i g_2 A^a_\mu \frac{\sigma^a}{2} - i g_Y B_\mu Y \right) f_L + (L \leftrightarrow R), \tag{50}$$

Neutral current interaction

The neutral current interaction with the visible sector fermions is given by

$$\mathcal{L}_{\rm NC} = \bar{f}_L i \gamma^\mu D_\mu f_L + (L \leftrightarrow R), \tag{49}$$

where D_{μ} is the covariant derivative with respect to the $SU(2)_L \times U(1)_Y \times U(1)_X$ gauge group.

Because the SM fields are not charged under $U(1)_X$, the covariant derivative includes only the $SU(2)_L$ gauge coupling g_2 and the $U(1)_Y$ gauge coupling g_Y .

$$\mathcal{L}_{\rm NC} = \bar{f}_L i \gamma^\mu \left(\partial_\mu - i g_2 A^a_\mu \frac{\sigma^a}{2} - i g_Y B_\mu Y \right) f_L + (L \leftrightarrow R), \tag{50}$$

Coupling between neutral gauge bosons and SM fermions

$$\mathcal{L}_{\rm NC} \supset \bar{f}_L \gamma^\mu \left(g_2 A^3_\mu \frac{\sigma^3}{2} + g_Y B_\mu Y \right) f_L + (L \leftrightarrow R), \tag{51}$$

[31/64]

Photon couplings with electrons

$$\mathcal{L}_{\rm NC} \supset \bar{e}_L \gamma^\mu \left(g_2 A^3_\mu \frac{\sigma^3}{2} + g_Y B_\mu Y \right) e_L + (L \leftrightarrow R), \tag{52}$$

⁷See Eq. (43) for G_0 .

Photon couplings with electrons

$$\mathcal{L}_{\rm NC} \supset \bar{e}_L \gamma^\mu \left(g_2 A^3_\mu \frac{\sigma^3}{2} + g_Y B_\mu Y \right) e_L + (L \leftrightarrow R), \tag{52}$$

To obtain photon couplings, make the following replacements: ⁷

$$B \to (G_0 O)_{23} A = (G_0)_{2a} O_{a3} A = \left[O_{23} - \frac{\delta}{\sqrt{1 - \delta^2}} O_{13} \right] A = \frac{g_2}{N} A$$
(53)
$$A^3 \to (G_0 O)_{33} A = (G_0)_{3a} O_{a3} A = O_{33} A = \frac{g_Y}{N} A$$
(54)

where $N = \sqrt{g_2^2(1-2\delta\epsilon+\epsilon^2)+g_Y^2}.$

⁷See Eq. (43) for G_0 .

Photon couplings with electrons

$$\mathcal{L}_{\rm NC} \supset \bar{e}_L \gamma^\mu \left(g_2 A^3_\mu \frac{\sigma^3}{2} + g_Y B_\mu Y \right) e_L + (L \leftrightarrow R), \tag{52}$$

To obtain photon couplings, make the following replacements: ⁷

$$B \to (G_0 O)_{23} A = (G_0)_{2a} O_{a3} A = \left[O_{23} - \frac{\delta}{\sqrt{1 - \delta^2}} O_{13} \right] A = \frac{g_2}{N} A$$
(53)
$$A^3 \to (G_0 O)_{33} A = (G_0)_{3a} O_{a3} A = O_{33} A = \frac{g_Y}{N} A$$
(54)

where $N = \sqrt{g_2^2(1 - 2\delta\epsilon + \epsilon^2) + g_Y^2}$.

Thus, we have

$$\mathcal{L}_{\text{photon}} \supset \frac{g_2 g_Y}{N} A_{\mu} \left[\bar{e}_L \gamma^{\mu} \left(\frac{\sigma^3}{2} + Y \right) e_L + (L \leftrightarrow R) \right], \tag{55}$$

⁷See Eq. (43) for G_0 .

[32/64]

Photon couplings (continued)

We next use
$$\frac{\sigma^3}{2} = -\frac{1}{2}$$
 and $Y = -\frac{1}{2}$ for e_L , and $\frac{\sigma^3}{2} = 0$ and $Y = -1$ for e_R to obtain
 $\mathcal{L}_{\text{photon}} \supset -\frac{g_2 g_Y}{N} A_\mu \left[\bar{e}_L \gamma^\mu e_L + \bar{e}_R \gamma^\mu e_R \right] = -\frac{g_2 g_Y}{N} A_\mu \bar{e} \gamma^\mu e$ (56)

⁸Note that g_Y^{SM} is defined such that the relation between e, g_2 , and g_Y^{SM} is the same one in the SM.

Photon couplings (continued)

We next use
$$\frac{\sigma^3}{2} = -\frac{1}{2}$$
 and $Y = -\frac{1}{2}$ for e_L , and $\frac{\sigma^3}{2} = 0$ and $Y = -1$ for e_R to obtain
 $\mathcal{L}_{\text{photon}} \supset -\frac{g_2 g_Y}{N} A_\mu [\bar{e}_L \gamma^\mu e_L + \bar{e}_R \gamma^\mu e_R] = -\frac{g_2 g_Y}{N} A_\mu \bar{e} \gamma^\mu e$ (56)

Thus we have

$$e = \frac{g_2 g_Y}{N} = \frac{g_2 g_Y}{\sqrt{g_2^2 (1 - 2\delta\epsilon + \epsilon^2) + g_Y^2}}$$
(57)

⁸Note that g_Y^{SM} is defined such that the relation between e, g_2 , and g_Y^{SM} is the same one in the SM.

Photon couplings (continued)

We next use
$$\frac{\sigma^3}{2} = -\frac{1}{2}$$
 and $Y = -\frac{1}{2}$ for e_L , and $\frac{\sigma^3}{2} = 0$ and $Y = -1$ for e_R to obtain
 $\mathcal{L}_{\text{photon}} \supset -\frac{g_2 g_Y}{N} A_\mu [\bar{e}_L \gamma^\mu e_L + \bar{e}_R \gamma^\mu e_R] = -\frac{g_2 g_Y}{N} A_\mu \bar{e} \gamma^\mu e$ (56)

Thus we have

$$e = \frac{g_2 g_Y}{N} = \frac{g_2 g_Y}{\sqrt{g_2^2 (1 - 2\delta\epsilon + \epsilon^2) + g_Y^2}}$$
(57)

Or

$$\frac{1}{e^2} = \frac{1}{g_2^2} + \frac{1 - 2\delta\epsilon + \epsilon^2}{g_Y^2} \equiv \frac{1}{g_2^2} + \frac{1}{(g_Y^{\rm SM})^2}$$
(58)

where $g_Y \equiv g_Y^{SM} \sqrt{1 - 2\delta \epsilon + \epsilon^2}$.⁸

⁸Note that $g_Y^{\rm SM}$ is defined such that the relation between e, g_2 , and $g_Y^{\rm SM}$ is the same one in the SM.

Mass matrix

The mass matrix

$$G_0^T M^2 G_0 = \begin{pmatrix} \frac{4m_1^2(1-\delta\epsilon)^2 + \delta^2 g_Y^2 v^2}{4(1-\delta^2)} & \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} \\ \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & m_1^2\epsilon^2 + \frac{1}{4}g_Y^2 v^2 & -\frac{1}{4}g_2 g_Y v^2 \\ \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} & -\frac{1}{4}g_2 g_Y v^2 & \frac{1}{4}g_2^2 v^2 \end{pmatrix}$$
(59)

where $g_Y \equiv g_Y^{SM} \sqrt{1 - 2\delta\epsilon + \epsilon^2}$.

Mass matrix

The mass matrix

$$G_0^T M^2 G_0 = \begin{pmatrix} \frac{4m_1^2(1-\delta\epsilon)^2 + \delta^2 g_Y^2 v^2}{4(1-\delta^2)} & \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} \\ \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & m_1^2\epsilon^2 + \frac{1}{4}g_Y^2 v^2 & -\frac{1}{4}g_2 g_Y v^2 \\ \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} & -\frac{1}{4}g_2 g_Y v^2 & \frac{1}{4}g_2^2 v^2 \end{pmatrix}$$
(59)

where $g_Y \equiv g_Y^{\rm SM} \sqrt{1 - 2\delta\epsilon + \epsilon^2}$.

So the mass matrix depends on m_1 , ϵ , δ , v, g_2 , and $g_Y^{\rm SM}$.

[34/64]

Mass matrix

The mass matrix

$$G_0^T M^2 G_0 = \begin{pmatrix} \frac{4m_1^2(1-\delta\epsilon)^2 + \delta^2 g_Y^2 v^2}{4(1-\delta^2)} & \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} \\ \frac{4m_1^2\epsilon(1-\delta\epsilon) - \delta g_Y^2 v^2}{4\sqrt{1-\delta^2}} & m_1^2\epsilon^2 + \frac{1}{4}g_Y^2 v^2 & -\frac{1}{4}g_2 g_Y v^2 \\ \frac{\delta g_2 g_Y v^2}{4\sqrt{1-\delta^2}} & -\frac{1}{4}g_2 g_Y v^2 & \frac{1}{4}g_2^2 v^2 \end{pmatrix}$$
(59)

where $g_Y \equiv g_Y^{\rm SM} \sqrt{1 - 2\delta\epsilon + \epsilon^2}$.

So the mass matrix depends on m_1 , ϵ , δ , v, g_2 , and $g_Y^{\rm SM}$.

Compute the eigenvalues.

Mass eigenvalues

Three eigenvalues of the mass matrix are (depends on β only)

$$M_A^2 = 0, \quad M_Z^2 = (q-p)/2, \quad M_{Z'}^2 = (q+p)/2,$$
 (60)

$$p = \sqrt{\left(m_1^2\beta + \frac{(g_Y^{\rm SM})^2\beta + g_2^2}{4}v^2\right)^2 - 4m_1^2 \frac{(g_Y^{\rm SM})^2 + g_2^2}{4}v^2\beta},$$

$$q = m_1^2\beta + \frac{(g_Y^{\rm SM})^2\beta + g_2^2}{4}v^2$$
(61)
(62)

$$\beta = \frac{1 - 2\epsilon\delta + \epsilon^2}{1 - \delta^2} \tag{63}$$

Mass eigenvalues

Three eigenvalues of the mass matrix are (depends on β only)

$$M_A^2 = 0, \quad M_Z^2 = (q-p)/2, \quad M_{Z'}^2 = (q+p)/2,$$
 (60)

$$p = \sqrt{\left(m_1^2\beta + \frac{(g_Y^{\rm SM})^2\beta + g_2^2}{4}v^2\right)^2 - 4m_1^2 \frac{(g_Y^{\rm SM})^2 + g_2^2}{4}v^2\beta},\tag{61}$$

$$q = m_1^2 \beta + \frac{(g_Y) \beta + g_2}{4} v^2 \tag{62}$$

$$\beta = \frac{1 - 2\epsilon\delta + \epsilon^2}{1 - \delta^2} \tag{63}$$

A special case: $\epsilon = \delta \Longrightarrow \beta = 1 \Longrightarrow$ (assuming $m_1 > m_Z$)

$$M_Z = \frac{\sqrt{g_2^2 + (g_Y^{\rm SM})^2}}{2}v, \quad M_{Z'} = m_1,$$
(64)

[35/64]

Mass eigenvalues

Three eigenvalues of the mass matrix are (depends on β only)

$$M_A^2 = 0, \quad M_Z^2 = (q-p)/2, \quad M_{Z'}^2 = (q+p)/2,$$
 (60)

$$p = \sqrt{\left(m_1^2\beta + \frac{(g_Y^{\rm SM})^2\beta + g_2^2}{4}v^2\right)^2 - 4m_1^2 \frac{(g_Y^{\rm SM})^2 + g_2^2}{4}v^2\beta},$$
(61)

$$q = m_1^2 \beta + \frac{(g_Y) \beta + g_2}{4} v^2$$
(62)

$$\beta = \frac{1 - 2\epsilon\delta + \epsilon^2}{1 - \delta^2} \tag{63}$$

A special case: $\epsilon = \delta \Longrightarrow \beta = 1 \Longrightarrow$ (assuming $m_1 > m_Z$) $\sqrt{a^2 + (a^{SM})^2}$

$$M_Z = \frac{\sqrt{g_2^2 + (g_Y^{\rm SM})^2}}{2}v, \quad M_{Z'} = m_1, \tag{64}$$

It implies that δ is equivalent to $\epsilon.$

To see the equivalence, perform the following orthogonal transformation

$$R = \begin{pmatrix} \sqrt{1 - \delta^2} & -\delta & 0\\ \delta & \sqrt{1 - \delta^2} & 0\\ 0 & 0 & 1 \end{pmatrix},$$
 (65)

To see the equivalence, perform the following orthogonal transformation

$$R = \begin{pmatrix} \sqrt{1 - \delta^2} & -\delta & 0\\ \delta & \sqrt{1 - \delta^2} & 0\\ 0 & 0 & 1 \end{pmatrix},$$
 (65)

which transforms the mass matrix to

$$\mathcal{M}^{2} = R^{T} G_{O}^{T} M^{2} G_{0} R = \begin{pmatrix} m_{1}^{2} & m_{1}^{2} \bar{\epsilon} & 0 \\ m_{1}^{2} \bar{\epsilon} & m_{1}^{2} \bar{\epsilon}^{2} + \frac{v^{2}}{4} (g_{Y}^{\text{SM}})^{2} (1 + \bar{\epsilon}^{2}) & -\frac{v^{2}}{4} g_{2} g_{Y}^{\text{SM}} \sqrt{1 + \bar{\epsilon}^{2}} \\ 0 & -\frac{v^{2}}{4} g_{2} g_{Y}^{\text{SM}} \sqrt{1 + \bar{\epsilon}^{2}} & \frac{v^{2}}{4} g_{2}^{2} \end{pmatrix}, \quad (66)$$

To see the equivalence, perform the following orthogonal transformation

$$R = \begin{pmatrix} \sqrt{1 - \delta^2} & -\delta & 0\\ \delta & \sqrt{1 - \delta^2} & 0\\ 0 & 0 & 1 \end{pmatrix},$$
 (65)

which transforms the mass matrix to

$$\mathcal{M}^{2} = R^{T} G_{O}^{T} M^{2} G_{0} R = \begin{pmatrix} m_{1}^{2} & m_{1}^{2} \bar{\epsilon} & 0 \\ m_{1}^{2} \bar{\epsilon} & m_{1}^{2} \bar{\epsilon}^{2} + \frac{v^{2}}{4} (g_{Y}^{\text{SM}})^{2} (1 + \bar{\epsilon}^{2}) & -\frac{v^{2}}{4} g_{2} g_{Y}^{\text{SM}} \sqrt{1 + \bar{\epsilon}^{2}} \\ 0 & -\frac{v^{2}}{4} g_{2} g_{Y}^{\text{SM}} \sqrt{1 + \bar{\epsilon}^{2}} & \frac{v^{2}}{4} g_{2}^{2} \end{pmatrix}, \quad (66)$$

where $\bar{\epsilon}$ is defined so that

$$\bar{\epsilon} = \frac{\epsilon - \delta}{\sqrt{1 - \delta^2}}.\tag{67}$$

To see the equivalence, perform the following orthogonal transformation

$$R = \begin{pmatrix} \sqrt{1 - \delta^2} & -\delta & 0\\ \delta & \sqrt{1 - \delta^2} & 0\\ 0 & 0 & 1 \end{pmatrix},$$
 (65)

which transforms the mass matrix to

$$\mathcal{M}^{2} = R^{T} G_{O}^{T} M^{2} G_{0} R = \begin{pmatrix} m_{1}^{2} & m_{1}^{2} \bar{\epsilon} & 0 \\ m_{1}^{2} \bar{\epsilon} & m_{1}^{2} \bar{\epsilon}^{2} + \frac{v^{2}}{4} (g_{Y}^{\text{SM}})^{2} (1 + \bar{\epsilon}^{2}) & -\frac{v^{2}}{4} g_{2} g_{Y}^{\text{SM}} \sqrt{1 + \bar{\epsilon}^{2}} \\ 0 & -\frac{v^{2}}{4} g_{2} g_{Y}^{\text{SM}} \sqrt{1 + \bar{\epsilon}^{2}} & \frac{v^{2}}{4} g_{2}^{2} \end{pmatrix}, \quad (66)$$

where $\bar{\epsilon}$ is defined so that

$$\bar{\epsilon} = \frac{\epsilon - \delta}{\sqrt{1 - \delta^2}}.\tag{67}$$

Note that the mass matrix \mathcal{M}^2 looks exactly the same as for the mass matrix (namely M^2) one has if there was just the Stueckelberg mass mixing except that ϵ is replaced by $\bar{\epsilon}$. (Namely compare $\delta = 0$ with $\delta \neq 0$.) See Eq. (42) for the mass matrix M^2 . [36/64]

Mass matrix diagonalization

To diagonalize the mass matrix $\mathcal{M}^2 = R^T G_0^T M^2 G_0 R$ such that $O^T \mathcal{M}^2 O = \text{Diag}(m_{Z'}^2, m_Z^2, 0)$, we use the following parameterization (3 Euler angles)

$$O = \begin{pmatrix} \cos\psi\cos\phi - \sin\theta\sin\phi\sin\psi & \sin\psi\cos\phi + \sin\theta\sin\phi\cos\psi & -\cos\theta\sin\phi\\ \cos\psi\sin\phi + \sin\theta\cos\phi\sin\psi & \sin\psi\sin\phi - \sin\theta\cos\phi\cos\psi & \cos\theta\cos\phi\\ -\cos\theta\sin\psi & \cos\theta\cos\psi & \sin\theta \end{pmatrix}$$
(68)

Mass matrix diagonalization

To diagonalize the mass matrix $\mathcal{M}^2 = R^T G_0^T M^2 G_0 R$ such that $O^T \mathcal{M}^2 O = \text{Diag}(m_{Z'}^2, m_Z^2, 0)$, we use the following parameterization (3 Euler angles)

$$O = \begin{pmatrix} \cos\psi\cos\phi - \sin\theta\sin\phi\sin\psi & \sin\psi\cos\phi + \sin\theta\sin\phi\cos\psi & -\cos\theta\sin\phi\\ \cos\psi\sin\phi + \sin\theta\cos\phi\sin\psi & \sin\psi\sin\phi - \sin\theta\cos\phi\cos\psi & \cos\theta\cos\phi\\ -\cos\theta\sin\psi & \cos\theta\cos\psi & \sin\theta \end{pmatrix}$$
(68)

where the angles are defined so that

$$\tan\theta = \frac{g_Y^{\rm SM}}{g_2}, \quad \tan\phi = \bar{\epsilon}, \quad \tan 2\psi = \frac{2m_0^2 \sin\theta\bar{\epsilon}}{m_1^2 - m_0^2 + (m_1^2 + m_0^2 - m_W^2)\bar{\epsilon}^2}, \quad (69)$$

and
$$m_0 = m_Z(\epsilon = \delta) = v \sqrt{g_2^2 + (g_Y^{\rm SM})^2/2}$$
, and $m_W = g_2 v/2$.

The neutral current interactions with SM fermions \boldsymbol{f} are

 $\mathcal{L}_{\rm NC} \supset \bar{f}_L \gamma^\mu \left(g_2 A^3_\mu T^3 + g_Y B_\mu Y \right) f_L + (L \to R)$

The neutral current interactions with SM fermions f are

$$\begin{aligned} \mathcal{L}_{\rm NC} \supset \bar{f}_L \gamma^\mu \left(g_2 A^3_\mu T^3 + g_Y B_\mu Y \right) f_L + (L \to R) \\ &= g_2 A^3_\mu \left[T^3_f \bar{f}_L \gamma^\mu f_L \right] + g_Y B_\mu \left[Y_L \bar{f}_L \gamma^\mu f_L + Y_R \bar{f}_R \gamma^\mu f_R \right] \end{aligned}$$

The neutral current interactions with SM fermions f are

$$\begin{split} \mathcal{L}_{\rm NC} \supset \bar{f}_L \gamma^\mu \left(g_2 A^3_\mu T^3 + g_Y B_\mu Y \right) f_L + (L \to R) \\ &= g_2 A^3_\mu \left[T^3_f \bar{f}_L \gamma^\mu f_L \right] + g_Y B_\mu \left[Y_L \bar{f}_L \gamma^\mu f_L + Y_R \bar{f}_R \gamma^\mu f_R \right] \\ &= g_2 A^3_\mu \left[T^3_f \bar{f}_\gamma \gamma^\mu P_L f \right] + g_Y B_\mu \left[(Q_f - T^3_f) \bar{f} \gamma^\mu P_L f + Q_f \bar{f} \gamma^\mu P_R f \right] \end{split}$$

The neutral current interactions with SM fermions f are

$$\mathcal{L}_{\rm NC} \supset \bar{f}_L \gamma^{\mu} \left(g_2 A^3_{\mu} T^3 + g_Y B_{\mu} Y \right) f_L + (L \to R) = g_2 A^3_{\mu} \left[T^3_f \bar{f}_L \gamma^{\mu} f_L \right] + g_Y B_{\mu} \left[Y_L \bar{f}_L \gamma^{\mu} f_L + Y_R \bar{f}_R \gamma^{\mu} f_R \right] = g_2 A^3_{\mu} \left[T^3_f \bar{f} \gamma^{\mu} P_L f \right] + g_Y B_{\mu} \left[(Q_f - T^3_f) \bar{f} \gamma^{\mu} P_L f + Q_f \bar{f} \gamma^{\mu} P_R f \right] \equiv g_2 A^3_{\mu} J^{3\mu}_2 + g_Y B_{\mu} J^{\mu}_Y,$$
(70)

The neutral current interactions with SM fermions f are

$$\mathcal{L}_{\rm NC} \supset \bar{f}_L \gamma^{\mu} \left(g_2 A^3_{\mu} T^3 + g_Y B_{\mu} Y \right) f_L + (L \to R) = g_2 A^3_{\mu} \left[T^3_f \bar{f}_L \gamma^{\mu} f_L \right] + g_Y B_{\mu} \left[Y_L \bar{f}_L \gamma^{\mu} f_L + Y_R \bar{f}_R \gamma^{\mu} f_R \right] = g_2 A^3_{\mu} \left[T^3_f \bar{f} \gamma^{\mu} P_L f \right] + g_Y B_{\mu} \left[(Q_f - T^3_f) \bar{f} \gamma^{\mu} P_L f + Q_f \bar{f} \gamma^{\mu} P_R f \right] \equiv g_2 A^3_{\mu} J^{3\mu}_2 + g_Y B_{\mu} J^{\mu}_Y,$$
(70)

where $T^3 = \sigma^3/2$. Here T_f^3 is only for left-handed fermions; $T_f^3 = 0$ for right-handed fermions. In the 3rd line, we have used $Q_f = T_f^3 + Y_f$, where Y_f denotes both Y_L and Y_R . The chiral projection operators are $P_{L,R} = \frac{1 \pm \gamma_5}{2}$.

The neutral current interactions with SM fermions f are

$$\mathcal{L}_{\rm NC} \supset \bar{f}_L \gamma^{\mu} \left(g_2 A^3_{\mu} T^3 + g_Y B_{\mu} Y \right) f_L + (L \to R) = g_2 A^3_{\mu} \left[T^3_f \bar{f}_L \gamma^{\mu} f_L \right] + g_Y B_{\mu} \left[Y_L \bar{f}_L \gamma^{\mu} f_L + Y_R \bar{f}_R \gamma^{\mu} f_R \right] = g_2 A^3_{\mu} \left[T^3_f \bar{f} \gamma^{\mu} P_L f \right] + g_Y B_{\mu} \left[(Q_f - T^3_f) \bar{f} \gamma^{\mu} P_L f + Q_f \bar{f} \gamma^{\mu} P_R f \right] \equiv g_2 A^3_{\mu} J^{3\mu}_2 + g_Y B_{\mu} J^{\mu}_Y,$$
(70)

where $T^3 = \sigma^3/2$. Here T_f^3 is only for left-handed fermions; $T_f^3 = 0$ for right-handed fermions. In the 3rd line, we have used $Q_f = T_f^3 + Y_f$, where Y_f denotes both Y_L and Y_R . The chiral projection operators are $P_{L,R} = \frac{1 \mp \gamma_5}{2}$. Thus we have (in the V-A form)

$$J_{2}^{3} = T_{f}^{3} \bar{f} \gamma^{\mu} P_{L} f = \bar{f} \gamma^{\mu} \left[\frac{T_{f}^{3}}{2} - \gamma_{5} \frac{T_{f}^{3}}{2} \right] f$$

$$[71]$$

$$J_Y = \bar{f}\gamma^{\mu} \left[(Q_f - T_f^3) P_L + Q_f P_R \right] f = \bar{f}\gamma^{\mu} \left[\left(Q_f - \frac{T_f^3}{2} \right) - \gamma_5 \frac{-T_f^3}{2} \right] f$$
(72)
[38/64]

The transformation relating the initial basis and the final diagonal basis is $V = [G_0(\delta)R(\delta)O(\bar{\epsilon})]E$, where $V^T = (C, B, A^3)$, and $E^T = (Z', Z, A_{\gamma})$.⁹

⁹Note that there are some hidden dependence in the relation of $g_Y = g_Y^{\text{SM}} \sqrt{1 - 2\delta\epsilon + \epsilon^2}$. However, if one uses the SM relation $(g_Y^{\text{SM}})^{-2} = e^{-2} - g_2^{-2}$ to find g_Y^{SM} , then g_Y^{SM} can be treated as free of NP parameters.

The transformation relating the initial basis and the final diagonal basis is $V = [G_0(\delta)R(\delta)O(\bar{\epsilon})]E$, where $V^T = (C, B, A^3)$, and $E^T = (Z', Z, A_{\gamma})$. ⁹ The neutral current interaction can be written in the form

$$\mathcal{L}_{NC} = J^T S(\bar{\epsilon}, \delta) O(\bar{\epsilon}) E \tag{73}$$

where $J^T = (g_X J_X, g_Y^{SM} J_Y, g_2 J_2^3)$, and S is given by

$$S(\bar{\epsilon}, \delta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{g_Y}{g_Y^{\text{SM}}} & 0\\ 0 & 0 & 1 \end{pmatrix} G_0 R = \begin{pmatrix} 1 & -\frac{\delta}{\sqrt{1-\delta^2}} & 0\\ 0 & \sqrt{1+\bar{\epsilon}^2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$
 (74)

⁹Note that there are some hidden dependence in the relation of $g_Y = g_Y^{SM} \sqrt{1 - 2\delta\epsilon + \epsilon^2}$. However, if one uses the SM relation $(g_Y^{SM})^{-2} = e^{-2} - g_2^{-2}$ to find g_Y^{SM} , then g_Y^{SM} can be treated as free of NP parameters.

The transformation relating the initial basis and the final diagonal basis is $V = [G_0(\delta)R(\delta)O(\bar{\epsilon})]E$, where $V^T = (C, B, A^3)$, and $E^T = (Z', Z, A_{\gamma})$. ⁹ The neutral current interaction can be written in the form

$$\mathcal{L}_{NC} = J^T S(\bar{\epsilon}, \delta) O(\bar{\epsilon}) E \tag{73}$$

where $J^T = (g_X J_X, g_Y^{SM} J_Y, g_2 J_2^3)$, and S is given by

$$S(\bar{\epsilon},\delta) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{g_Y}{g_Y^{\text{SM}}} & 0\\ 0 & 0 & 1 \end{pmatrix} G_0 R = \begin{pmatrix} 1 & -\frac{\delta}{\sqrt{1-\delta^2}} & 0\\ 0 & \sqrt{1+\bar{\epsilon}^2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$
 (74)

When $J_X = 0$, the neutral current interaction of Eq. (73) has no dependence on δ .

⁹Note that there are some hidden dependence in the relation of $g_Y = g_Y^{SM} \sqrt{1 - 2\delta\epsilon + \epsilon^2}$. However, if one uses the SM relation $(g_Y^{SM})^{-2} = e^{-2} - g_2^{-2}$ to find g_Y^{SM} , then g_Y^{SM} can be treated as free of NP parameters.

The neutral current interaction with SM fermions are given by

$$\mathcal{L}_{\rm NC} = g_Y^{\rm SM} J_Y T_{2a} E_a + g_2 J_2^3 T_{3a} E_a \tag{75}$$

where $T = S(\bar{\epsilon}, \delta)O(\bar{\epsilon})$.

The neutral current interaction with SM fermions are given by

$$\mathcal{L}_{\rm NC} = g_Y^{\rm SM} J_Y T_{2a} E_a + g_2 J_2^3 T_{3a} E_a \tag{75}$$

where $T = S(\bar{\epsilon}, \delta)O(\bar{\epsilon})$. It is convenient to write the interaction in the conventional form with the reduced vector & axial vector couplings

$$\mathcal{L}_{\rm NC} = g_Z \bar{f} \gamma^{\mu} \left[(v'_f - \gamma_5 a'_f) Z'_{\mu} + (v_f - \gamma_5 a_f) Z_{\mu} \right] f + e \bar{f} \gamma^{\mu} Q_f A_{\mu} f,$$
(76)
where $g_Z = \sqrt{g_2^2 + (g_Y^{\rm SM})^2}/2.$

The neutral current interaction with SM fermions are given by

$$\mathcal{L}_{\rm NC} = g_Y^{\rm SM} J_Y T_{2a} E_a + g_2 J_2^3 T_{3a} E_a \tag{75}$$

where $T = S(\bar{\epsilon}, \delta)O(\bar{\epsilon})$. It is convenient to write the interaction in the conventional form with the reduced vector & axial vector couplings

$$\mathcal{L}_{\rm NC} = g_Z \bar{f} \gamma^\mu \left[(v_f' - \gamma_5 a_f') Z_\mu' + (v_f - \gamma_5 a_f) Z_\mu \right] f + e \bar{f} \gamma^\mu Q_f A_\mu f, \tag{76}$$

where $g_Z=\sqrt{g_2^2+(g_Y^{
m SM})^2/2}.$ Thus, we find

$$v_{f} = g_{Z}^{-1}[(g_{2}T_{32} - g_{Y}^{\text{SM}}T_{22})T_{f}^{3}/2 + g_{Y}^{\text{SM}}T_{22}Q_{f}],$$

$$a_{f} = g_{Z}^{-1}[(g_{2}T_{32} - g_{Y}^{\text{SM}}T_{22})T_{f}^{3}/2],$$

$$v_{f}' = g_{Z}^{-1}[(g_{2}T_{31} - g_{Y}^{\text{SM}}T_{21})T_{f}^{3}/2 + g_{Y}^{\text{SM}}T_{21}Q_{f}],$$

$$a_{f}' = g_{Z}^{-1}[(g_{2}T_{31} - g_{Y}^{\text{SM}}T_{21})T_{f}^{3}/2].$$
(77)

[40/64]

The reduced vector and axial vector couplings (tree level) can be further expressed in terms of the rotation angles:

$$v_f = \cos\psi \left[\left(1 - \bar{\epsilon}\sin\theta\tan\psi\right) T_f^3 - 2\sin^2\theta \left(1 - \bar{\epsilon}\csc\theta\tan\psi\right) Q_f \right],\tag{78}$$

$$a_f = \cos\psi \left[1 - \bar{\epsilon}\sin\theta \tan\psi\right] T_f^3,\tag{79}$$

$$v'_{f} = -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_{f}^{3} - 2\sin^{2}\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_{f}\right],\tag{80}$$

$$a'_f = -\cos\psi \left[\tan\psi + \bar{\epsilon}\sin\theta\right] T_f^3.$$
(81)

The reduced vector and axial vector couplings (tree level) can be further expressed in terms of the rotation angles:

$$v_f = \cos\psi \left[\left(1 - \bar{\epsilon}\sin\theta\tan\psi\right) T_f^3 - 2\sin^2\theta \left(1 - \bar{\epsilon}\csc\theta\tan\psi\right) Q_f \right],\tag{78}$$

$$a_f = \cos\psi \left[1 - \bar{\epsilon}\sin\theta \tan\psi\right] T_f^3,\tag{79}$$

$$v'_{f} = -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_{f}^{3} - 2\sin^{2}\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_{f}\right],\tag{80}$$

$$a'_{f} = -\cos\psi\left[\tan\psi + \bar{\epsilon}\sin\theta\right]T_{f}^{3}.$$
(81)

Because the rotation angles only depend on $\bar{\epsilon}$, we find that the dependencies on δ and ϵ of the vector & axial vector couplings between SM fermions and neutral bosons are only through $\bar{\epsilon}$.

The reduced vector and axial vector couplings (tree level) can be further expressed in terms of the rotation angles:

$$v_f = \cos\psi \left[\left(1 - \bar{\epsilon}\sin\theta\tan\psi\right) T_f^3 - 2\sin^2\theta \left(1 - \bar{\epsilon}\csc\theta\tan\psi\right) Q_f \right],\tag{78}$$

$$a_f = \cos\psi \left[1 - \bar{\epsilon}\sin\theta \tan\psi\right] T_f^3,\tag{79}$$

$$v'_{f} = -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_{f}^{3} - 2\sin^{2}\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_{f}\right],\tag{80}$$

$$a'_f = -\cos\psi \left[\tan\psi + \bar{\epsilon}\sin\theta\right] T_f^3.$$
(81)

Because the rotation angles only depend on $\bar{\epsilon}$, we find that the dependencies on δ and ϵ of the vector & axial vector couplings between SM fermions and neutral bosons are only through $\bar{\epsilon}$.

We conclude that kinetic mixing parameter δ and the mass mixing parameter ϵ are degenerate so that only their combination

$$\bar{\epsilon} = \frac{\epsilon - \delta}{\sqrt{1 - \delta^2}} \tag{82}$$

appears in the reduced vector & axial vector couplings of SM fermions.

[41/64]

What about interaction with hidden sector current?
What about interaction with hidden sector current?

For J_X , we have

 $\mathcal{L}_{\rm NC} = g_X J_X^{\mu} T_{1a} E_{a\mu}$

What about interaction with hidden sector current?

For J_X , we have

 $\mathcal{L}_{\rm NC} = g_X J_X^{\mu} T_{1a} E_{a\mu}$ $= g_X J_X^{\mu} S_{1b} O_{ba} E_{a\mu}$

What about interaction with hidden sector current?

For J_X , we have

$$\mathcal{L}_{\rm NC} = g_X J_X^{\mu} T_{1a} E_{a\mu}$$

= $g_X J_X^{\mu} S_{1b} O_{ba} E_{a\mu}$
= $g_X J_X^{\mu} \left[(O_{11} - s_{\delta} O_{21}) Z_{\mu}' + (O_{12} - s_{\delta} O_{22}) Z_{\mu} + (O_{13} - s_{\delta} O_{23}) A_{\mu} \right]$ (83)

What about interaction with hidden sector current?

For J_X , we have

$$\mathcal{L}_{\rm NC} = g_X J_X^{\mu} T_{1a} E_{a\mu} = g_X J_X^{\mu} S_{1b} O_{ba} E_{a\mu} = g_X J_X^{\mu} \left[(O_{11} - s_\delta O_{21}) Z_{\mu}' + (O_{12} - s_\delta O_{22}) Z_{\mu} + (O_{13} - s_\delta O_{23}) A_{\mu} \right]$$
(83)

where $s_{\delta} \equiv \frac{\delta}{\sqrt{1-\delta^2}}$. Because the only element of S that contains δ is $S_{12} = -s_{\delta}$, the interaction with hidden current now depends on δ .

What about interaction with hidden sector current?

For J_X , we have

$$\mathcal{L}_{\rm NC} = g_X J_X^{\mu} T_{1a} E_{a\mu}$$

= $g_X J_X^{\mu} S_{1b} O_{ba} E_{a\mu}$
= $g_X J_X^{\mu} \left[(O_{11} - s_{\delta} O_{21}) Z_{\mu}' + (O_{12} - s_{\delta} O_{22}) Z_{\mu} + (O_{13} - s_{\delta} O_{23}) A_{\mu} \right]$ (83)

where $s_{\delta} \equiv \frac{\delta}{\sqrt{1-\delta^2}}$. Because the only element of S that contains δ is $S_{12} = -s_{\delta}$, the interaction with hidden current now depends on δ .

When $J_X \neq 0$, the NC interaction depends on δ , breaking the degeneracy beteen δ and ϵ .

Consider Dirac fermion χ with $J_X^\mu=\bar\chi\gamma^\mu\chi$, the coupling to photon is

 $\mathcal{L}_{\rm NC} = g_X \bar{\chi} \gamma^\mu \chi \left(O_{13} - s_\delta O_{23} \right) A_\mu$

$$\mathcal{L}_{\rm NC} = g_X \bar{\chi} \gamma^\mu \chi \left(O_{13} - s_\delta O_{23} \right) A_\mu = g_X \bar{\chi} \gamma^\mu \chi \left(-\cos\theta \sin\phi - s_\delta \cos\theta \cos\phi \right) A_\mu$$

$$\mathcal{L}_{\rm NC} = g_X \bar{\chi} \gamma^\mu \chi \left(O_{13} - s_\delta O_{23} \right) A_\mu = g_X \bar{\chi} \gamma^\mu \chi \left(-\cos\theta \sin\phi - s_\delta \cos\theta \cos\phi \right) A_\mu = -g_X \bar{\chi} \gamma^\mu \chi \cos\theta \cos\phi \left(\tan\phi + s_\delta \right) A_\mu$$

$$\mathcal{L}_{\rm NC} = g_X \bar{\chi} \gamma^\mu \chi \left(O_{13} - s_\delta O_{23} \right) A_\mu$$

= $g_X \bar{\chi} \gamma^\mu \chi \left(-\cos\theta \sin\phi - s_\delta \cos\theta \cos\phi \right) A_\mu$
= $-g_X \bar{\chi} \gamma^\mu \chi \cos\theta \cos\phi \left(\tan\phi + s_\delta \right) A_\mu$
= $-g_X \bar{\chi} \gamma^\mu \chi \cos\theta \cos\phi \left(\bar{\epsilon} + s_\delta \right) A_\mu$

$$\mathcal{L}_{\rm NC} = g_X \bar{\chi} \gamma^\mu \chi \left(O_{13} - s_\delta O_{23} \right) A_\mu$$

= $g_X \bar{\chi} \gamma^\mu \chi \left(-\cos\theta \sin\phi - s_\delta \cos\theta \cos\phi \right) A_\mu$
= $-g_X \bar{\chi} \gamma^\mu \chi \cos\theta \cos\phi \left(\tan\phi + s_\delta \right) A_\mu$
= $-g_X \bar{\chi} \gamma^\mu \chi \cos\theta \cos\phi \left(\bar{\epsilon} + s_\delta \right) A_\mu$
= $-g_X \bar{\chi} \gamma^\mu \chi \cos\theta \cos\phi \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^2}} + \frac{\delta}{\sqrt{1 - \delta^2}} \right) A_\mu$

$$\mathcal{L}_{\rm NC} = g_X \bar{\chi} \gamma^{\mu} \chi \left(O_{13} - s_{\delta} O_{23} \right) A_{\mu}$$

$$= g_X \bar{\chi} \gamma^{\mu} \chi \left(-\cos\theta \sin\phi - s_{\delta} \cos\theta \cos\phi \right) A_{\mu}$$

$$= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\tan\phi + s_{\delta} \right) A_{\mu}$$

$$= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\bar{\epsilon} + s_{\delta} \right) A_{\mu}$$

$$= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^2}} + \frac{\delta}{\sqrt{1 - \delta^2}} \right) A_{\mu}$$

$$= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\frac{\epsilon}{\sqrt{1 - \delta^2}} \right) A_{\mu}.$$
(84)

Consider Dirac fermion χ with $J_X^\mu = \bar{\chi} \gamma^\mu \chi$, the coupling to photon is

$$\mathcal{L}_{\rm NC} = g_X \bar{\chi} \gamma^{\mu} \chi \left(O_{13} - s_{\delta} O_{23} \right) A_{\mu}
= g_X \bar{\chi} \gamma^{\mu} \chi \left(-\cos\theta \sin\phi - s_{\delta} \cos\theta \cos\phi \right) A_{\mu}
= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\tan\phi + s_{\delta} \right) A_{\mu}
= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\bar{\epsilon} + s_{\delta} \right) A_{\mu}
= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^2}} + \frac{\delta}{\sqrt{1 - \delta^2}} \right) A_{\mu}
= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\frac{\epsilon}{\sqrt{1 - \delta^2}} \right) A_{\mu}.$$
(84)

The electric charge of χ is proportional to ε. The mass mixing parameter ε is responsible for the generation of the millicharge of χ.

$$\mathcal{L}_{\rm NC} = g_X \bar{\chi} \gamma^{\mu} \chi \left(O_{13} - s_\delta O_{23} \right) A_{\mu}
= g_X \bar{\chi} \gamma^{\mu} \chi \left(-\cos\theta \sin\phi - s_\delta \cos\theta \cos\phi \right) A_{\mu}
= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\tan\phi + s_\delta \right) A_{\mu}
= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\bar{\epsilon} + s_\delta \right) A_{\mu}
= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^2}} + \frac{\delta}{\sqrt{1 - \delta^2}} \right) A_{\mu}
= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\frac{\epsilon}{\sqrt{1 - \delta^2}} \right) A_{\mu}.$$
(84)

- The electric charge of χ is proportional to ε. The mass mixing parameter ε is responsible for the generation of the millicharge of χ.
- Millicharged DM can be generated via mass mixing, but not via kinetic mixing.

Consider Dirac fermion χ with $J_X^\mu = \bar{\chi} \gamma^\mu \chi$, the coupling to photon is

$$NC = g_X \bar{\chi} \gamma^{\mu} \chi \left(O_{13} - s_{\delta} O_{23} \right) A_{\mu}$$

$$= g_X \bar{\chi} \gamma^{\mu} \chi \left(-\cos\theta \sin\phi - s_{\delta} \cos\theta \cos\phi \right) A_{\mu}$$

$$= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\tan\phi + s_{\delta} \right) A_{\mu}$$

$$= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\bar{\epsilon} + s_{\delta} \right) A_{\mu}$$

$$= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\frac{\epsilon - \delta}{\sqrt{1 - \delta^2}} + \frac{\delta}{\sqrt{1 - \delta^2}} \right) A_{\mu}$$

$$= -g_X \bar{\chi} \gamma^{\mu} \chi \cos\theta \cos\phi \left(\frac{\epsilon}{\sqrt{1 - \delta^2}} \right) A_{\mu}.$$
(84)

- The electric charge of χ is proportional to ε. The mass mixing parameter ε is responsible for the generation of the millicharge of χ.
- Millicharged DM can be generated via mass mixing, but not via kinetic mixing.
- This is consistent with the toy model.

L

We next discuss two regions of the parameter space

We next discuss two regions of the parameter space

▶ $m_1 \gg m_Z$: denote the new massive boson as Z' where $m_{Z'} \simeq m_1$

We next discuss two regions of the parameter space

- ▶ $m_1 \gg m_Z$: denote the new massive boson as Z' where $m_{Z'} \simeq m_1$
- $m_1 \ll m_Z$: denote the new massive boson as A' (dark photon) where $m_{A'} \simeq m_1$

We next discuss two regions of the parameter space

- ▶ $m_1 \gg m_Z$: denote the new massive boson as Z' where $m_{Z'} \simeq m_1$
- $m_1 \ll m_Z$: denote the new massive boson as A' (dark photon) where $m_{A'} \simeq m_1$

Recall that the reduced vector and axial vector couplings (tree level) of Z^\prime/A^\prime are

$$v'_{f} = -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_{f}^{3} - 2\sin^{2}\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_{f}\right],$$

$$a'_{f} = -\cos\psi\left[\tan\psi + \bar{\epsilon}\sin\theta\right]T_{f}^{3},$$
(85)
(86)

We next discuss two regions of the parameter space

- ▶ $m_1 \gg m_Z$: denote the new massive boson as Z' where $m_{Z'} \simeq m_1$
- ▶ $m_1 \ll m_Z$: denote the new massive boson as A' (dark photon) where $m_{A'} \simeq m_1$

Recall that the reduced vector and axial vector couplings (tree level) of Z^\prime/A^\prime are

$$v'_{f} = -\cos\psi \left[(\tan\psi + \bar{\epsilon}\sin\theta) T_{f}^{3} - 2\sin^{2}\theta \left(\bar{\epsilon}\csc\theta + \tan\psi \right) Q_{f} \right],$$

$$a'_{f} = -\cos\psi \left[\tan\psi + \bar{\epsilon}\sin\theta \right] T_{f}^{3},$$
(85)
(86)

[44/64]

where the angles are defined so that

$$\tan \theta = \frac{g_Y^{\text{SM}}}{g_2}, \quad \tan \phi = \bar{\epsilon}, \quad \tan 2\psi = \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2 + (m_1^2 + m_0^2 - m_W^2)\bar{\epsilon}^2}, \quad (87)$$
$$m_0 = m_Z(\epsilon = \delta) = v\sqrt{g_2^2 + (g_Y^{\text{SM}})^2}/2, \text{ and } m_W = g_2 v/2.$$

$$\tan 2\psi = \frac{2m_0^2\sin\theta\bar{\epsilon}}{m_1^2 - m_0^2 + (m_1^2 + m_0^2 - m_W^2)\bar{\epsilon}^2}$$

$$\tan 2\psi = \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2 + (m_1^2 + m_0^2 - m_W^2)\bar{\epsilon}^2}$$
$$\simeq \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2}$$

$$\tan 2\psi = \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2 + (m_1^2 + m_0^2 - m_W^2)\bar{\epsilon}^2}$$
$$\simeq \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2}$$
$$\simeq \frac{2m_0^2 \sin \theta \bar{\epsilon}}{-m_0^2} \left[1 + \frac{m_1^2}{m_0^2}\right]$$

$$\tan 2\psi = \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2 + (m_1^2 + m_0^2 - m_W^2)\bar{\epsilon}^2}$$
$$\simeq \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2}$$
$$\simeq \frac{2m_0^2 \sin \theta \bar{\epsilon}}{-m_0^2} \left[1 + \frac{m_1^2}{m_0^2}\right]$$
$$= -2\sin \theta \bar{\epsilon} \left[1 + \frac{m_1^2}{m_Z^2}\right]$$

(8	8)
`			,

When $m_1 \ll m_Z = m_0$, we have

$$\begin{aligned} \tan 2\psi &= \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2 + (m_1^2 + m_0^2 - m_W^2) \bar{\epsilon}^2} \\ &\simeq \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2} \\ &\simeq \frac{2m_0^2 \sin \theta \bar{\epsilon}}{-m_0^2} \left[1 + \frac{m_1^2}{m_0^2} \right] \\ &= -2 \sin \theta \bar{\epsilon} \left[1 + \frac{m_1^2}{m_Z^2} \right] \end{aligned}$$

where in the last time I have written m_0 as m_Z .

(88)

When $m_1 \ll m_Z = m_0$, we have

$$\tan 2\psi = \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2 + (m_1^2 + m_0^2 - m_W^2) \bar{\epsilon}^2}$$
$$\simeq \frac{2m_0^2 \sin \theta \bar{\epsilon}}{m_1^2 - m_0^2}$$
$$\simeq \frac{2m_0^2 \sin \theta \bar{\epsilon}}{-m_0^2} \left[1 + \frac{m_1^2}{m_0^2} \right]$$
$$= -2 \sin \theta \bar{\epsilon} \left[1 + \frac{m_1^2}{m_Z^2} \right]$$

where in the last time I have written m_0 as m_Z . Therefore, we find

$$\tan\psi \sim \psi \simeq -\sin\theta\bar{\epsilon} \left[1 + \frac{m_1^2}{m_Z^2}\right] \Longrightarrow \tan\psi + \bar{\epsilon}\sin\theta \simeq -\sin\theta\bar{\epsilon}\frac{m_1^2}{m_Z^2}$$
(89)

Note that $a'_f \propto \tan \psi + \bar{\epsilon} \sin \theta$.

[45/64]

(88)

$$v'_{f} = -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_{f}^{3} - 2\sin^{2}\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_{f}\right]$$

$$v'_{f} = -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_{f}^{3} - 2\sin^{2}\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_{f}\right]$$
$$\simeq -\left[\left(-\sin\theta\bar{\epsilon}\frac{m_{1}^{2}}{m_{Z}^{2}}\right)T_{f}^{3} - 2\sin^{2}\theta\left(\bar{\epsilon}\csc\theta + \left(-\sin\theta\bar{\epsilon}\right)\right)Q_{f}\right]$$

$$\begin{split} v'_f &= -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_f\right]\\ &\simeq -\left[\left(-\sin\theta\bar{\epsilon}\frac{m_1^2}{m_Z^2}\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + \left(-\sin\theta\bar{\epsilon}\right)\right)Q_f\right]\\ &= \bar{\epsilon}\left[\left(\sin\theta\frac{m_1^2}{m_Z^2}\right)T_f^3 + 2\sin^2\theta\left(\csc\theta - \sin\theta\right)Q_f\right] \end{split}$$

$$\begin{split} v'_f &= -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_f\right]\\ &\simeq -\left[\left(-\sin\theta\bar{\epsilon}\frac{m_1^2}{m_Z^2}\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + \left(-\sin\theta\bar{\epsilon}\right)\right)Q_f\right]\\ &= \bar{\epsilon}\left[\left(\sin\theta\frac{m_1^2}{m_Z^2}\right)T_f^3 + 2\sin^2\theta\left(\csc\theta - \sin\theta\right)Q_f\right]\\ &= \bar{\epsilon}\sin\theta\left[\left(\frac{m_1}{m_Z}\right)^2T_f^3 + 2\cos^2\theta Q_f\right] \end{split}$$

$$\begin{split} v'_f &= -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_f\right] \\ &\simeq -\left[\left(-\sin\theta\bar{\epsilon}\frac{m_1^2}{m_Z^2}\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + (-\sin\theta\bar{\epsilon})\right)Q_f\right] \\ &= \bar{\epsilon}\left[\left(\sin\theta\frac{m_1^2}{m_Z^2}\right)T_f^3 + 2\sin^2\theta\left(\csc\theta - \sin\theta\right)Q_f\right] \\ &= \bar{\epsilon}\sin\theta\left[\left(\frac{m_1}{m_Z}\right)^2T_f^3 + 2\cos^2\theta Q_f\right] \\ &a'_f &= -\cos\psi\left[\tan\psi + \bar{\epsilon}\sin\theta\right]T_f^3, \end{split}$$

Thus we find that

$$\begin{split} v'_f &= -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_f\right] \\ &\simeq -\left[\left(-\sin\theta\bar{\epsilon}\frac{m_1^2}{m_Z^2}\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + \left(-\sin\theta\bar{\epsilon}\right)\right)Q_f\right] \\ &= \bar{\epsilon}\left[\left(\sin\theta\frac{m_1^2}{m_Z^2}\right)T_f^3 + 2\sin^2\theta\left(\csc\theta - \sin\theta\right)Q_f\right] \\ &= \bar{\epsilon}\sin\theta\left[\left(\frac{m_1}{m_Z}\right)^2T_f^3 + 2\cos^2\theta Q_f\right] \\ a'_f &= -\cos\psi\left[\tan\psi + \bar{\epsilon}\sin\theta\right]T_f^3, \\ &\simeq \bar{\epsilon}\sin\theta\left(\frac{m_1}{m_Z}\right)^2T_f^3 \ll v'_f \end{split}$$

(90)

Thus we find that

$$\begin{split} v'_f &= -\cos\psi\left[\left(\tan\psi + \bar{\epsilon}\sin\theta\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + \tan\psi\right)Q_f\right] \\ &\simeq -\left[\left(-\sin\theta\bar{\epsilon}\frac{m_1^2}{m_Z^2}\right)T_f^3 - 2\sin^2\theta\left(\bar{\epsilon}\csc\theta + \left(-\sin\theta\bar{\epsilon}\right)\right)Q_f\right] \\ &= \bar{\epsilon}\left[\left(\sin\theta\frac{m_1^2}{m_Z^2}\right)T_f^3 + 2\sin^2\theta\left(\csc\theta - \sin\theta\right)Q_f\right] \\ &= \bar{\epsilon}\sin\theta\left[\left(\frac{m_1}{m_Z}\right)^2T_f^3 + 2\cos^2\theta Q_f\right] \\ a'_f &= -\cos\psi\left[\tan\psi + \bar{\epsilon}\sin\theta\right]T_f^3, \\ &\simeq \bar{\epsilon}\sin\theta\left(\frac{m_1}{m_Z}\right)^2T_f^3 \ll v'_f \end{split}$$

where we have used $m_1 \ll m_Z$.

[46/64]

(90)

$$g_Z \bar{f} \gamma^\mu (v'_f - \gamma_5 a'_f) f A'_\mu \simeq g_Z \bar{\epsilon} (2\sin\theta) \bar{f} \gamma^\mu \left[\cos^2\theta Q_f + \frac{1 - \gamma_5}{2} \left(\frac{m_1}{m_Z} \right)^2 T_f^3 \right] f A'_\mu$$

$$g_{Z}\bar{f}\gamma^{\mu}(v_{f}'-\gamma_{5}a_{f}')fA_{\mu}'\simeq g_{Z}\bar{\epsilon}(2\sin\theta)\bar{f}\gamma^{\mu}\left[\cos^{2}\theta Q_{f}+\frac{1-\gamma_{5}}{2}\left(\frac{m_{1}}{m_{Z}}\right)^{2}T_{f}^{3}\right]fA_{\mu}'$$
$$\simeq\epsilon ec_{W}Q_{f}\bar{f}\gamma^{\mu}fA_{\mu}'$$
(91)

$$g_{Z}\bar{f}\gamma^{\mu}(v_{f}'-\gamma_{5}a_{f}')fA_{\mu}' \simeq g_{Z}\bar{\epsilon}(2\sin\theta)\bar{f}\gamma^{\mu}\left[\cos^{2}\theta Q_{f}+\frac{1-\gamma_{5}}{2}\left(\frac{m_{1}}{m_{Z}}\right)^{2}T_{f}^{3}\right]fA_{\mu}'$$
$$\simeq \epsilon ec_{W}Q_{f}\bar{f}\gamma^{\mu}fA_{\mu}' \tag{91}$$

where we have neglected the term proportional to $(m_1/m_Z)^2$.

$$g_{Z}\bar{f}\gamma^{\mu}(v_{f}'-\gamma_{5}a_{f}')fA_{\mu}' \simeq g_{Z}\bar{\epsilon}(2\sin\theta)\bar{f}\gamma^{\mu}\left[\cos^{2}\theta Q_{f} + \frac{1-\gamma_{5}}{2}\left(\frac{m_{1}}{m_{Z}}\right)^{2}T_{f}^{3}\right]fA_{\mu}'$$
$$\simeq \epsilon ec_{W}Q_{f}\bar{f}\gamma^{\mu}fA_{\mu}'$$
(91)

where we have neglected the term proportional to $(m_1/m_Z)^2$.

▶ Both v'_f and a'_f are proportional to $\bar{\epsilon}$.
$$g_{Z}\bar{f}\gamma^{\mu}(v_{f}'-\gamma_{5}a_{f}')fA_{\mu}' \simeq g_{Z}\bar{\epsilon}(2\sin\theta)\bar{f}\gamma^{\mu}\left[\cos^{2}\theta Q_{f} + \frac{1-\gamma_{5}}{2}\left(\frac{m_{1}}{m_{Z}}\right)^{2}T_{f}^{3}\right]fA_{\mu}'$$
$$\simeq \epsilon ec_{W}Q_{f}\bar{f}\gamma^{\mu}fA_{\mu}'$$
(91)

- ▶ Both v'_f and a'_f are proportional to $\bar{\epsilon}$.
- ▶ a'_f is smaller than v'_f by a factor of $(m_1/m_Z)^2$. If $m_1 = 1$ GeV, a'_f is $\sim 10^{-4}$ times smaller than v'_f .

$$g_{Z}\bar{f}\gamma^{\mu}(v_{f}'-\gamma_{5}a_{f}')fA_{\mu}' \simeq g_{Z}\bar{\epsilon}(2\sin\theta)\bar{f}\gamma^{\mu}\left[\cos^{2}\theta Q_{f} + \frac{1-\gamma_{5}}{2}\left(\frac{m_{1}}{m_{Z}}\right)^{2}T_{f}^{3}\right]fA_{\mu}'$$
$$\simeq \epsilon ec_{W}Q_{f}\bar{f}\gamma^{\mu}fA_{\mu}'$$
(91)

- ▶ Both v'_f and a'_f are proportional to $\bar{\epsilon}$.
- ▶ a'_f is smaller than v'_f by a factor of $(m_1/m_Z)^2$. If $m_1 = 1$ GeV, a'_f is ~ 10^{-4} times smaller than v'_f .
- For small m_1 , A' couplings to fermions are then nearly vector, and v'_f is proportional to charge Q_f .

$$g_{Z}\bar{f}\gamma^{\mu}(v_{f}'-\gamma_{5}a_{f}')fA_{\mu}' \simeq g_{Z}\bar{\epsilon}(2\sin\theta)\bar{f}\gamma^{\mu}\left[\cos^{2}\theta Q_{f} + \frac{1-\gamma_{5}}{2}\left(\frac{m_{1}}{m_{Z}}\right)^{2}T_{f}^{3}\right]fA_{\mu}'$$
$$\simeq \epsilon ec_{W}Q_{f}\bar{f}\gamma^{\mu}fA_{\mu}'$$
(91)

- ▶ Both v'_f and a'_f are proportional to $\bar{\epsilon}$.
- ▶ a'_f is smaller than v'_f by a factor of $(m_1/m_Z)^2$. If $m_1 = 1$ GeV, a'_f is $\sim 10^{-4}$ times smaller than v'_f .
- ► For small m₁, A' couplings to fermions are then nearly vector, and v'_f is proportional to charge Q_f.
- So A' is a massive vector boson whose couplings to fermions are photon-like (suppressed by the small parameter ē).

$$g_{Z}\bar{f}\gamma^{\mu}(v_{f}'-\gamma_{5}a_{f}')fA_{\mu}' \simeq g_{Z}\bar{\epsilon}(2\sin\theta)\bar{f}\gamma^{\mu}\left[\cos^{2}\theta Q_{f} + \frac{1-\gamma_{5}}{2}\left(\frac{m_{1}}{m_{Z}}\right)^{2}T_{f}^{3}\right]fA_{\mu}'$$
$$\simeq \epsilon ec_{W}Q_{f}\bar{f}\gamma^{\mu}fA_{\mu}'$$
(91)

- ▶ Both v'_f and a'_f are proportional to $\bar{\epsilon}$.
- ▶ a'_f is smaller than v'_f by a factor of $(m_1/m_Z)^2$. If $m_1 = 1$ GeV, a'_f is $\sim 10^{-4}$ times smaller than v'_f .
- ► For small m₁, A' couplings to fermions are then nearly vector, and v'_f is proportional to charge Q_f.
- So A' is a massive vector boson whose couplings to fermions are photon-like (suppressed by the small parameter ē). ⇒ Dark Photon

$$g_{Z}\bar{f}\gamma^{\mu}(v_{f}'-\gamma_{5}a_{f}')fA_{\mu}'\simeq g_{Z}\bar{\epsilon}(2\sin\theta)\bar{f}\gamma^{\mu}\left[\cos^{2}\theta Q_{f}+\frac{1-\gamma_{5}}{2}\left(\frac{m_{1}}{m_{Z}}\right)^{2}T_{f}^{3}\right]fA_{\mu}'$$
$$\simeq\epsilon ec_{W}Q_{f}\bar{f}\gamma^{\mu}fA_{\mu}'$$
(91)

- ▶ Both v'_f and a'_f are proportional to $\bar{\epsilon}$.
- ▶ a'_f is smaller than v'_f by a factor of $(m_1/m_Z)^2$. If $m_1 = 1$ GeV, a'_f is $\sim 10^{-4}$ times smaller than v'_f .
- ► For small m₁, A' couplings to fermions are then nearly vector, and v'_f is proportional to charge Q_f.
- So A' is a massive vector boson whose couplings to fermions are photon-like (suppressed by the small parameter ē). ⇒ Dark Photon
- ▶ The smaller the dark photon mass, the more photon-like it is.

Phenomenology studies on dark photon

Phenomenology studies on dark photon depend on its mass. The dividing line is \sim MeV:

¹⁰In fact, DP can also decay into a pair of neutrinos, but it is suppressed by $(m_{A'}/m_Z)^4 \leq \mathcal{O}(10^{-20})$. ¹¹The decay $A' \to \gamma \gamma$ is forbidden by the Landau-Yang theorem.

¹²However, if the strict definition (vector-like coupling that is proportional to electric charge) is not used, dark photon can refer to any light gauge boson. For example, $U(1)_{B-L}$ boson, $U(1)_{L_i-L_j}$ boson, etc.

Phenomenology studies on dark photon depend on its mass. The dividing line is \sim MeV:

▶ $m_{A'} > 1$ MeV: accelerator probes are usually more important. In this case, DP can decay to a pair of SM fermions via a tree level diagram. Ex: $A' \rightarrow e^+e^-$.

¹⁰In fact, DP can also decay into a pair of neutrinos, but it is suppressed by $(m_{A'}/m_Z)^4 \leq \mathcal{O}(10^{-20})$. ¹¹The decay $A' \to \gamma \gamma$ is forbidden by the Landau-Yang theorem.

¹²However, if the strict definition (vector-like coupling that is proportional to electric charge) is not used, dark photon can refer to any light gauge boson. For example, $U(1)_{B-L}$ boson, $U(1)_{L_i-L_i}$ boson, etc.

Phenomenology studies on dark photon depend on its mass. The dividing line is \sim MeV:

- ▶ $m_{A'} > 1$ MeV: accelerator probes are usually more important. In this case, DP can decay to a pair of SM fermions via a tree level diagram. Ex: $A' \rightarrow e^+e^-$.
- ▶ $m_{A'} < 1$ MeV: astro/cosmo probes are usually more important. In this case, DP can only decay into 3 photons via a loop diagram.¹⁰ ¹¹

¹⁰In fact, DP can also decay into a pair of neutrinos, but it is suppressed by $(m_{A'}/m_Z)^4 \leq \mathcal{O}(10^{-20})$. ¹¹The decay $A' \rightarrow \gamma \gamma$ is forbidden by the Landau-Yang theorem.

¹²However, if the strict definition (vector-like coupling that is proportional to electric charge) is not used, dark photon can refer to any light gauge boson. For example, $U(1)_{B-L}$ boson, $U(1)_{L_i-L_j}$ boson, etc.

Phenomenology studies on dark photon depend on its mass. The dividing line is \sim MeV:

- ▶ $m_{A'} > 1$ MeV: accelerator probes are usually more important. In this case, DP can decay to a pair of SM fermions via a tree level diagram. Ex: $A' \rightarrow e^+e^-$.
- ▶ $m_{A'} < 1$ MeV: astro/cosmo probes are usually more important. In this case, DP can only decay into 3 photons via a loop diagram. ¹⁰ ¹¹

As discussed before, strictly speaking, dark photon exists in the mass region where $m_{A'} \ll m_Z$.

¹⁰In fact, DP can also decay into a pair of neutrinos, but it is suppressed by $(m_{A'}/m_Z)^4 \leq \mathcal{O}(10^{-20})$. ¹¹The decay $A' \to \gamma \gamma$ is forbidden by the Landau-Yang theorem.

¹²However, if the strict definition (vector-like coupling that is proportional to electric charge) is not used, dark photon can refer to any light gauge boson. For example, $U(1)_{B-L}$ boson, $U(1)_{L_i-L_j}$ boson, etc.

Phenomenology studies on dark photon depend on its mass. The dividing line is \sim MeV:

- ▶ $m_{A'} > 1$ MeV: accelerator probes are usually more important. In this case, DP can decay to a pair of SM fermions via a tree level diagram. Ex: $A' \rightarrow e^+e^-$.
- ▶ $m_{A'} < 1$ MeV: astro/cosmo probes are usually more important. In this case, DP can only decay into 3 photons via a loop diagram. ¹⁰ ¹¹

As discussed before, strictly speaking, dark photon exists in the mass region where $m_{A'} \ll m_Z$.

Large dark photon mass introduces both significant axial vector coupling and deviation from the proportionality of the electric charge. 12

¹⁰In fact, DP can also decay into a pair of neutrinos, but it is suppressed by $(m_{A'}/m_Z)^4 \leq \mathcal{O}(10^{-20})$. ¹¹The decay $A' \to \gamma \gamma$ is forbidden by the Landau-Yang theorem.

¹²However, if the strict definition (vector-like coupling that is proportional to electric charge) is not used, dark photon can refer to any light gauge boson. For example, $U(1)_{B-L}$ boson, $U(1)_{L_i-L_j}$ boson, etc.

DP vertex

Both production and decay of DP depends on its SM vertex ¹³

$$\bar{\epsilon}ec_W Q_f \bar{f} \gamma^\mu f A'_\mu \equiv \epsilon e Q_f \bar{f} \gamma^\mu f A'_\mu, \tag{92}$$

where the ϵ parameter on the RHS is NOT the mass mixing parameter. Here I redefine the vertex so that it looks similar to that usually used in the literature. So $\epsilon = c_W \frac{\epsilon_{\rm MM} - \delta}{\sqrt{1 - \delta^2}}$, where $\epsilon_{\rm MM}$ is the mass mixing parameter. ¹⁴ From now on, I will use the new vertex.

 $^{^{13}}$ DP is just like a massive photon, but with a suppressed coupling to SM fermions: the electric charge Q_f is suppressed by the small parameter ϵ .

¹⁴The absence of the factor c_W in the literature is due to the fact that people often use the toy model where they mix the C_{μ} boson with the photon field. In the realistic model, one has to mix the C_{μ} with the hypercharge boson B_{μ} ; the additional factor c_W is to account for the difference between B_{μ} and the photon.

DP vertex

Both production and decay of DP depends on its SM vertex $^{\rm 13}$

$$\bar{\epsilon}ec_W Q_f \bar{f} \gamma^\mu f A'_\mu \equiv \epsilon e Q_f \bar{f} \gamma^\mu f A'_\mu, \tag{92}$$

where the ϵ parameter on the RHS is NOT the mass mixing parameter. Here I redefine the vertex so that it looks similar to that usually used in the literature. So $\epsilon = c_W \frac{\epsilon_{\rm MM} - \delta}{\sqrt{1 - \delta^2}}$, where $\epsilon_{\rm MM}$ is the mass mixing parameter. ¹⁴ From now on, I will use the new vertex.

There is also a DP-DM vertex (for Dirac DM with vector coupling & $Q_X = 1$) $\sim q_X \frac{A'}{N} \sqrt{\gamma} e^{\mu_X}$

$$\sim g_X A'_\mu \bar{\chi} \gamma^\mu \chi$$
 (93)

which depends on the gauge coupling of the hidden $U(1)_X$.

 $^{^{13}}$ DP is just like a massive photon, but with a suppressed coupling to SM fermions: the electric charge Q_f is suppressed by the small parameter ϵ .

¹⁴The absence of the factor c_W in the literature is due to the fact that people often use the toy model where they mix the C_{μ} boson with the photon field. In the realistic model, one has to mix the C_{μ} with the hypercharge boson B_{μ} ; the additional factor c_W is to account for the difference between B_{μ} and the photon.

DP decay width

The dark photon leptonic decay width is

$$\Gamma(A' \to l^+ l^-) = \frac{m_{A'}}{12\pi} \sqrt{1 - 4\frac{m_l^2}{m_{A'}^2}} \left(1 + 2\frac{m_l^2}{m_{A'}^2}\right) (\epsilon e Q_l)^2,$$
(94)

DP decay width

The dark photon leptonic decay width is

$$\Gamma(A' \to l^+ l^-) = \frac{m_{A'}}{12\pi} \sqrt{1 - 4\frac{m_l^2}{m_{A'}^2}} \left(1 + 2\frac{m_l^2}{m_{A'}^2}\right) (\epsilon e Q_l)^2,$$
(94)

For DM, just replace m_l with m_{χ} , and $(\epsilon e Q_l)$ with g_{χ} .

DP decay width

The dark photon leptonic decay width is

$$\Gamma(A' \to l^+ l^-) = \frac{m_{A'}}{12\pi} \sqrt{1 - 4\frac{m_l^2}{m_{A'}^2}} \left(1 + 2\frac{m_l^2}{m_{A'}^2}\right) (\epsilon e Q_l)^2,$$
(94)

For DM, just replace m_l with m_{χ} , and $(\epsilon e Q_l)$ with g_{χ} .

The hadronic decay width can be computed by

$$\Gamma(A' \to \text{hadrons}) = \Gamma(A' \to \mu^+ \mu^-) R(m_{A'}^2), \tag{95}$$

where

$$R(m_{A'}^2) \equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

takes into account the effects of the dark photon mixing with the QCD vector mesons and can be taken from PDG.

DP decays at 1-loop

Figure: DP decay to 3 photons via a 1-loop process.

¹⁵Liu & Miller, https://arxiv.org/pdf/1705.01633.pdf.

DP decays at 1-loop

Figure: DP decay to 3 photons via a 1-loop process.

The decay width of $(A' \to 3\gamma)^{15}$ $\Gamma(A' \to 3\gamma) = \epsilon^2 \frac{\alpha^4}{2^7 3^6 5^2 \pi^3} \frac{m_{A'}^9}{m_e^8} \left[\frac{17}{5} + \frac{67}{42} \frac{m_{A'}^2}{m_e^2} + \frac{128941}{246960} \frac{m_{A'}^4}{m_e^4} + \mathcal{O}\left(\frac{m_{A'}^6}{m_e^6}\right) \right]. \tag{96}$

¹⁵Liu & Miller, https://arxiv.org/pdf/1705.01633.pdf.

DP can be categorized into 2 types:

DP can be categorized into 2 types:

► Visible DP: easy to detect

DP can be categorized into 2 types:

- ► Visible DP: easy to detect
- Invisible DP: difficult to detect

DP can be categorized into 2 types:

- Visible DP: easy to detect
- Invisible DP: difficult to detect

Because typically $\epsilon eQ_f \ll g_{\chi}$, if $m_{A'} > 2m_{\chi}$, one has $\Gamma(A' \to \bar{\chi}\chi) \gg \Gamma(A' \to \bar{f}f)$, and DP decay predominately into DM final state. \Longrightarrow Invisible DP

DP can be categorized into 2 types:

- Visible DP: easy to detect
- Invisible DP: difficult to detect

Because typically $\epsilon eQ_f \ll g_{\chi}$, if $m_{A'} > 2m_{\chi}$, one has $\Gamma(A' \to \bar{\chi}\chi) \gg \Gamma(A' \to \bar{f}f)$, and DP decay predominately into DM final state. \implies Invisible DP

On the other hand, if $m_{A'} < 2m_{\chi}$, DP can only decay into SM final states. \implies Visible DP

DP decay BR (visible decays only)

Figure: DP decay BR. From https://arxiv.org/pdf/1912.00422.pdf.

- Bremsstrahlung $e^-Z \rightarrow e^-ZA'$
- Annihilation $e^-e^+ \rightarrow \gamma A'$

- Bremsstrahlung $e^-Z \rightarrow e^-ZA'$
- Annihilation $e^-e^+ \rightarrow \gamma A'$
- Meson decay $M \to \gamma A'$

- Bremsstrahlung $e^-Z \rightarrow e^-ZA'$
- Annihilation $e^-e^+ \rightarrow \gamma A'$
- Meson decay $M \to \gamma A'$
- Drell-Yan $\bar{q}q \rightarrow A' \rightarrow \bar{f}f(\bar{\chi}\chi)$

Accelerator searches for dark photon

[♦] Fabbrichesi, Gabrielli, Lanfranchi, https://arxiv.org/pdf/2005.01515.pdf. (DP review)

DP above MeV (visible)

Two kinds experiments:

DP above MeV (visible)

Two kinds experiments:

colliders
Two kinds experiments:

- colliders
- fixed target or beam dump

Two kinds experiments:

- colliders
- fixed target or beam dump

Signatures: resonance (reconstruction of $\bar{f}f$ in the FS)

Two kinds experiments:

- colliders
- fixed target or beam dump

Signatures: resonance (reconstruction of $\bar{f}f$ in the FS)

▶ collider: prompt vertex or slightly displaced vertex sensitive to relatively large ϵ ($\epsilon > 10^{-3}$) and DP mass

Two kinds experiments:

- colliders
- fixed target or beam dump

Signatures: resonance (reconstruction of $\bar{f}f$ in the FS)

- ▶ collider: prompt vertex or slightly displaced vertex sensitive to relatively large ϵ ($\epsilon > 10^{-3}$) and DP mass
- ▶ beam dump: highly displaced vertex sensitive to relatively small ϵ ($10^{-7} \leq \epsilon \leq 10^{-3}$) in the low mass range (less than few GeV)

Two kinds experiments:

colliders

fixed target or beam dump

Signatures: resonance (reconstruction of $\bar{f}f$ in the FS)

- ▶ collider: prompt vertex or slightly displaced vertex sensitive to relatively large ϵ ($\epsilon > 10^{-3}$) and DP mass
- ▶ beam dump: highly displaced vertex sensitive to relatively small ϵ ($10^{-7} \leq \epsilon \leq 10^{-3}$) in the low mass range (less than few GeV)

This can be easily understood by looking at the decay distance

$$L = \gamma v \tau_{A'} = \gamma v / \Gamma_{A'} \propto \gamma v \frac{1}{m_{A'} \epsilon^2}$$
(97)

where in the last step we have assumed visible decays only.

di-lepton searches at experiments at

di-lepton searches at experiments at

- collider/fixed target: A1, LHCb, CMS, BaBar, KLOE, and NA48/2
- old beam dump: E774, E141, E137, ν-Cal, and CHARM.

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

di-lepton searches at experiments at

- collider/fixed target: A1, LHCb, CMS, BaBar, KLOE, and NA48/2
- old beam dump: E774, E141, E137. ν -Cal. and CHARM.

Other limits:

Projections on the massive DP for $m_{A'} > 1$ MeV (visible)

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Invisible limits:

 Kaon decay experiments (E787, E949, NA62)

Invisible limits:

 Kaon decay experiments (E787, E949, NA62)

► BaBar

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Invisible limits:

- Kaon decay experiments (E787, E949, NA62)
- ► BaBar

▶ NA64(e)

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Invisible limits:

- Kaon decay experiments (E787, E949, NA62)
- BaBar

▶ NA64(e)

Others:

Projections on the massive DP for $m_{A'} > 1$ MeV (invisible)

Astro/cosmo probes to dark photon

[♦] Fabbrichesi, Gabrielli, Lanfranchi, https://arxiv.org/pdf/2005.01515.pdf. (DP review)

Bounds:

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

► CMB: COBE/FIRES

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

- CMB: COBE/FIRES
- Coulomb

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

- ► CMB: COBE/FIRES
- Coulomb
- Light through a wall (LSW)

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

- ► CMB: COBE/FIRES
- Coulomb
- Light through a wall (LSW)

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

- ► CMB: COBE/FIRES
- Coulomb
- Light through a wall (LSW)

CROWS

 DP from the Sun: CAST, XENON10, SHIPS

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

- ► CMB: COBE/FIRES
- Coulomb
- Light through a wall (LSW)

CROWS

 DP from the Sun: CAST, XENON10, SHIPS

Rydberg

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

- ► CMB: COBE/FIRES
- Coulomb
- Light through a wall (LSW)

- DP from the Sun: CAST, XENON10, SHIPS
- Rydberg
- Nuclear reactor: TEXONO

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

- ► CMB: COBE/FIRES
- Coulomb
- Light through a wall (LSW)

- DP from the Sun: CAST, XENON10, SHIPS
- Rydberg
- Nuclear reactor: TEXONO
- Stellar: solar lifetime (SUN-T and SUN-L), red giants (RG), horizontal branches (HB)

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

- ► CMB: COBE/FIRES
- Coulomb
- Light through a wall (LSW)

- DP from the Sun: CAST, XENON10, SHIPS
- Rydberg
- Nuclear reactor: TEXONO
- Stellar: solar lifetime (SUN-T and SUN-L), red giants (RG), horizontal branches (HB)
- Supernova (another stellar): above MeV

Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

- CMB: COBE/FIRES
- Coulomb
- Light through a wall (LSW)

- DP from the Sun: CAST, XENON10, SHIPS
- Rydberg
- Nuclear reactor: TEXONO
- Stellar: solar lifetime (SUN-T and SUN-L), red giants (RG), horizontal branches (HB)
- Supernova (another stellar): above MeV
- DPDM