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2016 Nobel Prize in Physics	

Popular Information  

Title:  Strange Phenomena in Matter’s flatland 

“Together, they (Thouless and Kosterlitz) took on the problem of phase 
transitions in the flatlands (the former out of curiosity, the latter out of 
ignorance, they themselves claim).”   

“…an entirely new understanding of phase transitions, which is regarded as 
one of the twentieth century’s most important discoveries in the theory of 
condensed matter physics.”—BKT phase transition 

“The wonderful thing…is that it can be used for different types of materials—
the KT transition is universal…The theory…also confirmed experimentally.” 



2016 Nobel Prize in Physics	

Advanced Information 

Title:  Topological Phase Transitions and Topological Phases of Matter 

“In 1972 J. Michael Kosterlitz and David J. Thouless identified a completely 
new type of phase transition in two-dimensional systems where topological 
defects play a crucial role [35, 36]. Their theory applied to certain kinds of 
magnets and to superconducting and superfluid films, and has also been very 
important for understanding the quantum theory of one-dimensional systems 
at very low temperatures.”   

Goal of this lecture is to address 

(1) What is the Berezinskii-Kosterlitz-Thouless phase transition? 
(2) What is the superfluidity? 

“This insight has provided an important link between statistical mechanics, 
quantum many-body physics and high-energy physics, and these fields now 
share a large body of theoretical techniques and results.”   



•   Phase transition in high-dimensional XY model  

Outline	


ü  Ginzburg-Landau mean-field theory 

•   Berezinskii-Kosterlitz-Thouless phase transition  
ü  Wegener’s model (Gaussian model) 
ü  Topological excitation and BKT phase transition  
ü  Nelson-Kosterlitz relation (universal jump in superfluid density) 
ü  Renormalization group analysis 

•  What is superfluidity 
ü  Hallmarks of superfluidity 
ü  Two questions—on its relation to BEC/excitation spectrum 

•   Monte Carlo simulation in three and two dimensions 



Phase Transition  
in High-Dimensional XY Model  



Emergent matter state 

few particles 

1023 particles  

QED 

More is different!  Each hierarchical level of science requires its own fundamental 
principles for advancement.                                                            —— P. W. Anderson 

Statistical Mechanics 
Condensed Matter Physics 

Emergent Phenomena 



Universal properties! 

Emergent Phenomena 

Emergent scale invariance at 2nd-order phase transition  

Universality of Criticality. Critical physics can be captured by a few parameters—  
symmetry of the order parameter, interaction range, and spatial dimensions 



Statistical Mechanics 

Statistical mechanics is to understand emergent (quantum) 
macroscopic matter state from microscopic interactions. Given 
a many-body Hamiltonian, the core task is to calculate 
partition sum 

Macroscopic matter state 

  
Z = Tre−H /kbT = pi

i
∑

•  gas, liquid, solid 



•  gas, liquid, solid 
•  magnetism  
    (ferromagnet, antiferromagnet…)  

Macroscopic matter state 

Statistical mechanics is to understand emergent (quantum) 
macroscopic matter state from microscopic interactions. Given 
a many-body Hamiltonian, the core task is to calculate 
partition sum 
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Statistical Mechanics 



•  gas, liquid, solid 
•  magnetism  
    (ferromagnet, antiferromagnet…) 
•  superfluidity, superconductivity… 
•  … 

Macroscopic matter state 

Statistical mechanics is to understand emergent (quantum) 
macroscopic matter state from microscopic interactions. Given 
a many-body Hamiltonian, the core task is to calculate 
partition sum 

  
Z = Tre−H /kbT = pi

i
∑

Statistical Mechanics 



Which macroscopic matter state? 

Statistical Mechanics 

  F = −kBT ln Z
Free energy  

  kB— Boltzmann constant  

The stable matter state at a given temperature T is determined 
by the minima of the free energy 

Energy-Entropy Competition/Balance  

Thermodynamic law  

-  At high T, “large entropy” dominates—gas, liquid, plasma 
-  At low  T,  “low   energy”  dominates—crystal, superfluid 

 F = E −TS
Thermodynamic relation  

  S = kB lnΩ
 E — internal energy   

— entropy   
Ω— number of microscopic configurations   



•  Spontaneous symmetry breaking 

The Ising model (1920) 

  
H = − σ iσ j

ij
∑     (σ = ±1)

  T ≫ Tc  T ≈ Tc

  T ≪Tc

Paramagnet Paramagnet 

Ferromagnet:  
an ordered state 
spontaneously 
breaking Z2 
symmetry 

Ising Model 

”Spontaneous symmetry breaking” is one of the most profound concepts in 
statistical mechanics and condensed-matter physics. 



The XY model 

XY Model 

   
H = − S

!"
i ⋅S
!"

j
ij
∑ = − cos(θ i −θ j )

ij
∑  θ

   S
!"
= (cosθ ,sinθ )

Partition sum  

-  At T=0, all spins point to the same direction — ferromagnet 
-  At T=infinite, each spin points to a random direction — paramagnet  

Question 
     Is there a critical temperature Tc>0 between ferromagnet and paramagnet?  

ü  U(1) symmetry: Hamiltonian remains unchanged if all the spins  
                               are rotated by fixed angle θ 

ü  Local order parameter:  
   
M
! "!

= 1
V

S
!"

i
i
∑  



Ginzburg-Landau mean-field theory 

XY Model 

Free energy density  

  ψ ≡ M
! "!

ü  Order parameter is just a complex number            . In the context of  
     superfluidity, n0 is the density of Bose-Einstein condensation 
ü  µ(T)  is chemical potential; λ>0 is for interaction 

Solution 

  
V (n0 ) = − µ

2
|ψ |2 + λ

2
|ψ |4           n0 =|ψ |2( )

 Reψ
 Imψ

 V

µ(T)<0, Ψ=0, paramagnet µ(T)>0, |Ψ|>0, ferromagnet 

Tc 



Mean-field (MF) theory of the XY model 
•  Ignore fluctuations that are crucial in low-dimensional systems  
•  For d>dc=4,  MF critical exponents are correct 
                           MF critical point are wrong 
•  For d=3,        MF critical exponents are correct 
                           MF critical point are wrong 
•  For d=2,        the topological BKT phase transition is  
                           beyond the Ginzburg-Landau mean-field scenario 

Complex field model of the XY model 

ü  Analytical calculation (1D) 
ü  Renormalization group analysis 
ü  Monte Carlo simulation 

Research tools 

XY Model 



Monte Carlo Simulation  
in Three and Two dimensions 



Schematic behavior  

Monte Carlo Simulation 

Two-point correlation function g(r) 

•  d=3  

g(r), d=3  

n0 —BEC density   

•  d=2 

  
g(r) =

c1e
−r /ξ         T > Tc

c2r
−η(T )       T ≤ Tc

⎧
⎨
⎪

⎩⎪

  g(r →∞) = 0ü  No BEC in 2D 

Schematic phase diagram of a 2D trapped 
weakly interaction Bose gas 

No spontaneous symmetry 
breaking for 2D XY model 

   
g(r) ≡ S

!"
0 ⋅S
!"

r =
c1e

−r /ξ         T > Tc

n0               T < Tc

⎧
⎨
⎪

⎩⎪



Topologically distinct configurations  

Vorticity 

  v = +1   v = 0

”Topologically distinct”— two configurations cannot be transformed into each other 
                                                by a continuous rotation of the spins. 

Monte Carlo Simulation 



Monte Carlo Simulation 
Illustration of MC simulation  

  v = +1

  v = −1

  d = 2, L = 32



Monte Carlo Simulation 
Illustration of MC simulation  

  v = +1

  v = −1

  d = 2, L = 128



Monte Carlo Simulation 
Illustration of MC simulation  

  v = +1

  v = −1

  d = 2, L = 128



Results of 2D and 3D XY model	


Probability distribution of magnetization in 3D 

  V = 83

316V =

332V =

2.0T = 2.1T = 2.2( )cT T= 2.3T = 2.4T =



Energy density 

Results of 2D and 3D XY model	


  
ε(T ) = 1

V
Utotal (T )



Specific heat 

Results of 2D and 3D XY model	


  
C(T ) = ∂ε(T )

∂T



BEC density 

Results of 2D and 3D XY model	


  
n0(T ) = 1

V 2 M 2
total (T )



Superfluid density ρs 

Results of 2D and 3D XY model	




Two-point correlation function 

Results of 2D and 3D XY model	


  
g(r) = ei(θ0−θr )

L=128 L=64 



Berezinskii-Kosterlitz-Thouless Phase Transition 
in the Two-Dimensional XY Model  



Wegner’s model (Gaussian model) 

Wegner’s model	


•  Hamiltonian of XY model 

  
H = −J cos(θ i −θ j )

ij
∑  

•  Wegner’s model (1967) 

ü  spin-wave excitation (gapless)  

Taylor expand till 2nd order & 
 ignore 2π-periodicity 

  
H = E0 −

J
2

(ϕ i −ϕ j )
ij
∑ 2

  ϕ ∈(−∞,+∞)

Lattice Fourier transform 

   
H = E0 −

J
2

ε k |ϕk |2
k
∑  

  
ε k =

k 2

2

ü  ideal gas (in momentum space) 



ü  No long-range order for D ≤ 2 
ü  Correlation function algebraically decays for any T≠ 0 in 2D 
     — algebraic order or quasi-long-range order 

Wegner’s model	




Wegner’s model	


ü  No BEC      for T≠0 in 2D and 1D   
     Yes                           in 2D harmonic trap 

ü  No crystal for T≠0  in 2D and 1D 
      Yes             for T=0 in 2D 
      No             for T=0 in 1D (quantum fluctuation) 

ü  …… 

Direct consequences   

Explaination 
It cost very little energy to induce long-range fluctuations which have 
enormous entropy and are free-energy-preferred  

Mermin-Wegner theorem 

In one and two dimensions, continuous symmetries cannot be spontaneously 
broken at finite temperature in systems with short-range interactions 



BKT phase transition in 2D	


Topological excitation and BKT transition 
Can U(1) nature (θ period) be ignored? 

•  Energy of a single vortex 

R 

  
Δθ = 1

R

  
EV = π J ln L

a ü  costive — logarithm of L 

•  Entropy of a vortex 

  
SV = 2kBln L

a

•  Free energy F=E-TS (energy-entropy balance)  

  
ΔF = π J − 2kBT( )ln L

a   
⇒  kBTc =

π J
2

BKT phase transition is “one of the 20th century’s most important discoveries in the 
theory of condensed matter physics”  
                                     —popular science background for Nobel Prize in Physics, 2016  

Vortex: a topological defect 

ü  also logarithm of L 



BKT phase transition in 2D	


ü  Energy of vortex-anti-vortex pair  
  
E = 2π J ln r

a

BKT phase transition 

ü  for T<Tc 

-  vortex pairs are bound (in order of lattice spacing) 
-  spin-wave excitations lead to “algebraic/quasi-long-range order” 
-  bound vortex pairs lead to renormalization of coupling K that determines 

critical exponent for the algebraic decay of correlation function 



BKT phase transition in 2D	


Vortex number per site N and its fluctuation XN in 2D XY model 



BKT phase transition in 2D	


Universal jump in superfluid density at Tc 

Nelson-Kosterlitz relation 

4He experiment Computer experiment 



BKT phase transition in 2D	


Basic idea: coarse-grain and integrate 
out degrees of freedom for vortex-
antivortex pairs of short distance 

Renormalization group analysis 

=t 

K K’ 

RG equation: 

y — fugacity of vortex 
t  — deviation ~(T-Tc) 
                    — RG scale    b = eℓ ≈1+ ℓ

ü  y=0 accounts for the “vacuum” states free of vortices, but with various Gaussian 
fluctuation modes  

ü  the vacuum is stable for t<0 (superfluid) and unstable for t>0 (normal fluid) 



What is Superfluidity 



Hallmarks of Superfludity 

In 4He-II 
In the BEC gas 

1.  Frictionless flow through narrow pores                                     (?) 
2.  Hess-Fairbank effect                                                                  ✓
3.  Persistent currents                                                                      (?) 
4.  Quantized circulation (vortices)                                                ✓ 
6.  Josephson effect                                                                        ✓ 
7.  …… 

•     Zero-temperature effects 

•    Finie-temperature (thermomechanical) effects 

1.  Superconductivity of heat/Counterflow 
2.  Fountain effect 
3.  Escaping from a Dewar 
4.  …… 



Frictionless flow below Tλ 

It took 20 years to discover “superfluidity” 

Hallmarks of Superfludity 

-  1908,                4He liquefied (Onnes) 

-  1911,                “supraconductivity” of mercury (Onnes) 
                            4He stops boiling below certain temperature (Onnes) 

-  1922,                peculiarity of specific heat (Dana, not published) 

-  1927-1937,       phase transition (Tλ=2.17K); heat-capacity anomaly, 
                            huge reduction of viscosity; “Supra-heat-conductivity” 
                            (Keesom, Misner, Allen…)  

-  1938,                Discovery of superfluidity (Kapitza; Allen and Misener) 

-  1938,                fountain effect (Allen and Jones) 



The helium below the λ-point 
enters a special state which 
might be called a ‘superfluid’ 

——P. Kapitsa (1937) 
λ-transition of Helium 4.  
W.H. Keesom and A.P. Keesom (1935) 

Liquid 4He stops boiling < 2.3K. 
J.C. McLennan et al. (1932) 

Hallmarks of Superfludity 
Frictionless flow below Tλ 



Hallmarks of Superfludity 
Hess-Fairbank effect and Persistent current 

Define  
   
ω c =

!
mR2 ≡ quantum unit of rotation (10-4  Hz for 1cm)

Hess-Fairbank effect 

Wall rotates with           ,   
liquid stationary 

Equilibrium Effect 

 ω ≤ω c

Persistent current 

Wall at rest,   
Liquid rotates with            ,  

Metastable Effect 
  ω ≫ω c



Hallmarks of Superfludity 
Quantized vortices 

ü  Theoretical predictions of vortices in superfluid (1948, 1955), 
and superconductor (Abrikosov 1957) 

Varmchuk et al. 1979 

Vortices in ultracold atomic gases 

ENS, 2000 MIT, 2001 MIT, 2005 JILA, 1999 



Hallmarks of Superfludity 
Quantized vortices 

ü  USTC: 6Li-41K supercluid mixture 



Hallmarks of Superfludity 

ü  USTC: 6Li-41K supercluid mixture 

Vortex lattice  in single-species superfluid  

Quantized vortices 



Hallmarks of Superfludity 

ü  USTC: 6Li-41K supercluid mixture 

Vortex lattice in two-species superfluid 

Quantized vortices 



Hallmarks of Superfludity 
Vortex ring in 3D and its metastability 

A sidedish (superlink) — Crazy pool vortex 

ü  In 3D, vortices have to form a closed ring or an open chain ending 
at the surface. 

ü Vortices, vortex-rings and persistent currents are metastable due to 
angular momentum.  

ü Unlike classical analogue, quantum vortex has quantized angular 
momentum 



What is Superfludity? 
Mordern view of superfluidity: emergent constant of motion 

Superfluid is a natural low-T state of a classical complex-valued matter field, 
arising from an emergent constant of motion—i.e., topological order 

   ψ (!r ) = ψ (!r ) eiΦ( !r )
Complex matter field:  

   
!vs = γ  ∇Φ     (γ ="/m)Superfluid velocity field: 

Emergent constant of motion: quantized circulation 

ü  leads to superfluidity 

ü  can be destroyed only by topological defects 
(vortices) 



Back to Einstein at 1924-1925 
Bose-Einstein statistics for an ideal bosonic system 
•  Single-particle phase space (µ-space):   

  
(x, y, z,kx ,ky ,kz )

Phase-space cell: 
  
δ xδ yδ zδ kxδ kyδ kz = h3

•  Occupation number in each phase-space cell 

  
f = 1

eβ (ε−µ ) −1
— for photons/phonon:    ε = ck = !ω ,µ = 0
— for massive bosons:    ε = k 2 / 2m,µ ≤ 0

•  For low T, one has           and            for small-k motions, the classical 
matter-field description is valid; No BEC (macroscopic occupation) or 
superfluidity (topological order) is requested. 

 µ→ 0−
   f ≫1

•  Bose-Einstein condensation 

  T < Tc :    fk=0 / N > 0 A macroscopic number of atoms condense into 
the quantum state of the lowest momentum. 

Thermal wavelength               , BEC is a matter field   λT ≫ d    ψ (!r ) = ψ (!r ) eiΦ( !r )



Back to Einstein at 1924-1925 

“One can assign a scalar wave field to such a gas… It looks like there would be 
an undulatory field associated with each phenomenon of motion, just like the 
optical undulatory field is associated with the motion of light quanta.” 

ü  Einstein’s classical-field idea for quantum gas was forgotten for tens 
of years, probably due to the advent of rigorous quantum mechanics 



2001 Nobel Prize in Physics  

Back to Einstein at 1924-1925 

E.A. Cornell W. Ketterle C.E. Wieman 

“for the achievement of Bose-Einstein condensation in dilute gases of 
alkali atoms, and for early fundamental studies of the properties of the 
condensates” 

ü  BEC cartoon  

87Rb 



What is Superfludity? 
Relation of superfluidity to BEC 

-  1938,  London argues that Einstein’s condensation does exist and suggests 
that the lambda-transition is related to BEC. 

-  1938, Tisza introduces the two-fluid concept, with the conjecture that the 
superfluid component is nothing but BEC. 

-  1955, Penrose introduces the concept of “off-diagonal long-range order”  

Rollin film 

“Paradox” for 2D finite-temperature system, 
ü  Mermin-Wegner theorem states that 

no long-range order occurs 

ü  Experiments show no doubt for the 
existence of superfluidity  

BEC is a sufficient but not a necessary condition for superfluidity 



What is Superfludity? 
Relation of superfluidity to elementary excitation spectrum 
-  1941, Landau’s critical velocity 

dispersion ε(q): 

free particle in 
 ideal BEC  

  ε = q2 / 2m
phonon in 

 dilute quantum gas  

 ε = cq
phonon/roton in 

 4He liquid 

-  not sufficient: finite-T superfluidity 
-  not necessary: 3He-A, “supersolidity” 

Landau’s criterion for superfluidity is instructive, however, it is neither a sufficient  
nor a necessary condition 



What is Superfludity? 
Superfluidity: emergent topological order 

ü  BKT phase transition in 2D  
    (Berezinskii 1971, Kosterlitz-Thouless 1972, Nelson Kosterlitz 1976) 

ü  direct experimental evidence of topological order in 2D 
      (Telschow and Hallock, 1976) 

The value of the persistent current in an annulus is changed 
by many orders of magnitude—by changing the thickness 
of the superfluid 4He film (as a response to the chemical 
potential shared by the film with the vapor in the bulk). 
 
In contrast to a dramatic change in the value of the net 
persistent current, the velocity of the superflow stays intact. 



What is Superfludity? 
Thermomechanical effect of superfluidity 

Basic equation 

ü  Super-heat-conductivity 

-  Heat is transported mechanically 
by flow of normal component  

  T ↑,   µ(T ) ↓Counterflow: 

ü  Fountain effect 

Fountain effect:   T ↑,   µ(T ) ↓

ü  Escaping from a Dewar 

-  The superfluid component is of 
zero entropy 



Nobel Prizes in Physics related to Superfluidity	


1913 
Heike 

Kamerlingh 
Onnes 

Netherlands 

for his investigations on the 
properties of matter at low 
temperatures which led, inter alia, 
to the production of liquid helium. 

1921 Albert Einstein 

Germany 

for his services to Theoretical 
Physics, and especially for his 
discovery of the law of the 
photoelectric effect 

1962 Lev Davidovich 
Landau 

Soviet Union 

for his pioneering theories for 
condensed matter, especially 
liquid helium 



1972 

John Bardeen 

USA 

for their jointly 
developed theory of 
superconductivity, 
usually called the 
BCS-theory 

Leon N. Cooper 

USA 

J. Robert 
Schrieffer 

USA 

Nobel Prizes in Physics related to Superfluidity	




1973 

Leo Esaki 

Japan 
for their experimental 
discoveries regarding 
tunneling phenomena in 
semiconductors and 
superconductors, respectively 

Ivar Giaever 

Norway, USA 

Brian David 
Josephson 

UK 

for his theoretical predictions 
of the properties of a 
supercurrent through a tunnel 
barrier, in particular those 
phenomena which are 
generally known as the 
Josephson effects 

Nobel Prizes in Physics related to Superfluidity	




1978 
Pyotr 

Leonidovich 
Kapitsa 

Soviet Union 

for his basic 
inventions and 
discoveries in the 
area of low-
temperature physics 

1987 

 J. Georg 
Bednorz 

Germany 
for their important 
break-through in the 
discovery of 
superconductivity in 
ceramic materials K. Alexander 

Müller 

Switzerland 

Nobel Prizes in Physics related to Superfluidity	




1996 

David M. Lee 

USA 

for their discovery 
of superfluidity in 
helium-3 

Douglas D. 
Osheroff 

USA 

Robert C. 
Richardson 

USA 

Nobel Prizes in Physics related to Superfluidity	




2003 

Alexei A. 
Abrikosov 

Russia, USA 

for pioneering 
contributions to  
the theory of 
superconductors 
and superfluids 

Vitaly L. 
Ginsburg 

Soviet Union 

Anthony J. 
Leggett 

UK 

Nobel Prizes in Physics related to Superfluidity	




2016 

David J. 
Thouless 

UK 
for theoretical 
discoveries of 
topological phase 
transitions and 
topological phases 
of matter 

 F. Duncan M. 
Haldane 

USA 

J. Michael 
Kosterlitz 

USA 

Nobel Prizes in Physics related to Superfluidity	




Summary 
	


Take-home message 
l  Superfluid is the property of a complex-valued matter field, 

which is inherited by quantum bosonic systems 
l  BKT phase transition is driven by topological defects—vortices 

Chun-Jiong Huang 
（黄春炯） 

Lecture note is prepared together with 

Ran Zhao  
（赵然） 



Thank You 



Magnetic susceptibility 

Results of 2D and 3D XY model	


  
χ(T ) = ∂M (T )

∂h h=0


