

第二届核子三维结构研讨会暨第二届高扭度核子结构研讨会 青岛,2024年10月17日至20日

Electron-ion collider in China (EicC)

Jinlong Zhang (张金龙)

Shandong University & SCNT IMP On behalf of the EicC working group

Lepton scattering: an ideal tool

Modern "Rutherford Scattering" Experiment

- Start from unpolarized fixed targets
- Extended unpolarized collider experiments
- and polarized fixed-target experiments

Need polarized electron-ion collider

- High luminosity: 100~1000 × HERA lumi.
- High polarization: both electron and ion beams
- Large acceptance: nearly full detector coverage

Questions expecting electron-ion colliders to answer

Does gluon saturate at high energy? How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?

How do the nucleon properties (mass & spin) emerge from their interactions?

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

Proposed electron-ion colliders (incomplete list)

Proposed electron-ion colliders (incomplete list)

HIAF - High Intensity heavy-ion Accelerator Facility

- Funded 2.5 billion RMB, under construction
- for atomic physics, nuclear physics, applied research in biology and material science etc.
- Upgrades to EicC taken into consideration during the design stage

HIAF - High Intensity heavy-ion Accelerator Facility

HIAF - High Intensity heavy-ion Accelerator Facility

Picture in May 2024Deliver the first heavy ion beam in 2025

Layout of Electron-ion Collider in China

- 2 interaction regions
- 3.5 GeV (e) x 20 GeV (p)

EicC white-paper

Published in the Frontiers of Physics Journal (open access)

100+ physicists from 46 institutes

Frontiers Journals	希 Home	Journals	Subscription	Open access	Editorial policy	About us		Sign in
Frontiers o	f							
Physi	ics				Title / Autho	r / Abstract / Keywords / DOI / A	ffiliation	Adv search
Atomic, molecular, optical phys	ics, condense	d matter, mat	erials physics, pa	article, nuclear pl	hysics			
About the journal	Br	owse	Co	llections	Video colle	ctions Author	rs & reviewers	

Front. Phys. >> 2021, Vol. 16 >> Issue (6) : 64701. DOI: 10.1007/s11467-021-1062-0

REPORT

Electron-ion collider in China

Daniele P. Anderle¹, Valerio Bertone², Xu Cao^{3,4}, Lei Chang⁵, Ningbo Chang⁶, Gu Chen⁷, Xurong Chen^{3,4}, Zhuojun Chen⁸, Zhufang Cui⁹, Lingyun Dai⁸, Weitian Deng¹⁰, Minghui Ding¹¹, Xu Feng¹², Chang Gong¹², Longcheng Gui¹³, Feng-Kun Guo^{4,14}, Chengdong Han^{3,4}, Jun He¹⁵, Tie-Jiun Hou¹⁶, Hongxia Huang¹⁵, Yin Huang¹⁷, KrešImir KumeričKi¹⁸, L. P. Kaptari^{3,19}, Demin Ll²⁰, Hengne Li¹, Minxiang Li^{3,21}, Xueqian Li⁵, Yutie Liang^{3,4}, Zuotang Liang²², Chen Liu²², Chuan Liu¹², Guoming Liu¹, Jie Liu^{3,4}, Liuming Liu^{3,4}, Xiang Liu²¹, Tianbo Liu²², Xiaofeng Luo²³, Zhun Lyu²⁴, Boqiang Ma¹², Fu Ma^{3,4}, Jianping Ma^{4,14}, Yugang Ma^{4,25,26}, Lijun Mao^{3,4}, Cédric Mezrag², Hervé Moutarde², Jialun Ping¹⁵, Sixue Qin²⁷, Hang Ren^{3,4}, Craig D. Roberts⁹, Juan Rojo^{28,29}, Guodong Shen^{3,4}, Chao Shi³⁰, Qintao Song²⁰, Hao Sun³¹, Paweł Sznajder³², Enke Wang¹, Fan Wang⁹, Qian Wang¹, Rong Wang^{3,4}, Ruiru Wang^{3,4}, Taofeng Wang³³, Wei Wang³⁴, Xiaoyu Wang²⁰, Xiaoyun Wang³⁵, Jiajun Wu⁴, Xinggang Wu²⁷, Lei Xia³⁶, Bowen Xiao^{23,37}, Guoqing Xiao^{3,4}, Ju-Jun Xie^{3,4}, Yaping Xie^{3,4}, Hongxi Xing¹, Hushan Xu^{3,4}, Nu Xu^{3,4,23}, Shusheng Xu³⁸, Mengshi Yan¹², Wenbiao Yan³⁶, Wencheng Yan²⁰, Xinhu Yan³⁹, Jiancheng Yang^{3,4}, Yi-Bo Yang^{4,14}, Zhi Yang⁴⁰, Deliang Yao⁸, Zhihong Ye⁴¹, Peilin Yin³⁸, C.-P. Yuan⁴², Wenlong Zhan^{3,4}, Jianhui Zhang³⁴, Jianog Zhang²², Pengming Zhang⁴⁴, Yifei Zhang³⁶, Chao-Hsi Chang^{4,14}, Zhenyu Zhang⁴⁵, Hongwei Zhao^{3,4}, Kuang-Ta Chao¹², Qiang Zhao^{4,46}, Yuxiang Zhao^{3,4}, Zhengguo Zhao^{3,4}, Jian Zhou²², Xiang Zhou⁴⁵, Xiaorong Zhou^{3,6}, Bingsong Zou^{4,14}, Liping Zou^{3,4}

Highlighted physics topics

1D spin structure of nucleon

3D and 2+1D tomography of nucleon

Partonic structure of nucleus

Proton mass

Exotic hadron states

Quark

Energy

33%

Trace

Anomaly

22%

hadronic molecule glueball

Quark

Mass

11%

Gluon

Energy

34%

1D spin structure of nucleon

NLO EicC SIDIS projection:

- Pion(+/-), Kaon(+/-)
- ep: 3.5 GeV x 20 GeV
- eHe-3: 3.5 GeV x 40 GeV
- Pol.: e(80%), p(70%), He-3(70%)
- Lumi: ep 50 fb⁻¹, eHe-3 50 fb⁻¹
- Significantly reduce uncertainties of spin contribution from the sea

$$\langle S_p \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$$

Jaffe-Manohar 1990

 $\Delta \Sigma$ Quark spin ΔG gluon spin

 $L_{q,g}$ Orbital angular momentum

D. Anderle, T. Hou, H. Xing, M. Yan, C. -P. Yuan, Y. X. Zhao, JHEP08, 034 (2021)

3D spin structure at momentum space

Access to quark Sivers function, especially the strange quark Sivers via SIDIS

LO analysis of EicC projection

- Pion(+/-), Kaon(+/-)
- ep: 3.5 GeV x 20 GeV
- eHe-3: 3.5 GeV x 40 GeV
- Lumi: ep 50 fb-1, eHe-3 50 fb-1
- Stat. Error vs Sys. Error

2+1 structure at momentum+spatial space

- Spatial distribution of partons encoded in GPDs
- GPD is related to quark angular momentum [Ji, 95]
- Access to GPDs via exclusive reactions DVCS, DVMP, etc
- Flavor separation and sea quark GPD in DVMP

Extraction of CFF with neutral network methods [Kumericki, 19]

Polarized beam, unpolarized target (SSA)

Understanding Proton Mass

Mass decomposition [Ji, 95]

$$M = M_q + M_m + M_g + M_a$$

 $egin{aligned} M_q &: ext{quark energy} \ M_m &: ext{quark mass (condensate)} \ M_g &: ext{gluon energy} \ M_a &: ext{trace anomaly} \end{aligned}$

- M_q and M_g : constrained by PDFs
- M_m via πN scattering
- $M_a\,$ via threshold production of J/ψ (8.2 GeV, JLab) and Υ (12 GeV)
- Threshold requires low CoM energy (low y at EIC)
- Complementarity between EicC (and EIC) and Lattices.

Partonic structure of nucleus

- Use heavy nuclei to study parton energy loss in cold nuclear medium
- Hadronization inside and outside medium. (Nucleus as a lab at the fm scale)
- Medium modification of light meson and heavy meson in SIDIS.
- Precision study of nuclear PDFs with heavy ion beams.

Exotic hadron states

Exotic hadrons

Exotic states	Production/decay processes	Detection efficiency	Expected events	
$P_c(4312)$	$\begin{array}{c} ep \rightarrow eP_c(4312) \\ P_c(4312) \rightarrow pJ/\psi \\ J/\psi \rightarrow l^+l^- \end{array}$	~30%	15-1450	
$P_{c}(4440)$	$\begin{array}{c} ep \rightarrow eP_c(4440) \\ P_c(4440) \rightarrow pJ/\psi \\ J/\psi \rightarrow l^+l^- \end{array}$	~30%	20-2200	
$P_c(4457)$	$\begin{array}{c} ep \rightarrow eP_c(4457) \\ P_c(4457) \rightarrow pJ/\psi \\ J/\psi \rightarrow l^+l^- \end{array}$	~30%	10-650	
$P_b(\text{narrow})$	$ep \rightarrow eP_b(\text{narrow})$ $P_b(\text{narrow}) \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+l^-$	~30%	0-20	
P_b (wide)	$ep \rightarrow eP_b(\text{wide})$ $P_b(\text{wide}) \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+l^-$	~30%	0-200	
$\chi_{c1}(3872)$	$ep \rightarrow e\chi_{c1}(3872)p$ $\chi_{c1}(3872) \rightarrow \pi^{+}\pi^{-}J/\psi$ $J/\psi \rightarrow l^{+}l^{-}$	~50%	0-90	
$Z_c(3900)^+$	$e p \rightarrow e Z_c (3900)^+ n$ $Z_c^+ (3900) \rightarrow \pi^+ J/\psi$ $J/\psi \rightarrow l^+ l^-$	~60%	90-9300	

- Complementary to e+e- and pp collisions.
- Larger acceptance, exotic hadrons produced at middle rapidity.
- Heavy-flavor exotic hadrons, in particular to charmonium-like states and hidden charm pentaquarks.
- Polarization helps to determine the quantum numbers.

Complementarity of US-EIC and EicC

R.G. Milner and R. Ent, Visualizing the proton 2022

Common physics goal:

- nucleon 1D, 3D spin structure
- Nucleon mass origin
- Nuclear environment effect

Complementary QCD phase space:

- US-EIC: small-x gluon dominated region; saturation behavior; etc.
- EicC: moderate x sea quark region; exotic hadron states, especially those with heavy flavor quark contents; etc

EicC detector design

- Hermetic detector, low mass inner tracking, good PID (e and π/K/p) in wide range, calorimetry
- Moderate radiation hardness requirements, low pile-up, low multiplicity.

Tracking: Silicon + MPGD

Physics requirements for EicC tracking

Assume B ~ 1.5 T

- Barrel (-1 < η < 1.6): $\sigma(p)/p \sim 1\%$ @ 1GeV
- e-endcap (-3 < η < -1): $\sigma(p)/p \sim 2\%$ @ 1GeV
- h-endcap (1.6 < η < 3): $\sigma(p)/p \sim 2\%$ @ 1GeV

Silicon detector conceptual design

- Reduced Material budget is ~0.26%
- Optimal Pixel size: 10 to 20 mircon
- Thickness: 50 micron

PID detectors: ToF + DIRC + RICH

PID design concept:

- Barrel region: DIRC+TOF
- Backward e-Endcap: mRICH
- Forward ion-Endcap: dRICH

PID momentum coverage:

- <6 GeV/c at Barrel</p>
- <4 GeV/c at e-Endcap;
- <15 GeV/c at ion-Endcap

Calorimeter system: Shashlik + Csl crystal

General EMCal requirement:

- E-endcap: energy resolution, $2.5\%/\sqrt{E}$
- Barrel: good angle resolution, $5.0\%/\sqrt{E}$
- Ion-endcap: angle resolution, $5.0\%/\sqrt{E}$

	EMC	type	z/r[m]	Length[cm], X ₀	Coverage[cm]	pseudorapidit y	Tower size
	e-endcap	Csl/crystal	Z=-1.5	30, 16X ₀	15.0 <r<128< th=""><th>(-3.0, -1.0)</th><th>4.0*4.0(front)</th></r<128<>	(-3.0, -1.0)	4.0*4.0(front)
EicC	barrel	Shashlik	R=0.9	45, 16X ₀	-105.8 <z<187.5< th=""><th>(-1.0, 1.5)</th><th>4.0*4.0</th></z<187.5<>	(-1.0, 1.5)	4.0*4.0
	lon-endcap	Shashlik	Z=2.4	45, 16X ₀	24.0 <r<113< th=""><th>(1.5, 3.0)</th><th>(front)</th></r<113<>	(1.5, 3.0)	(front)

EicC organization

Software:EicCRoot

Computing (at SCNU):

Southern Nuclear Science Computing Center

Towards to the Conceptual Design Report

Physics

Accelerator

1) EicC Accelerators	1) 1D spin	1) Vertexing + tracking
2) Ion Sources	2) 3D spin (TMDs + GPDs)	2) PID
3) Ion Machine	3) Exotic states	3) Calorimetry
5) Electron Machine	4) EHM and proton mass	4) IR + Magnet
5) Polarization	5) Nuclei	5) Luminosity and polarimetry
6) Electron cooling	6) LQCD	6) Forward detector
7) IR	7) DSE	7) DAQ
8) Common System	8) New ideas	8) Simulations
		Software: EicCRoot
EicC CDR Volume I	EicC CDR	Volume II

Detector

Timeline

HIAF construction is near complement Finishing EicC Conceptual Design Report

Summary

Electron-ion collider in China — EicC

- Focused on sea-quark/gluon at moderate/large-x region
- Complements EICs at higher energies

Conceptual design report by 2024

- Geant4 simulations and detector R&D
- More physics topics under development

Frontiers of Physi	ISSN 2095-0462 Volume 16 • Number 6 December 2021
	33
Polarized Electron Ion	Collider in China (EicC) 🖉 Springer

Summary

Electron-ion collider in China — EicC

- Focused on sea-quark/gluon at moderate/large-x region
- Complements EICs at higher energies

Conceptual design report by 2024

- Geant4 simulations and detector R&D
- More physics topics under development
 Welcome to join us !

Frontiers of ISSN 2095-0462 Volume 16 • Number 6 December 2021
Polarized Electron Ion Collider in China
(EicC)

Thanks for your attention!

