
Dark Photon

Zuowei Liu

Nanjing University

USTC, April 18, 2023

[1/64]



Outline

▶ Toy model
▶ Realistic model
▶ Phenomenology studies
▶ Accelerator searches
▶ Cosmo/astro probes
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Two mechanisms for dark photon
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Two mechanisms for dark photon

Two mechanisms to generate dark photon (DP):
▶ Kinetic mixing (KM) 1

▶ Mass mixing (MM) 2

1Holdom, PLB 166, 196 (1986); Foot & He, PLB 267, 509 (1991).
2Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf
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Hypercharge portal
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Toy model

⋄ Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf
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Kinetic mixing between 2 gauge bosons

Consider 2 gauge bosons A1µ and A2µ corresponding to two U(1) gauge groups. Consider the
following the Lagrangian L = L0 + L1

where

L0 = −1
4F1µνF

µν
1 − 1

4F2µνF
µν
2 − δ

2F1µνF
µν
2 , (1)

L1 = J1µA
µ
1 + J2µA

µ
2 , (2)

where
▶ Fiµν = ∂µAiν − ∂νAiµ is the field strength,
▶ δ is the kinetic mixing parameter. 3

▶ J1µ (J2µ) is the current that couples to A1µ (A2µ). If we identify A1µ (A2µ) as the gauge
boson in the dark (SM) sector, then J1µ (J2µ) is the dark (SM) sector current.

3We usually take δ as a small parameter.
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Matrix form

Define (omit the Lorentz index)

V ≡
(
A1
A2

)
, J ≡

(
J1
J2

)
, (3)

The Lagragian can be rewritten as follows

L0 = −1
4F1µνF

µν
1 − 1

4F2µνF
µν
2 − δ

2F1µνF
µν
2

= −1
4
(
F1µν F2µν

)(1 δ
δ 1

)(
Fµν

1
Fµν

2

)
≡ −1

4V
T

µνKV
µν ,

L1 = J1µA
µ
1 + J2µA

µ
2 = JµV

µ (4)

To correctly interpret the physics, we need to put the kinetic terms in the canonical form,
namely transforming K to an identity matrix.
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Put the kinetic terms in the canonical form
To put the kinetic energy term in its canonical form, one may use the transformation

V µ =
(
Aµ

1
Aµ

2

)
= G0

(
A′µ

Aµ

)
≡ G0E

µ (5)

where the LHS (RHS) is the original (new) basis, and

G0 =


1√

1 − δ2
0

−δ√
1 − δ2

1

 . (6)

This is because
GT

0 KG0 = GT
0

(
1 δ
δ 1

)
G0 =

(
1 0
0 1

)
. (7)

Now we have
L0 = −1

4FµνF
µν − 1

4F
′
µνF

′µν . (8)
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Alternative transformations
▶ G0 is not orthogonal; it is the GL(2) group.

▶ The G0 that canonically diagonalizes the kinetic terms is not unique.

This is because the transformation G = G0O instead of G0 would do as well where O is an
orthogonal matrix

O =
(

cos θ − sin θ
sin θ cos θ

)
. (9)

GTKG = (G0O)TK(G0O) = OT (GT
0 KG0)O = OTO = 1, (10)

G = G0O =


cos θ√
1 − δ2

− sin θ√
1 − δ2

sin θ − δ cos θ√
1 − δ2

cos θ + δ sin θ√
1 − δ2

 (11)

which has an additional free parameter θ.
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Lagrangian under G

With the general transformation G = G0O, the total Lagrangian L = L0 + L1 becomes

L0 = −1
4EµνE

µν = −1
4FµνF

µν − 1
4F

′
µνF

′µν ,

(12)

L1 = JµGE
µ = JµG0OE

µ

= A′µ
[

cos θ√
1 − δ2

J1µ +
(

sin θ − cos θδ√
1 − δ2

)
J2µ

]
+Aµ

[
− sin θ√

1 − δ2
J1µ +

(
cos θ + sin θδ√

1 − δ2

)
J2µ

]
. (13)

▶ Kinetic terms are in the canonical form
▶ Both bosons interact with both currents
▶ Interactions with current (matter) depend on 2 paras: θ and δ. So one has the freedom

(namely θ) to choose the basis.
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Asymmetric solutions: case 1

Case 1: θ = 0.

L1 = A′µ
[

1√
1 − δ2

J1µ − δ√
1 − δ2

J2µ

]
+AµJ2µ. (14)

(
Aµ

1
Aµ

2

)
= V µ = G0E

µ =


1√

1 − δ2
0

−δ√
1 − δ2

1

(A′µ

Aµ

)
(15)

▶ Because A1µ = 1√
1 − δ2

A′µ is the gauge boson in the hidden sector, we can identify A′ as
the dark photon, which interacts with both the dark current J1µ and the SM current J2µ.

▶ Then Aµ is the ordinary photon, which interacts only with the SM current J2µ.
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Asymmetric solutions: case 2

Case 2: θ = arctan
[
δ/
√

1 − δ2
]

(
Aµ

1
Aµ

2

)
= V µ = GEµ =

1 − δ√
1 − δ2

0 1√
1 − δ2

(A′µ

Aµ

)
(16)

L1 = Aµ

[
1√

1 − δ2
J2µ − δ√

1 − δ2
J1µ

]
+A′µJ1µ. (17)

▶ Because A1µ = A′
µ −Aµδ/

√
1 − δ2, we still identify A′

µ as the dark photon.
▶ Then Aµ is the SM photon.
▶ A′

µ interacts only with the dark current J1µ.
▶ Aµ interacts with both the SM current J2µ and the dark current J1µ.
▶ Coupling between Aµ and J1µ is proportional to the kinetic mixing parameter δ. =⇒

hidden matter is millicharged if δ is small.
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Mass
So far we have not written down mass terms for the gauge bosons. To make the dark photon
massive, mass terms are needed. The general mass terms are

Lm = 1
2m

2
1A1µA

µ
1 + 1

2m
2
2A2µA

µ
2 +m1m2A1µA

µ
2 . (18)

Write the mass terms in a matrix form:

Lm = 1
2VµM

2V µ, (19)

M2 =
(

m2
1 m1m2

m1m2 m2
2

)
≡ m2

1

(
1 ϵ
ϵ ϵ2

)
(20)

where ϵ ≡ m2/m1.

Note that the determinant of M2 is zero so that one of the eigenvalue is zero, which can be
identified as the photon mass (this is a must for a successful NP construction); the other
(massive) eigenvalue is the dark photon mass-square.
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Mass eigenstates: case 3

Diagnolizing the mass matrix M2 fixes θ: θ = arctan
[
ϵ
√

1 − δ2

1 − ϵδ

]
.

(
Aµ

1
Aµ

2

)
= V µ = GEµ = 1√

1 − 2δϵ+ ϵ2


1 − δϵ√
1 − δ2

−ϵ
ϵ− δ√
1 − δ2

1

(A′µ

Aµ

)
(21)

L1 = 1√
1 − 2δϵ+ ϵ2

(
ϵ− δ√
1 − δ2

J2µ + 1 − δϵ√
1 − δ2

J1µ

)
A′µ

+ 1√
1 − 2δϵ+ ϵ2

(J2µ − ϵJ1µ)Aµ. (22)

DP A′ and photon A interact with both currents: J1 (dark) and J2 (SM).
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Millicharge & mixings

Take a closer at the interaction.

L1 = 1√
1 − 2δϵ+ ϵ2

(
ϵ− δ√
1 − δ2

J2µ + 1 − δϵ√
1 − δ2

J1µ

)
A′µ

+ 1√
1 − 2δϵ+ ϵ2

(J2µ − ϵJ1µ)Aµ. (23)

▶ Millicharge vanishes when ϵ → 0. 4

▶ If DP is massive, kinetic mixing alone does not lead to millicharged dark matter
▶ If DP is massive, mass mixing alone generates millicharged dark matter.

4Recall that millicharge is the electric charge of the dark sector matter, so it is the coupling between the
dark sector current J1µ and the SM photon Aµ.
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Realistic model

⋄ Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf
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StkSM

For realistic model, one has to extend the SM, which has the gauge group
SU(3)c × SU(2)L × U(1)Y .

We consider the extended electroweak sector with the gauge group SU(2)L × U(1)Y × U(1)X ,
where both kinetic mixing and Stueckelberg mass mixing between the 2 U(1)’s are present.

Assume that the SM fields do not carry U(1)X quantum numbers, and the fields in the hidden
sector does not carry quantum numbers of the SM gauge group. The 2 mixings terms are the
only connections between the 2 sectors.

⋄ Feldman, ZL, Nath, https://arxiv.org/pdf/hep-ph/0702123.pdf
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The Standard Model & Higgs

We first review the SM and Higgs.

Because the new U(1)X only mixes with the hypercharge (the hypercharge portal), we focus
on the electroweak sector. See e.g., section 20.2 of Peskin & Schroeder.

The covariant derivative of the Higgs field ϕ in the SM is

Dµϕ =
(
∂µ − ig2A

a
µ

σa

2 − igY BµY

)
ϕ, (24)

where σa are the Pauli matrices, Aa
µ and Bµ are, respectively, the SU(2)L and U(1)Y gauge

bosons, and Y is the hypercharge quantum number. For the Higgs doublet, Y = 1/2.

Higgs VEV ⟨ϕ⟩ = 1√
2

(
0
v

)
.
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Neutral gauge boson masses in the SM

The gauge boson masses arise from the (Dµϕ)†(Dµϕ) term:

Lmass = 1
2
(
0 v

)(
g2A

a
µ

σa

2 + 1
2gY Bµ

)(
g2A

bµσ
b

2 + 1
2gY B

µ

)(
0
v

)
(25)

This then leads to

Lmass = 1
2
v2

4

[
g2

2
(
A1

µ

)2 + g2
2
(
A2

µ

)2 +
(
−g2A

3
µ + gY Bµ

)2
]

(26)

Keeping only the neutral gauge bosons, we write the mass terms in the matrix from:

Lmass ⊃ 1
2
v2

4
(
A3

µ Bµ

)( g2
2 −g2gy

−g2gy g2
y

)(
A3

µ

Bµ

)
. (27)

This mass matrix can be diagonalized by the weak mixing angle θW where tan θW = gY /g2,
leading to a massive Z boson and a massless photon. Note that the determinant of the mass
matrix is zero, which ensures the existence of a massless eigenstate.
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Diagonlization of the mass matrix of neutral gauge bosons

The orthogonal mass matrix is(
B
A3

)
= O

(
A
Z

)
=
(

cos θW − sin θW

sin θW cos θW

)(
A
Z

)
(28)

where A is the massless eigenstate (photon) and Z is the massive eigenstate, and
tan θW = gY /g2 such that

cos θW = g2√
g2

2 + g2
Y

, sin θW = gY√
g2

2 + g2
Y

, (29)

(
A
Z

)
= OT

(
B
A3

)
=
(

cos θW sin θW

− sin θW cos θW

)(
B
A3

)
(30)

▶ photon, mA = 0, A = cWB + sWA3

▶ Z, mZ = v

2

√
g2

2 + g2
Y , Z = cWA3 − sWB
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Couplings to SM fermions

The neutral current interaction with the SM fermions is given by

LNC = f̄Liγ
µDµfL + (L ↔ R),

= f̄Liγ
µ

(
∂µ − ig2A

3
µ

σ3

2 − igY BµY

)
fL + (L ↔ R), (31)

where Dµ is the covariant derivative with respect to the SU(2)L × U(1)Y gauge group.

Consider electron: for eL, we have σ3

2 = −1
2 , Y = −1

2 ; for eR, we have σ3

2 = 0, Y = −1.

LNC ⊃ ēLγ
µ

(
g2A

3
µ

σ3

2 + gY BµY

)
eL + (L ↔ R)

= −ēLγ
µ

(
g2A

3
µ

1
2 + gY Bµ

1
2

)
eL − ēRγ

µ (gY Bµ) eR (32)
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Photon/Z coupling to electron

LNC ⊃ − ēLγ
µ

(
g2 (sWAµ + cWZµ) 1

2 + gY (cWAµ − sWZµ) 1
2

)
eL

− ēRγ
µ (gY (cWAµ − sWZµ)) eR

= −Aµ

[
ēLγ

µ

(
g2sW

1
2 + gY cW

1
2

)
eL + ēRγ

µ (gY cW ) eR

]
− Zµ

[
ēLγ

µ

(
g2 (cW ) 1

2 + gY (−sW ) 1
2

)
eL + ēRγ

µ (gY (−sW )) eR

]
= −Aµ

g2gY√
g2

2 + g2
Y

[ēLγ
µeL + ēRγ

µeR]

− Zµ

[
g2

2 − g2
Y

2
√
g2

2 + g2
Y

ēLγ
µeL − g2

Y√
g2

2 + g2
Y

ēRγ
µeR

]
(33)
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µ (gY cW ) eR

]
− Zµ

[
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ēLγ

µ

(
g2 (cW ) 1

2 + gY (−sW ) 1
2

)
eL + ēRγ
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Photon coupling

The coupling between photon and electron is

LNC ⊃ −Aµ
g2gY√
g2

2 + g2
Y

[ēLγ
µeL + ēRγ

µeR] ≡ eQeAµēγ
µe (34)

Thus we find that Qe = −1 and

e = g2gY√
g2

2 + g2
Y

, or 1
e2 = 1

g2
2

+ 1
g2

Y

, (35)
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Lagrangian of StkSM

The total Lagrangian is
LStkSM = LSM + ∆L (36)

where

∆L ⊃ −1
4CµνC

µν − δ

2CµνB
µν + 1

2(∂µσ +m1Cµ +m2Bµ)2 + gXJ
µ
XCµ. (37)

▶ Bµ is the U(1)Y gauge field (the SM hypercharge)
▶ Cµ is the U(1)X gauge field (the dark boson)
▶ gX (JX) is the gauge coupling (current) in the hidden sector
▶ σ is the axion field (in the Stueckelberg mechanism), which is charged under both U(1)X

and U(1)Y .
▶ m1 and m2 = m1ϵ are the mass terms (in the Stueckelberg mechanism)
▶ δ is the kinetic mixing parameter
▶ ϵ is the mass mixing parameter
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Stueckelberg mass terms

The Stueckelberg mass terms

1
2(∂µσ +m1Cµ +m2Bµ)2 (38)

are invariant under the U(1)X × U(1)Y gauge transformations. 5

U(1)Y gauge transformation:

δY Bµ = ∂µλY , δY Cµ = 0, δY σ = −m2λY . (39)

U(1)X gauge transformation:

δXBµ = 0, δXCµ = ∂µλX , δXσ = −m1λX . (40)

5The Stueckelberg mechanism can be viewed as the U(1) Higgs mechamism with the Higgs boson mass
taken to be infinity.
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Kinetic mixing matrix & mass matrix

The StkSM model has a nondiagonal kinetic matrix (K) and a nondiagonal mass matrix (M2),
and in the unitary gauge in the basis V T = (C,B,A3),

K =

1 δ 0
δ 1 0
0 0 1

 , (41)

M2 =


m2

1 m2
1ϵ 0

m2
1ϵ m2

2ϵ
2 + 1

4g
2
Y v

2 −1
4gY g2v

2

0 −1
4gY g2v

2 +1
4g

2
2v

2

 (42)

▶ 3 NP parameters: δ, m1, and ϵ
▶ v is the Higgs VEV
▶ g2 and gY are the gauge couplings of the SU(2)L and U(1)Y groups

6

6The mixings between the 2 U(1)’s do not alter the W mass directly. But the changes on the neutral gauge
bosons affect the W mass indirectly; see e.g., Du, ZL, Nath, 2204.09024 [hep-ph]
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K =

1 δ 0
δ 1 0
0 0 1

 , (41)

M2 =


m2

1 m2
1ϵ 0

m2
1ϵ m2

2ϵ
2 + 1

4g
2
Y v

2 −1
4gY g2v

2

0 −1
4gY g2v

2 +1
4g

2
2v

2

 (42)

▶ 3 NP parameters: δ, m1, and ϵ
▶ v is the Higgs VEV

▶ g2 and gY are the gauge couplings of the SU(2)L and U(1)Y groups
6

6The mixings between the 2 U(1)’s do not alter the W mass directly. But the changes on the neutral gauge
bosons affect the W mass indirectly; see e.g., Du, ZL, Nath, 2204.09024 [hep-ph]
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Simultaneous diagonalization of the kinetic & mass matrices

A simultaneous diagonalization of the kinetic & mass matrices can be obtained by the
transformation G = G0O, which is a combination of the a GL(3) transformation (G0) and an
orthogonal transformation (O). This allows one to work in the diagonal basis, denoted by E
where ET = (Z ′, Z,A), through the transformation V = GE = G0OE.

G0 =


1√

1 − δ2
0 0

− δ√
1 − δ2

1 0

0 0 1

 (43)

The matrix O is then defined by the diagonalization of the mass matrix

M2
D = OT (GT

0 M
2G0)O. (44)

⋄ Go to Eq. (54) for photon couplings.
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Mass matrix diagonalization

Thus the matrix to be diagonalized by O is

GT
0 M

2G0 =


4m2

1(1 − δϵ)2 + δ2g2
Y v

2

4 (1 − δ2)
4m2

1ϵ(1 − δϵ) − δg2
Y v

2

4
√

1 − δ2
δg2gY v

2

4
√

1 − δ2

4m2
1ϵ(1 − δϵ) − δg2

Y v
2

4
√

1 − δ2
m2

1ϵ
2 + 1

4g
2
Y v

2 −1
4g2gY v

2

δg2gY v
2

4
√

1 − δ2
−1

4g2gY v
2 1

4g
2
2v

2

 (45)

▶ The determinant of the mass matrix is zero. (Why?)
▶ So it has a massless mode, which is the SM photon.
▶ It also has 2 massive modes: Z and Z ′ (or A′).
▶ We label the additional massive mode as Z ′ (A′) if its mass is larger (smaller) than the Z

boson.
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The massless mode

It is not difficult to find the eigenvector of the massless mode:

A = 1
N

−
√

1 − δ2g2ϵ
g2(1 − δϵ)

gY

 ≡

O13
O23
O33

 (46)

where
N =

√
g2

2 (1 − 2δϵ+ ϵ2) + g2
Y . (47)

The components of the photon eigenvector are the elements of the orthogonal matrix O.

V =

C
B
A3

 → V = G0Ṽ = G0

 C̃
B̃
A3

 → V = G0Ṽ = G0OE = G0O

Z ′

Z
A

 (48)
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Neutral current interaction
The neutral current interaction with the visible sector fermions is given by

LNC = f̄Liγ
µDµfL + (L ↔ R), (49)

where Dµ is the covariant derivative with respect to the SU(2)L × U(1)Y × U(1)X gauge
group.

Because the SM fields are not charged under U(1)X , the covariant derivative includes only the
SU(2)L gauge coupling g2 and the U(1)Y gauge coupling gY .

LNC = f̄Liγ
µ

(
∂µ − ig2A

a
µ

σa

2 − igY BµY

)
fL + (L ↔ R), (50)

Coupling between neutral gauge bosons and SM fermions

LNC ⊃ f̄Lγ
µ

(
g2A

3
µ

σ3

2 + gY BµY

)
fL + (L ↔ R), (51)
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Photon couplings with electrons

LNC ⊃ ēLγ
µ

(
g2A

3
µ

σ3

2 + gY BµY

)
eL + (L ↔ R), (52)

To obtain photon couplings, make the following replacements: 7

B → (G0O)23A = (G0)2aOa3A =
[
O23 − δ√

1 − δ2
O13

]
A = g2

N
A (53)

A3 → (G0O)33A = (G0)3aOa3A = O33A = gY

N
A (54)

where N =
√
g2

2(1 − 2δϵ+ ϵ2) + g2
Y .

Thus, we have
Lphoton ⊃ g2gY

N
Aµ

[
ēLγ

µ

(
σ3

2 + Y

)
eL + (L ↔ R)

]
, (55)

7See Eq. (43) for G0.
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Photon couplings (continued)

We next use σ3

2 = −1
2 and Y = −1

2 for eL, and σ3

2 = 0 and Y = −1 for eR to obtain

Lphoton ⊃ −g2gY

N
Aµ [ēLγ

µeL + ēRγ
µeR] = −g2gY

N
Aµēγ

µe (56)

Thus we have
e = g2gY

N
= g2gY√

g2
2(1 − 2δϵ+ ϵ2) + g2

Y

(57)

Or
1
e2 = 1

g2
2

+ 1 − 2δϵ+ ϵ2

g2
Y

≡ 1
g2

2
+ 1

(gSM
Y )2 (58)

where gY ≡ gSM
Y

√
1 − 2δϵ+ ϵ2. 8

8Note that gSM
Y is defined such that the relation between e, g2, and gSM

Y is the same one in the SM.
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Mass matrix

The mass matrix

GT
0 M

2G0 =


4m2

1(1 − δϵ)2 + δ2g2
Y v

2

4 (1 − δ2)
4m2

1ϵ(1 − δϵ) − δg2
Y v

2

4
√

1 − δ2
δg2gY v

2

4
√

1 − δ2

4m2
1ϵ(1 − δϵ) − δg2

Y v
2

4
√

1 − δ2
m2

1ϵ
2 + 1

4g
2
Y v

2 −1
4g2gY v

2

δg2gY v
2

4
√

1 − δ2
−1

4g2gY v
2 1

4g
2
2v

2

 (59)

where gY ≡ gSM
Y

√
1 − 2δϵ+ ϵ2.

So the mass matrix depends on m1, ϵ, δ, v, g2, and gSM
Y .

Compute the eigenvalues.
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Mass eigenvalues

Three eigenvalues of the mass matrix are (depends on β only)
M2

A = 0, M2
Z = (q − p)/2, M2

Z′ = (q + p)/2, (60)

p =

√(
m2

1β + (gSM
Y )2β + g2

2
4 v2

)2

− 4m2
1

(gSM
Y )2 + g2

2
4 v2β, (61)

q = m2
1β + (gSM

Y )2β + g2
2

4 v2 (62)

β = 1 − 2ϵδ + ϵ2

1 − δ2 (63)

A special case: ϵ = δ =⇒ β = 1 =⇒ (assuming m1 > mZ)

MZ =

√
g2

2 + (gSM
Y )2

2 v, MZ′ = m1, (64)

It implies that δ is equivalent to ϵ.
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M2

A = 0, M2
Z = (q − p)/2, M2

Z′ = (q + p)/2, (60)

p =

√(
m2

1β + (gSM
Y )2β + g2

2
4 v2

)2

− 4m2
1

(gSM
Y )2 + g2

2
4 v2β, (61)
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Another orthogonal transformation

To see the equivalence, perform the following orthogonal transformation

R =


√

1 − δ2 −δ 0
δ

√
1 − δ2 0

0 0 1

 , (65)

which transforms the mass matrix to

M2 = RTGT
OM

2G0R =


m2

1 m2
1ϵ̄ 0

m2
1ϵ̄ m2

1ϵ̄
2 + v2

4 (gSM
Y )2(1 + ϵ̄2) −v2

4 g2g
SM
Y

√
1 + ϵ̄2

0 −v2

4 g2g
SM
Y

√
1 + ϵ̄2

v2

4 g
2
2

 , (66)

where ϵ̄ is defined so that
ϵ̄ = ϵ− δ√

1 − δ2
. (67)

Note that the mass matrix M2 looks exactly the same as for the mass matrix (namely M2)
one has if there was just the Stueckelberg mass mixing except that ϵ is replaced by ϵ̄. (Namely
compare δ = 0 with δ ̸= 0.) See Eq. (42) for the mass matrix M2.
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Mass matrix diagonalization

To diagonalize the mass matrix M2 = RTGT
0 M

2G0R such that
OT M2O = Diag(m2

Z′ ,m2
Z , 0), we use the following parameterization (3 Euler angles)

O =

cosψ cosϕ− sin θ sinϕ sinψ sinψ cosϕ+ sin θ sinϕ cosψ − cos θ sinϕ
cosψ sinϕ+ sin θ cosϕ sinψ sinψ sinϕ− sin θ cosϕ cosψ cos θ cosϕ

− cos θ sinψ cos θ cosψ sin θ

 (68)

where the angles are defined so that

tan θ = gSM
Y

g2
, tanϕ = ϵ̄, tan 2ψ = 2m2

0 sin θϵ̄
m2

1 −m2
0 + (m2

1 +m2
0 −m2

W )ϵ̄2 , (69)

and m0 = mZ(ϵ = δ) = v
√
g2

2 + (gSM
Y )2/2, and mW = g2v/2.
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Neutral current (I)

The neutral current interactions with SM fermions f are
LNC ⊃ f̄Lγ

µ
(
g2A

3
µT

3 + gY BµY
)
fL + (L → R)

= g2A
3
µ

[
T 3

f f̄Lγ
µfL

]
+ gY Bµ

[
YLf̄Lγ

µfL + YRf̄Rγ
µfR

]
= g2A

3
µ

[
T 3

f f̄γ
µPLf

]
+ gY Bµ

[
(Qf − T 3

f )f̄γµPLf +Qf f̄γ
µPRf

]
≡ g2A

3
µJ

3µ
2 + gY BµJ

µ
Y , (70)

where T 3 = σ3/2. Here T 3
f is only for left-handed fermions; T 3

f = 0 for right-handed fermions.
In the 3rd line, we have used Qf = T 3

f + Yf , where Yf denotes both YL and YR. The chiral

projection operators are PL,R = 1 ∓ γ5

2 . Thus we have (in the V-A form)

J3
2 = T 3

f f̄γ
µPLf = f̄γµ

[
T 3

f

2 − γ5
T 3

f

2

]
f (71)

JY = f̄γµ
[
(Qf − T 3

f )PL +QfPR

]
f = f̄γµ

[(
Qf −

T 3
f

2

)
− γ5

−T 3
f

2

]
f (72)
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Neutral current (II)

The transformation relating the initial basis and the final diagonal basis is
V = [G0(δ)R(δ)O(ϵ̄)]E, where V T = (C,B,A3), and ET = (Z ′, Z,Aγ). 9

The neutral current interaction can be written in the form

LNC = JTS(ϵ̄, δ)O(ϵ̄)E (73)

where JT = (gXJX , g
SM
Y JY , g2J

3
2 ), and S is given by

S(ϵ̄, δ) =

1 0 0
0 gY

gSM
Y

0

0 0 1

G0R =

1 − δ√
1 − δ2

0

0
√

1 + ϵ̄2 0
0 0 1

 . (74)

When JX = 0, the neutral current interaction of Eq. (73) has no dependence on δ.

9Note that there are some hidden dependence in the relation of gY = gSM
Y

√
1 − 2δϵ + ϵ2. However, if one

uses the SM relation (gSM
Y )−2 = e−2 − g−2

2 to find gSM
Y , then gSM

Y can be treated as free of NP parameters.
[39/64]
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Neutral current (III)

The neutral current interaction with SM fermions are given by

LNC = gSM
Y JY T2aEa + g2J

3
2T3aEa (75)

where T = S(ϵ̄, δ)O(ϵ̄).

It is convenient to write the interaction in the conventional form with
the reduced vector & axial vector couplings

LNC = gZ f̄γ
µ
[
(v′

f − γ5a
′
f )Z ′

µ + (vf − γ5af )Zµ

]
f + ef̄γµQfAµf, (76)

where gZ =
√
g2

2 + (gSM
Y )2/2. Thus, we find

vf = g−1
Z [(g2T32 − gSM

Y T22)T 3
f /2 + gSM

Y T22Qf ],
af = g−1

Z [(g2T32 − gSM
Y T22)T 3

f /2],
v′

f = g−1
Z [(g2T31 − gSM

Y T21)T 3
f /2 + gSM

Y T21Qf ],
a′

f = g−1
Z [(g2T31 − gSM

Y T21)T 3
f /2].

(77)

[40/64]
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Neutral current (IV)

The reduced vector and axial vector couplings (tree level) can be further expressed in terms of
the rotation angles:

vf = cosψ
[
(1 − ϵ̄ sin θ tanψ)T 3

f − 2 sin2 θ (1 − ϵ̄ csc θ tanψ)Qf

]
, (78)

af = cosψ [1 − ϵ̄ sin θ tanψ]T 3
f , (79)

v′
f = − cosψ

[
(tanψ + ϵ̄ sin θ)T 3

f − 2 sin2 θ (ϵ̄ csc θ + tanψ)Qf

]
, (80)

a′
f = − cosψ [tanψ + ϵ̄ sin θ]T 3

f . (81)

Because the rotation angles only depend on ϵ̄, we find that the dependencies on δ and ϵ of the
vector & axial vector couplings between SM fermions and neutral bosons are only through ϵ̄.

We conclude that kinetic mixing parameter δ and the mass mixing parameter ϵ are degenerate
so that only their combination

ϵ̄ = ϵ− δ√
1 − δ2

(82)

appears in the reduced vector & axial vector couplings of SM fermions.

[41/64]
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Neutral current (V)

What about interaction with hidden sector current?

For JX , we have

LNC = gXJ
µ
XT1aEaµ

= gXJ
µ
XS1bObaEaµ

= gXJ
µ
X

[
(O11 − sδO21)Z ′

µ + (O12 − sδO22)Zµ + (O13 − sδO23)Aµ

]
(83)

where sδ ≡ δ√
1 − δ2

. Because the only element of S that contains δ is S12 = −sδ, the
interaction with hidden current now depends on δ.

When JX ̸= 0, the NC interaction depends on δ, breaking the degeneracy beteen δ and ϵ.
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Millicharged dark matter

Consider Dirac fermion χ with Jµ
X = χ̄γµχ, the coupling to photon is

LNC = gX χ̄γ
µχ (O13 − sδO23)Aµ

= gX χ̄γ
µχ (− cos θ sinϕ− sδ cos θ cosϕ)Aµ

= −gX χ̄γ
µχ cos θ cosϕ (tanϕ+ sδ)Aµ

= −gX χ̄γ
µχ cos θ cosϕ (ϵ̄+ sδ)Aµ

= −gX χ̄γ
µχ cos θ cosϕ

(
ϵ− δ√
1 − δ2

+ δ√
1 − δ2

)
Aµ

= −gX χ̄γ
µχ cos θ cosϕ

(
ϵ√

1 − δ2

)
Aµ. (84)

▶ The electric charge of χ is proportional to ϵ. The mass mixing parameter ϵ is responsible
for the generation of the millicharge of χ.

▶ Millicharged DM can be generated via mass mixing, but not via kinetic mixing.
▶ This is consistent with the toy model.
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Heavy Z ′ versus light A′

We next discuss two regions of the parameter space

▶ m1 ≫ mZ : denote the new massive boson as Z ′ where mZ′ ≃ m1
▶ m1 ≪ mZ : denote the new massive boson as A′ (dark photon) where mA′ ≃ m1

Recall that the reduced vector and axial vector couplings (tree level) of Z ′/A′ are

v′
f = − cosψ

[
(tanψ + ϵ̄ sin θ)T 3

f − 2 sin2 θ (ϵ̄ csc θ + tanψ)Qf

]
, (85)

a′
f = − cosψ [tanψ + ϵ̄ sin θ]T 3

f , (86)

where the angles are defined so that

tan θ = gSM
Y

g2
, tanϕ = ϵ̄, tan 2ψ = 2m2

0 sin θϵ̄
m2

1 −m2
0 + (m2

1 +m2
0 −m2

W )ϵ̄2 , (87)

m0 = mZ(ϵ = δ) = v
√
g2

2 + (gSM
Y )2/2, and mW = g2v/2.
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V and A coupling of A′ (I)

When m1 ≪ mZ = m0, we have

tan 2ψ = 2m2
0 sin θϵ̄

m2
1 −m2

0 + (m2
1 +m2

0 −m2
W )ϵ̄2

≃ 2m2
0 sin θϵ̄

m2
1 −m2

0

≃ 2m2
0 sin θϵ̄

−m2
0

[
1 + m2

1
m2

0

]
= −2 sin θϵ̄

[
1 + m2

1
m2

Z

]
(88)

where in the last time I have written m0 as mZ . Therefore, we find

tanψ ∼ ψ ≃ −sin θϵ̄
[
1 + m2

1
m2

Z

]
=⇒ tanψ + ϵ̄ sin θ ≃ −sin θϵ̄ m

2
1

m2
Z

(89)

Note that a′
f ∝ tanψ + ϵ̄ sin θ.
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Note that a′
f ∝ tanψ + ϵ̄ sin θ.
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V and A coupling of A′ (II)

Thus we find that
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where we have used m1 ≪ mZ .

[46/64]



V and A coupling of A′ (II)

Thus we find that

v′
f = − cosψ

[
(tanψ + ϵ̄ sin θ)T 3

f − 2 sin2 θ (ϵ̄ csc θ + tanψ)Qf

]
≃ −

[(
−sin θϵ̄ m

2
1

m2
Z

)
T 3

f − 2 sin2 θ (ϵ̄ csc θ + (−sin θϵ̄))Qf

]

= ϵ̄

[(
sin θ m

2
1

m2
Z

)
T 3

f + 2 sin2 θ (csc θ − sin θ)Qf

]
= ϵ̄ sin θ

[(
m1

mZ

)2
T 3

f + 2 cos2 θQf

]
a′

f = − cosψ [tanψ + ϵ̄ sin θ]T 3
f ,

≃ ϵ̄ sin θ
(
m1

mZ

)2
T 3

f ≪ v′
f (90)

where we have used m1 ≪ mZ .

[46/64]



V and A coupling of A′ (II)

Thus we find that

v′
f = − cosψ

[
(tanψ + ϵ̄ sin θ)T 3

f − 2 sin2 θ (ϵ̄ csc θ + tanψ)Qf

]
≃ −

[(
−sin θϵ̄ m

2
1

m2
Z

)
T 3

f − 2 sin2 θ (ϵ̄ csc θ + (−sin θϵ̄))Qf

]
= ϵ̄

[(
sin θ m

2
1

m2
Z

)
T 3

f + 2 sin2 θ (csc θ − sin θ)Qf

]

= ϵ̄ sin θ
[(

m1

mZ

)2
T 3

f + 2 cos2 θQf

]
a′

f = − cosψ [tanψ + ϵ̄ sin θ]T 3
f ,

≃ ϵ̄ sin θ
(
m1

mZ

)2
T 3

f ≪ v′
f (90)

where we have used m1 ≪ mZ .

[46/64]



V and A coupling of A′ (II)

Thus we find that

v′
f = − cosψ

[
(tanψ + ϵ̄ sin θ)T 3

f − 2 sin2 θ (ϵ̄ csc θ + tanψ)Qf

]
≃ −

[(
−sin θϵ̄ m

2
1

m2
Z

)
T 3

f − 2 sin2 θ (ϵ̄ csc θ + (−sin θϵ̄))Qf

]
= ϵ̄

[(
sin θ m

2
1

m2
Z

)
T 3

f + 2 sin2 θ (csc θ − sin θ)Qf

]
= ϵ̄ sin θ

[(
m1

mZ

)2
T 3

f + 2 cos2 θQf

]

a′
f = − cosψ [tanψ + ϵ̄ sin θ]T 3

f ,

≃ ϵ̄ sin θ
(
m1

mZ

)2
T 3

f ≪ v′
f (90)

where we have used m1 ≪ mZ .

[46/64]



V and A coupling of A′ (II)

Thus we find that

v′
f = − cosψ

[
(tanψ + ϵ̄ sin θ)T 3

f − 2 sin2 θ (ϵ̄ csc θ + tanψ)Qf

]
≃ −

[(
−sin θϵ̄ m

2
1

m2
Z

)
T 3

f − 2 sin2 θ (ϵ̄ csc θ + (−sin θϵ̄))Qf

]
= ϵ̄

[(
sin θ m

2
1

m2
Z

)
T 3

f + 2 sin2 θ (csc θ − sin θ)Qf

]
= ϵ̄ sin θ

[(
m1

mZ

)2
T 3

f + 2 cos2 θQf

]
a′

f = − cosψ [tanψ + ϵ̄ sin θ]T 3
f ,

≃ ϵ̄ sin θ
(
m1

mZ

)2
T 3

f ≪ v′
f (90)

where we have used m1 ≪ mZ .

[46/64]



V and A coupling of A′ (II)

Thus we find that

v′
f = − cosψ

[
(tanψ + ϵ̄ sin θ)T 3

f − 2 sin2 θ (ϵ̄ csc θ + tanψ)Qf

]
≃ −

[(
−sin θϵ̄ m

2
1

m2
Z

)
T 3

f − 2 sin2 θ (ϵ̄ csc θ + (−sin θϵ̄))Qf

]
= ϵ̄

[(
sin θ m

2
1

m2
Z

)
T 3

f + 2 sin2 θ (csc θ − sin θ)Qf

]
= ϵ̄ sin θ

[(
m1

mZ

)2
T 3

f + 2 cos2 θQf

]
a′

f = − cosψ [tanψ + ϵ̄ sin θ]T 3
f ,

≃ ϵ̄ sin θ
(
m1

mZ

)2
T 3

f ≪ v′
f (90)

where we have used m1 ≪ mZ .

[46/64]



V and A coupling of A′ (II)

Thus we find that

v′
f = − cosψ

[
(tanψ + ϵ̄ sin θ)T 3

f − 2 sin2 θ (ϵ̄ csc θ + tanψ)Qf

]
≃ −

[(
−sin θϵ̄ m

2
1

m2
Z

)
T 3

f − 2 sin2 θ (ϵ̄ csc θ + (−sin θϵ̄))Qf

]
= ϵ̄

[(
sin θ m

2
1

m2
Z

)
T 3

f + 2 sin2 θ (csc θ − sin θ)Qf

]
= ϵ̄ sin θ

[(
m1

mZ

)2
T 3

f + 2 cos2 θQf

]
a′

f = − cosψ [tanψ + ϵ̄ sin θ]T 3
f ,

≃ ϵ̄ sin θ
(
m1

mZ

)2
T 3

f ≪ v′
f (90)

where we have used m1 ≪ mZ .
[46/64]



Dark photon

gZ f̄γ
µ(v′

f − γ5a
′
f )fA′

µ ≃ gZ ϵ̄(2 sin θ)f̄γµ

[
cos2 θQf + 1 − γ5

2

(
m1

mZ

)2
T 3

f

]
fA′

µ

≃ ϵecWQf f̄γ
µfA′

µ (91)

where we have neglected the term proportional to (m1/mZ)2.
▶ Both v′

f and a′
f are proportional to ϵ̄.

▶ a′
f is smaller than v′

f by a factor of (m1/mZ)2. If m1 = 1 GeV, a′
f is ∼ 10−4 times

smaller than v′
f .

▶ For small m1, A′ couplings to fermions are then nearly vector, and v′
f is proportional to

charge Qf .
▶ So A′ is a massive vector boson whose couplings to fermions are photon-like (suppressed

by the small parameter ϵ̄). =⇒ Dark Photon
▶ The smaller the dark photon mass, the more photon-like it is.
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Phenomenology studies on dark photon
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Dark photon mass

Phenomenology studies on dark photon depend on its mass. The dividing line is ∼ MeV:

▶ mA′ > 1 MeV: accelerator probes are usually more important. In this case, DP can decay
to a pair of SM fermions via a tree level diagram. Ex: A′ → e+e−.

▶ mA′ < 1 MeV: astro/cosmo probes are usually more important. In this case, DP can only
decay into 3 photons via a loop diagram. 10 11

As discussed before, strictly speaking, dark photon exists in the mass region where mA′ ≪ mZ .

Large dark photon mass introduces both significant axial vector coupling and deviation from
the proportionality of the electric charge. 12

10In fact, DP can also decay into a pair of neutrinos, but it is suppressed by (mA′ /mZ)4 ≤ O(10−20).
11The decay A′ → γγ is forbidden by the Landau-Yang theorem.
12However, if the strict definition (vector-like coupling that is proportional to electric charge) is not used, dark

photon can refer to any light gauge boson. For example, U(1)B−L boson, U(1)Li−Lj
boson, etc.
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DP vertex
Both production and decay of DP depends on its SM vertex 13

ϵ̄ecWQf f̄γ
µfA′

µ ≡ ϵeQf f̄γ
µfA′

µ, (92)

where the ϵ parameter on the RHS is NOT the mass mixing parameter. Here I redefine the
vertex so that it looks similar to that usually used in the literature. So ϵ = cW

ϵMM − δ√
1 − δ2

, where

ϵMM is the mass mixing parameter. 14 From now on, I will use the new vertex.

There is also a DP-DM vertex (for Dirac DM with vector coupling & QX = 1)

∼ gXA
′
µχ̄γ

µχ (93)

which depends on the gauge coupling of the hidden U(1)X .

13DP is just like a massive photon, but with a suppressed coupling to SM fermions: the electric charge Qf is
suppressed by the small parameter ϵ.

14The absence of the factor cW in the literature is due to the fact that people often use the toy model where
they mix the Cµ boson with the photon field. In the realistic model, one has to mix the Cµ with the
hypercharge boson Bµ; the additional factor cW is to account for the difference between Bµ and the photon.
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DP decays at the tree level

Figure: DP decay. From https://arxiv.org/pdf/2005.01515.pdf.

▶ A′ → ℓ+ℓ−

▶ A′ → q̄q

▶ A′ → χ̄χ
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DP decay width

The dark photon leptonic decay width is

Γ(A′ → l+l−) = mA′

12π

√
1 − 4

m2
l

m2
A′

(
1 + 2 m

2
l

m2
A′

)
(ϵeQl)2, (94)

For DM, just replace ml with mχ, and (ϵeQl) with gχ.

The hadronic decay width can be computed by

Γ(A′ → hadrons) = Γ(A′ → µ+µ−)R(m2
A′), (95)

where
R(m2

A′) ≡ σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

takes into account the effects of the dark photon mixing with the QCD vector mesons and can
be taken from PDG.
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DP decays at 1-loop

Figure: DP decay to 3 photons via a 1-loop process.

The decay width of (A′ → 3γ) 15
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15Liu & Miller, https://arxiv.org/pdf/1705.01633.pdf.
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Visible DP versus invisible DP

DP can be categorized into 2 types:

▶ Visible DP: easy to detect
▶ Invisible DP: difficult to detect

Because typically ϵeQf ≪ gχ, if mA′ > 2mχ, one has Γ(A′ → χ̄χ) ≫ Γ(A′ → f̄f), and DP
decay predominately into DM final state. =⇒ Invisible DP

On the other hand, if mA′ < 2mχ, DP can only decay into SM final states. =⇒ Visible DP

[54/64]
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DP decay BR (visible decays only)
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Figure: DP decay BR. From https://arxiv.org/pdf/1912.00422.pdf.

BR is independent
of ϵ.
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DP production

Figure: DP production. From https://arxiv.org/pdf/2005.01515.pdf.

▶ Bremsstrahlung
e−Z → e−ZA′

▶ Annihilation
e−e+ → γA′

▶ Meson decay
M → γA′

▶ Drell-Yan
q̄q → A′ → f̄f(χ̄χ)

[56/64]
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Accelerator searches for dark photon

⋄ Fabbrichesi, Gabrielli, Lanfranchi, https://arxiv.org/pdf/2005.01515.pdf. (DP review)
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DP above MeV (visible)

Two kinds experiments:

▶ colliders
▶ fixed target or beam dump

Signatures: resonance (reconstruction of f̄f in the FS)
▶ collider: prompt vertex or slightly displaced vertex

sensitive to relatively large ϵ (ϵ > 10−3) and DP mass
▶ beam dump: highly displaced vertex

sensitive to relatively small ϵ (10−7 ≲ ϵ ≲ 10−3) in the low mass range (less than few GeV)

This can be easily understood by looking at the decay distance

L = γvτA′ = γv/ΓA′ ∝ γv
1

mA′ϵ2
(97)

where in the last step we have assumed visible decays only.
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Existing limits on the massive DP for mA′ > 1 MeV (visible)
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Figure: From https://arxiv.org/pdf/2005.01515.pdf.

di-lepton searches at experiments at

▶ collider/fixed target: A1, LHCb,
CMS, BaBar, KLOE, and
NA48/2

▶ old beam dump: E774, E141,
E137, ν-Cal, and CHARM.

Other limits:
▶ supernovae
▶ (g − 2)e
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Projections on the massive DP for mA′ > 1 MeV (visible)
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Existing limits on the massive DP for mA′ > 1 MeV (invisible)
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Invisible limits:

▶ Kaon decay experiments (E787,
E949, NA62)

▶ BaBar
▶ NA64(e)

Others:
▶ (g − 2)µ

▶ (g − 2)e
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Projections on the massive DP for mA′ > 1 MeV (invisible)
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Astro/cosmo probes to dark photon

⋄ Fabbrichesi, Gabrielli, Lanfranchi, https://arxiv.org/pdf/2005.01515.pdf. (DP review)
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Current limits on the massive DP for mA′ < 1 MeV
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Figure: From https://arxiv.org/pdf/2005.01515.pdf.

Bounds:

▶ CMB: COBE/FIRES
▶ Coulomb
▶ Light through a wall (LSW)
▶ CROWS
▶ DP from the Sun: CAST,

XENON10, SHIPS
▶ Rydberg
▶ Nuclear reactor: TEXONO
▶ Stellar: solar lifetime (SUN-T

and SUN-L), red giants (RG),
horizontal branches (HB)

▶ Supernova (another stellar):
above MeV

▶ DPDM

[64/64]
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