Study of gluon GPDs via vector meson production in ep scattering

Ya-Ping Xie

Institute of Modern Physics, CAS
Collaborated with S. V. Goloskokov and Xurong Chen
Based on arXiv: 2408.05800

Oct 19th, 2024

Outline

This slide focus on the gluon GPDs to study vector meson production. It contains follow sections:

- Introduction to GPDs
- Theoretical frame of vector meson production using GPDs method
- Differential cross section of J/ψ in GPDs method
- Asymmetry in J/ψ production in ep scattering
- Summary

Introduction to GPDs

Generalized Parton Distributions (GPDs) can be extracted from deep virtual Compton Scattering (DVCS), Time-like Compton Scattering (TCS) and Hard Exclusive Meson Production (HEMP) processes. GPDs can be employed to study

- Spin puzzle
- Energy Momentum tensor
- Mass radius, distributions and pressure

Quark helicity conservation distributions

The quark helicity conservation distributions go with the Dirac matrix γ^+ and $\gamma^+\gamma_5$, where i=1,2 is a transverse index, it is defined as[EPJC-19-485]

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p', \lambda' | \bar{\psi}(-\frac{1}{2}z) \gamma^{+} \psi(\frac{1}{2}z) | P, \lambda \rangle |_{z^{+}=0, z_{T}=0}$$

$$= \frac{1}{2P^{+}} \bar{u}(p', \lambda') \left[H^{q} \gamma^{+} + E^{q} \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2m} \right] u(p, \lambda). \tag{1}$$

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p', \lambda' | \bar{\psi}(-\frac{1}{2}z) \gamma^{+} \gamma_{5} \psi(\frac{1}{2}z) | P, \lambda \rangle |_{z^{+}=0, z_{T}=0}$$

$$= \frac{1}{2P^{+}} \bar{u}(p', \lambda') \left[\widetilde{H}^{q} \gamma^{+} \gamma_{5} + \widetilde{E}^{q} \frac{\gamma_{5} \Delta^{+}}{2m} \right] u(p, \lambda). \tag{2}$$

 H^q , E^q , \widetilde{H}^q and \widetilde{E}^q are quark helicity conservation distributions.

Gluon GPD

The gluon GPD have four parts of GPDs

$$\langle p'v'|\sum_{a,a'}A^{a\rho}(0)A^{a'\rho'}(\bar{z})|pv\rangle$$

$$= \frac{1}{2}\sum_{\lambda=\pm 1}\varepsilon^{\rho}(k_{g},\lambda)\varepsilon^{*\rho'}(k_{g},\lambda')$$

$$\times \int_{0}^{1}\frac{dx}{(x+\xi-i\varepsilon)(x-\xi+i\varepsilon)}e^{-i(x-\xi)p\cdot\bar{z}}$$

$$\times \left\{\frac{\bar{u}(p'v')\eta'u(pv)}{2\bar{p}\cdot n}H^{g}(x,\xi,t) + \frac{\bar{u}(p'v')i\sigma^{\alpha\beta}n_{\alpha}\Delta_{\beta}u(pv)}{4m\bar{p}\cdot n}E^{g}(x,\xi,t) \right.$$

$$\left. + \lambda\frac{\bar{u}(p'v')\eta'\gamma_{5}u(pv)}{2\bar{p}\cdot n}\widetilde{H}^{g}(x,\xi,t) + \lambda\frac{\bar{u}(p'v')n\cdot\Delta\gamma_{5}u(pv)}{4m\bar{p}\cdot n}\widetilde{E}^{g}(x,\xi,t) \right\}.$$

Sum rules of GPDs

GPD connects parton distribution via H(x,0,0) = xf(x). Hadron Form factor can be obtain from GPDs

$$\int dx H^{q}(x,\xi,t) = F_{1}^{q}(t), \qquad \int dx E_{q}(x,\xi,t) = F_{2}^{q}(t); \tag{4}$$

$$\int dx \tilde{H}^q(x,\xi,t) = G_A^q(t), \qquad \int dx \tilde{E}^q(x,\xi,t) = G_p^q(t). \tag{5}$$

Ji sum rules for the proton angular memonta

$$\int x dx (H^q(x,\xi,0) + E^q(x,\xi,0) = 2J^q.$$
 (6)

 $J_q = \frac{1}{2}\Delta q + L_q$. L_q is key quantity to solve the spin puzzle.

Heavy vector meson production diagram

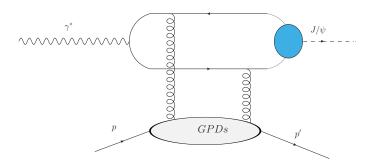


Figure 1: Typical diagram of heavy vector meson in photon-proton scattering.

Dipole model

Dipole model is employed to calculate vector mesons production in ep scattering. There are several models of the dipole amplitudes models, for example, IIM, IPsat, BGBK model. [PRD-74-074016 et al]

- Dipole model is valid in x_B < 0.01 region
- ullet It didn't consider the the skewness of the ξ effect
- It can not calculate the asymmetries of the vector mesons production

Differential cross sections of vector mesons

The longitudinal and transversal differential cross sections as functions of |t| and total cross sections of heavy vector meson in photon-proton scattering as function of W and Q² are calculated as

$$\frac{d\sigma_T}{dt} = \frac{1}{16\pi W^2 (W^2 + Q^2)} \left[|\mathcal{M}_{++,++}|^2 + |\mathcal{M}_{+-,++}|^2 \right],\tag{7}$$

$$\frac{d\sigma_L}{dt} = \frac{Q^2}{m_V^2} \frac{d\sigma_T}{dt};\tag{8}$$

$$\frac{d\sigma}{dt} = \frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt}.$$
 (9)

Differential cross section of vector mesons

The gluon contribution to light vector meson electroproduction within GPD approach were calculated in [EPJC-42-281]. The helicity conservation amplitude of heavy vector meson production is given as

$$\mathcal{M}_{\mu'+,\mu+} = \frac{e}{2} C_V \int_0^1 \frac{dx}{(x+\xi)(x-\xi+i\varepsilon)} \times \left\{ \mathcal{H}_{\mu',\mu}^{V+} H_g(x,\xi,t,\mu_F) + \mathcal{H}_{\mu',\mu}^{V-} \tilde{H}_g(x,\xi,t,\mu_F) \right\}.$$
(10)

While the helicity flip amplitude can be written as

$$\mathcal{M}_{\mu'-,\mu+} = -\frac{e}{2} C_V \frac{\sqrt{-t}}{2m} \int_0^1 \frac{dx}{(x+\xi)(x-\xi+i\varepsilon)} \times \left\{ \mathcal{H}_{\mu',\mu}^{V+} E_g(x,\xi,t,\mu_F) + \mathcal{H}_{\mu',\mu}^{V-} \tilde{E}_g(x,\xi,t,\mu_F) \right\}. \tag{11}$$

Here the amplitudes $\mathscr{H}^{V\pm}_{\mu',\mu}$ are determined as a sum and differences of amplitudes with different gluon helicities.

$$\mathscr{H}^{V\pm}_{\mu',\mu} = \left[\mathscr{H}^{V}_{\mu'+,\mu+} \pm \mathscr{H}^{V}_{\mu'-,\mu-} \right],\tag{12}$$

Scattering amplitudes

There are 6 feynman diagrams of $\gamma + p \rightarrow V + p$. We must calculate the sum of feynman amplitudes of them

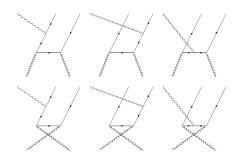


Figure 2: 6 feynman diagrams of $\gamma + g \rightarrow V + g$

Scattering amplitudes

To calculate hard scattering amplitude we consider six gluon Feynman diagrams. After a length calculations, the hard amplitude can be cast into

$$\mathscr{H}^{V\pm}_{\mu',\mu}(x,\xi) = 64\pi^2 \alpha_s(\mu_R) \int_0^1 d\tau \int \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \psi(\tau, \mathbf{k}_{\perp}) \mathscr{F}^{\pm}_{\mu',\mu}(\tau, x, \xi, \mathbf{k}_{\perp}^2).$$
 (13)

Here τ and $1-\tau$ are the fraction of longitudinal part of quark (antiquark) momenta incoming to the meson wave function, \mathbf{k}_{\perp} is there transverse part. The k-dependent wave function of the vector meson is written as

$$\psi(\tau, \mathbf{k}_{\perp}) = a_{\nu}^2 f_{\nu} \exp\left(-a_{\nu}^2 \frac{\mathbf{k}_{\perp}^2}{\tau(1-\tau)}\right). \tag{14}$$

Here f_v is a J/ψ decay constant, the parameter a_v is fixed from the best fit J/ψ cross section and determine the average value of $\langle \mathbf{k} \rangle_{\perp}^2$.

Hard part of scattering amplitude in J/ψ production

For $\tau = 1/2$, the hard part of the amplitude can be written as

$$\mathscr{F}_{\mu',\mu}^{\pm} = \frac{f_{\mu',\mu}^{\pm}}{denominator} \tag{15}$$

denominator =
$$(2\mathbf{k}_{\perp}^2 + m_V^2 + Q^2)(4\xi\mathbf{k}_{\perp}^2 + (m_V^2 + Q^2)$$

 $(\xi - x) + i\varepsilon)(4\xi\mathbf{k}_{\perp}^2 + (m_V^2 + Q^2)(\xi + x))$ (16)

For longitudinal and transverse helicity conservation amplitudes $f_{\mu,\mu}^+$ have a form

$$f_{00}^{+} = -64\sqrt{Q^2}(m_V^2 + Q^2)^2(x^2 - \xi^2),$$
 (17)

$$f_{11}^+ = 64m_V(m_V^2 + Q^2)^2(x^2 - \xi^2).$$
 (18)

Here we omit k dependent terms. For the $f_{\mu,\mu}^-$ which contains \tilde{H} contribution, we find that

$$f_{11}^{-} = -256(m_V^2 + Q^2)\mathbf{k}_{\perp}^2 m_V x \xi, \ f_{00}^{-} = 0.$$
 (19)

GPDs function definitions

The GPDs are constructed adopting the double distribution representation

$$F(x,\xi,t) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \delta(\beta + \xi \alpha - x) f_g(\beta,\alpha,t), \qquad (20)$$

F with PDFs h via the double distribution functions $f_i(\beta, \alpha, t)$. For gluon double distribution functions, it is

$$f_g(\beta, \alpha, t) = e^{-b_V t} h_i(\beta, \mu_F) \frac{15}{16} \frac{[(1 - |\beta|)^2 - \alpha^2]^2}{(1 - |\beta|)^5}.$$
 (21)

The *t*- dependence in PDFs $h(\beta, \mu_F)$ is the fitted from conlinear PDF (CT18NLO, NNPDF, ABMP)

Ratio of the Re and Im of the amplitude

We can show the ratio of the Re and Im of the amplitudes.

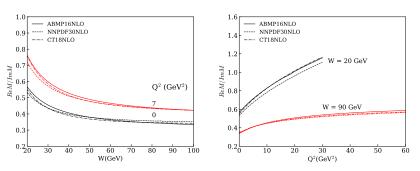


Figure 3: Ratio of *ReM/ImM* parts of J/ψ amplitudes at fixed W vs Q².

J/ψ production at different |t|

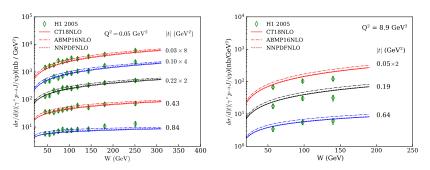


Figure 4: J/ψ differential cross section as a function of W at different |t|. The H1 experimental data are from EPJC-46-585.

J/ψ production at different |t|

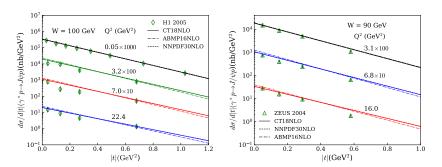


Figure 5: J/ψ differential cross section vs |t| at fixed W and different Q^2 . The HERA experimental data are from from NPB-695-3 and EPJC-46-585. Cross sections are scaled by the factor shown in the graph.

J/ψ production at different Q²

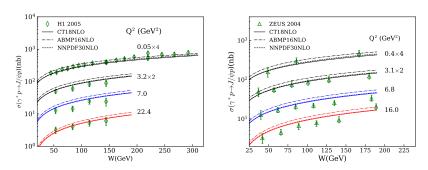


Figure 6: J/ψ total cross section vs W at different Q^2 comparing with the HERA experimental data are taken from NPB-695-3 and EPJC-46-585.

J/ψ production at different Q²

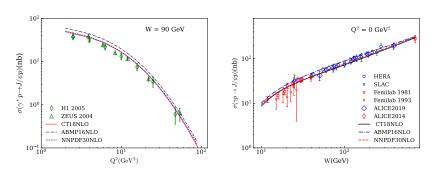


Figure 7: J/ψ total cross section vs Q^2 at HERA energy W = 90 GeV (left graph) and at Q^2 = 0 GeV² vs W from low to very high energies(right graph). The experimental data are taken from EPJC-24-345 et al

A_{LL} asymmetry in VM production

In heavy vector meson production, some asymmetries can be adopted to constrain the GPD functions. Initial state helicity correlations A_{LL} can be measured with longitudinally polarized beam and target. It can be expressed in terms of helicity amplitudes as Ref.[EPJC-42-281].

$$A_{LL}(ep \to epV) = \frac{\sqrt{1-\varepsilon^2}}{32\pi W^2(W^2 - Q^2)} \frac{|\mathcal{M}_{++,++}|^2 - |\mathcal{M}_{-+,-+}|^2}{\varepsilon d\sigma_L/dt + d\sigma_T/dt}$$

$$= 2\sqrt{1-\varepsilon^2} \frac{\text{Re}[\mathcal{M}_{++,++}^H \mathcal{M}_{++,++}^{\tilde{H}*}]}{\varepsilon |\mathcal{M}_{0+-0+}^H|^2 + |\mathcal{M}_{++,++}^H|^2}. \tag{22}$$

It can be seen that A_{LL} can be used to study property of polarized GPDs \tilde{H} of gluon.

A_N and A_{LS}

On the other hand, the single spin asymmetry A_N can be also measured at heavy vector meson production. For the photoproduction case when the longitudinal amplitude can be omitted the A_N asymmetry can be written as [PRD-85-051502].

$$A_N(ep \to epV) = -\frac{2\text{Im}[\mathcal{M}_{++,++}^H \mathcal{M}_{+-,++}^{E*}]}{|\mathcal{M}_{++,++}^H|^2 + |\mathcal{M}_{+-,++}^E|^2}.$$
 (23)

The double spin asymmetry A_{LS} the proton beam is longitudinally polarized, and the outgoing nucleon is transversely polarized (in the reaction plane, "sideways") can be obtained via amplitudes [PRD-85-051502].

$$A_{LS}(ep \to epV) = \frac{2\text{Re}[\mathcal{M}_{++,++}^H \mathcal{M}_{+-,++}^{E*}]}{|\mathcal{M}_{++,++}^H|^2 + |\mathcal{M}_{+-,++}^E|^2}.$$
 (24)

Asymmetries of J/ψ in ep scattering

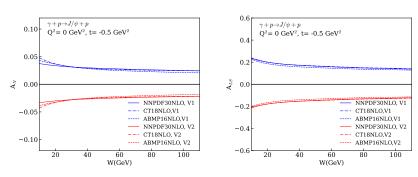


Figure 8: J/ψ single spin asymmetry A_N and double spin asymmetry A_{LS} versus W at $Q^2 = 0$ GeV².

Asymmetries of J/ψ in ep scattering

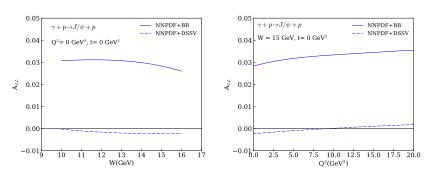


Figure 9: Helicity correlation A_{LL} of J/ψ at different Q² and W.

Summary

We can conclude following conclusions:

- GPDs method can be employed to perform heavy vector mesons production in ep scattering.
- Asymmetries can be obtained via GPDs methods in ep scattering.
- Results of this work can be applied in future EicC experiments to give additional essential constraints on transversity GPDs at EicC energies range.
- EicC will be good perform to study gluon GPDs adopting vector mesons at the future.

The End

Thanks for your attentions !