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2016 Nobel Prize in Physics

Popular Information

Title: Strange Phenomena in Matter’s flatland

“Tlogether, they (Thouless and Kosterlitz) took on the problem of phase
transitions in the flatlands (the former out of curiosity, the latter out of
ignorance, they themselves claim).”

“...an entirely new understanding of phase transitions, which is regarded as
one of the twentieth century’s most important discoveries in the theory of
condensed matter physics.”—BKT phase transition

“The wonderful thing...is that it can be used for different types of materials—
the KT transition is universal...The theory...also confirmed experimentally.”



2016 Nobel Prize in Physics

Advanced Information
Title: Topological Phase Transitions and Topological Phases of Matter

“In 1972 J. Michael Kosterlitz and David J. Thouless identified a completely
new type of phase transition in two-dimensional systems where topological
defects play a crucial role [35, 36]. Their theory applied to certain kinds of
magnets and to superconducting and superfluid films, and has also been very
important for understanding the quantum theory of one-dimensional systems
at very low temperatures.”

“This insight has provided an important link between statistical mechanics,
quantum many-body physics and high-energy physics, and these fields now
share a large body of theoretical techniques and results.”

Goal of this lecture is to address

(1) What is the Berezinskii-Kosterlitz-Thouless phase transition?
(2) What is the superfluidity?



Outline

* Phase transition in high-dimensional XY model
v' Ginzburg-Landau mean-field theory

* Monte Carlo simulation in three and two dimensions

* Berezinskii-Kosterlitz-Thouless phase transition

v" Wegener’s model (Gaussian model)
v" Topological excitation and BKT phase transition
v" Nelson-Kosterlitz relation (universal jump in superfluid density)

v Renormalization group analysis

* What is superfluidity

v Hallmarks of superfluidity
v Two questions—on its relation to BEC/excitation spectrum



Phase Transition
in High-Dimensional XY Model



Emergent Phenomena

Emergent matter state

1023 particles M.—
Statistical Mechanics
Condensed Matter Physics

few particles

More is different! Each hierarchical level of science requires its own fundamental
principles for advancement. —— P. W. Anderson



Emergent Phenomena

Emergent scale invariance at 2"d-order phase transition

Gireat Neas have lesser Neas
Upon their backs to bite 'em
And lesser fleas have lesser still,
And so ad tufinitum

Johnathan Swift

Universal properties!

Universality of Criticality. Critical physics can be captured by a few parameters—
symmetry of the order parameter, interaction range, and spatial dimensions



Statistical Mechanics

. Statistical mechanics is to understand emergent (quantum)\
macroscopic matter state from microscopic interactions. Given
a many-body Hamiltonian, the core task 1s to calculate

partition sum
7 — Tre "'%7 = Z P
i

-

Macroscopic matter state

* gas, liquid, solid
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Statistical Mechanics

& Statistical mechanics is to understand emergent (quantum)\
macroscopic matter state from microscopic interactions. Given
a many-body Hamiltonian, the core task 1s to calculate

partition sum
7 = Tre 1T = Z P
i

-

Macroscopic matter state

* gas, liquid, solid
* magnetism

(ferromagnet, antiferromagnet...)
* superfluidity, superconductivity...




Statistical Mechanics

Which macroscopic matter state?

Free energy

F = —kBT InZ k,— Boltzmann constant

Thermodynamic relation
F=FE_TS E — internal energy
S =k, In€) — entropy
(23— number of microscopic configurations
Thermodynamic law

The stable matter state at a given temperature T is determined
by the minima of the free energy

Energy-Entropy Competition/Balance

- At high T, “large entropy”” dominates—gas, liquid, plasma
- Atlow T, “low energy” dominates—crystal, superfluid



Ising Model

The Ising model (1920) /*4 * = A
A A
=—%Gl,6j (o==1) M A K

2-D Ising Model

* Spontaneous symmetry breaking

Ferromagnet:
an ordered state
spontaneously
breaking Z,
symmetry
T>T I'=T
Paramagnet Paramagnet

"Spontaneous symmetry breaking” is one of the most profound concepts in
statistical mechanics and condensed-matter physics.



XY Model

The XY model

H:—Zgi-gj = — COS(QZ.—QJ.) gZ(COSQ,Sine) ZQ_.
(i) i)

v U(1) symmetry: Hamiltonian remains unchanged if all the spins
are rotated by fixed angle 0

Partition sum

Z = HdOJ e—,BH(s)

[_7r17r]A jGA
—_ 1 —
v' Local order parameter: M= ;Zsi

- At 7=0, all spins point to the same direction — ferromagnet
- At 7T=infinite, each spin points to a random direction — paramaghet

Question

Is there a critical temperature 7 >0 between ferromagnet and paramagnet?



XY Model

Ginzburg-Landau mean-field theory
Free energy density

A
Vi) ==y P+ 1yl n, =y [
2 2

v’ Order parameter is just a complex number Y = M_ [n the context of
superfluidity, n, is the density of Bose-Einstein condensation

v' w(T) is chemical potential; >0 is for interaction

Solution
w(T)>0, [¥>0, ferromagnet u(T)<0, ¥=0, paramagnet

Nambu-
Goldstone
Mode

Higgs Mode

Im(¥)

Re(V)




XY Model
Mean-field (MF) theory of the XY model

* Ignore fluctuations that are crucial in low-dimensional systems

* For d>d =4, MF critical exponents are correct
MF critical point are wrong

* For d=3, MF critical exponents are correct
MF critical point are wrong

« Ford=2, the topological BKT phase transition is
beyond the Ginzburg-Landau mean-field scenario

Complex field model of the XY model
U
Hyp=-t) (bjbktec)+=) hhl*-u) [l
(ik) i i
Research tools
v" Analytical calculation (1D)

v Renormalization group analysis
v Monte Carlo simulation



Monte Carlo Simulation
in Three and Two dimensions



Monte Carlo Simulation

Schematic behavior In g()
Two-point correlation function g(r)
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Monte Carlo Simulation

Topologically distinct configurations
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"Topologically distinct"— two configurations cannot be transformed into each other

by a continuous rotation of the spins.



Monte Carlo Simulation

Tllustration of MC simulation
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Monte Carlo Simulation

Tllustration of MC simulation

e v=+I
® v=-]

0 1 2 3 4 5 6 7
d=2,L=128




Results of 2D and 3D XY model

Probability distribution of magnetization in 3D

y=8
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e(T)

Results of 2D and 3D XY model

H 1
Energy densu’ry e(T)= v <Ummz(T)>
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Results of 2D and 3D XY model

. oe(T
Specific heat C(T)= B(T)
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Results of 2D and 3D XY model

BEC density n(T)_iz< M2 (1))

2D 3D
0-8 I L I 1 I I 1 ol ] J 1 I I
| - S *a t 12 e
e | 08} ——
[y L
198 o L . 3
R | 1
‘."N | 0.6 R !
* \. . \L ,__\.} , l
S 04} N " . h: !
g VR 0.4t .
l.l.. . ’. |
. . .I"l ‘:‘?. I
0.2+ I 8 \ ] 0.2 L
R -‘.
X LY 4 N
T ' " .-
0.0 Y L LNt et——3 s 0.0 AR A S VR M e = T O $333.33

06 08 10 12 14 18 05 10 15 20 925 30 35
T T




ps(T)

Results of 2D and 3D XY model

Superfluid density p,
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Two-point correlation function g(r) = <ei(9°_9r)>
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Berezinskii-Kosterlitz-Thouless Phase Transition
in the Two-Dimensional XY Model



Wegner's model

Wegner's model (Gaussian model)

e Hamiltonian of XY model

H:—J%cos(ei—ej) [ T T T - ////

zero wave number, zero energy cost

v’ spin-wave excitation (gapless)

+ Wegner’s model (1967) [ T T T o T f / /

TGYI or ex pand tlll 2I1d OI‘dCI' & small wave number, small energy cost
ighore 2m-periodicity

J
H:EO_E%(@_@J')Z (DE(—OO,+C>O)

Lattice Fourier transform

J
H=E-S%elof =5
k

v' ideal gas (in momentum space)




Wegner's model

Spin-Ordering in a Planar Classical Heisenberg Model

FrANZ WEGNER
Mazx-Planck-Institut fiir Physik und Astrophysik, Miinchen, Germany

Received July 26, 1967

We consider a D-dimensional system of classical spins rotating in a plane and inter-
acting via a Heisenberg coupling. The spin-correlation function gy (r) is calculated
for large distances r in a low-temperature approximation (taking into account short-

range order):
g (r)=exp(—-C; Tr),

g2 (M) ~r~ T,
lim g;(r)=exp(—C5;T).

v No long-range order for D <2

v' Correlation function algebraically decays for any T# 0 in 2D
— algebraic order or quasi-long-range order



Wegner's model

Mermin-Wegner theorem

In one and two dimensions, continuous symmetries cannot be spontaneously
broken at finite temperature in systems with short-range interactions

Direct consequences

v No BEC for 740 in 2D and 1D
Yes in 2D harmonic trap

v No crystal for 7#0 in 2D and 1D
Yes for 7=0 in 2D
No for 7=0 in 1D (quantum fluctuation)

Explaination

It cost very little energy to induce long-range fluctuations which have
enormous entropy and are free-energy-preferred



BKT phase transition in 2D

Topological excitation and BKT transition
Can U(1) nature (0 period) be ignored?

* Energy of a single vortex Vortex: a topological defect
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BKT phase transition is “one of the 20" century’s most important discoveries in the
theory of condensed matter physics”
—popular science background for Nobel Prize in Physics, 2016



BKT phase transition in 2D

BKT phase transition

A

Tight pair of vortices M

LS

Single vortices

LOWER TEMPERATURE <«——— TOPOLOGICAL PHASE TRANSITION ——— > HIGHER TEMPERATURE

v Energy of vortex-anti-vortex pair E =2mJ In=

a
v’ for T<T,

vortex pairs are bound (in order of lattice spacing)

spin-wave excitations lead to “algebraic/quasi-long-range order”

bound vortex pairs lead to renormalization of coupling K that determines
critical exponent for the algebraic decay of correlation function



BKT phase transition in 2D

Vortex number per site N and its fluctuation X, in 2D XY model

N(T)
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BKT phase transition in 2D

Nelson-Kosterlitz relation
Universal jump in superfluid density at 7.,

p(T ) 1= 2m_kp

T h2
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BKT phase transition in 2D

Renormalization group analysis

Basic idea: coarse-grain and integrate K _.o K&
out degrees of freedom for vortex- “ —> -
antivortex pairs of short distance 0

RG equation:

ay Aty O e P
a0 Z

y — fugacity of vortex 2 T 5
t — deviation ~(7-T,) T N7
b=e' =1+ /(— RG scale (b) X =t

v" =0 accounts for the “vacuum” states free of vortices, but with various Gaussian
fluctuation modes

v" the vacuum is stable for <0 (superfluid) and unstable for £>0 (normal fluid)



What is Superfluidity



Hallmarks of Superfludity

In 4He-ITI

AN S e

~

Zero-temperature effects

Frictionless flow through narrow pores
Hess-Fairbank effect

Persistent currents

Quantized circulation (vortices)

Josephson effect

Finie-temperature (thermomechanical) effects

. Superconductivity of heat/Counterflow
. Fountain effect

. Escaping from a Dewar

In the BEC gas

(?)
v
(?)
v
v



Hallmarks of Superfludity

Frictionless flow below T,

- 1908, “He liquefied (Onnes)

- 1911, “supraconductivity” of mercury (Onnes)
“He stops boiling below certain temperature (Onnes)

- 1922, peculiarity of specific heat (Dana, not published)

— 1927-1937,  phase transition ( T,=2.17K); heat-capacity anomaly,
huge reduction of viscosity; "Supra-heat-conductivity”
(Keesom, Misner, Allen...)

- 1938, Discovery of superfluidity (Kapitza; Allen and Misener)
- 1938, fountain effect (Allen and Jones)

[t took 20 years to discover “superfluidity”



Hallmarks of Superfludity

Frictionless flow below T,

Liquid “He stops boiling < 2.3K.
J.C. McLennan et al. (1932)
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The helium below the A-point e e
T-T, degrees T - T, milidegrees T - T, microdegrees

enters a special state which

might be called a “superfluid’ A-transition of Helium 4.

—0P. Kapitsa (1937) W.H. Keesom and A.P. Keesom (1935)



Hallmarks of Superfludity

Hess-Fairbank effect and Persistent current

i : .
Define @ =—— =quantum unit of rotation (10 Hz for 1cm)

mR
Hess-Fairbank effect Persistent current
Wall rotates with 0 <o, | Wall at rest,
liquid stationary Liquid rotates with ®>0_,

Equilibrium Effect Metastable Effect



Hallmarks of Superfludity

Quantized vortices

v" Theoretical predictions of vortices in superfluid (1948, 1955),
and superconductor (Abrikosov 1957)

@ @ (f} v -d [ = 27y x integer

~—_
el ¢ y=h/m

Onsager 1948, Landau-Lifshitz 1955 Onsager 1949, Feynman 1955

Vortices in ultracold atomic gases

Varmchuk et al. 1979 JILA, 1999  ENS,2000  MIT, 2001  MIT, 2005




Hallmarks of Superfludity

Quantized vortices
v USTC: eLi-*K supercluid mixture
week ending

PRL 117, 145301 (2016) PHYSICAL REVIEW LETTERS 30 SEPTEMBER 2016

S

Observation of Coupled Vortex Lattices in a Mass-Imbalance
Bose and Fermi Superfluid Mixture

- 123 v - 1,2,3
Xing-Can Yao,"*** Hao-Ze Chen,"*’ Yu- Ping wu," Xlan(y Pei Liu,"*” Xiao- Qlon0 Wang, Xiao Jiang,
4
Youjin Deng.l >3 Yu-Ao Chen,l 23 and Jian-Wei Pan"**

1 -




Hallmarks of Superfludity

Quantized vortices
v USTC: éLi-*K supercluid mixture

A B C

396x396um’

Vortex lattice in single-species superfluid



Hallmarks of Superfludity

Quantized vortices
v USTC: éLi-*K supercluid mixture

396x396um’

Vortex lattice in two-species superfluid



Hallmarks of Superfludity

Vortex ring in 3D and its metastability

A sidedish (superlink) — Crazy pool vortex

v In 3D, vortices have to form a closed ring or an open chain ending
at the surface.

v" Vortices, vortex-rings and persistent currents are metastable due to
angular momentum.

v" Unlike classical analogue, quantum vortex has quantized angular
momentum




What is Superfludity?

Mordern view of superfluidity: emergent constant of motion

Superfluid is a natural low-T state of a classical complex-valued matter field,

arising from an emergent constant of motion—i.e., fopological order

Complex matter field: l//(l_; ) = ‘l//(}_; )‘ eiq)(F )

Superfluid velocity field: \7S =Y Vo (}/ Zh/m)

Emergent constant of motion: quantized circulatio}

Cﬁﬁs dl = ycﬁ dl -V = 27y X Integer
C C
v' leads to superfluidity

v can be destroyed only by topological defects

(vortices) /




Back to Einstein at 1924-1925

Bose-Einstein statistics for an ideal bosonic system
* Single-particle phase space (U-space): (x, y,z,kx,ky,kz)

Phase-space cell: 0x0y0z5k 6k 6k =’

Occupation number in each phase-space cell
1

f= — for photons/phonon: €=ck=ho,u=0
eﬁ(g—u) ~1

— for massive bosons: €=k /2m,u<0

Bose-Einstein condensation

: A macroscopic number of atoms condense into
r<T: f_/N>0
‘ - the quantum state of the lowest momentum.

i (7)

Thermal wavelength A, > d, BEC is a matter field y(r)= |‘//(’7 )| e

For low T, one has y — 0 and f > 1 for small-k motions, the classical
matter-field description is valid; No BEC (macroscopic occupation) or
superfluidity (topological order) is requested.



Back to Einstein at 1924-1925

Quantentheorie des einatomigen idealen Gases.

Von A. EINSTEIN.

Einc von willkiirlichen Ansiitzen freie Quantentheorie des einatomigen idealen
Gases existiert bis heute noch nicht. Diese Liicke soll im folgenden ausge-
fiillt werden auf Grund einer neuen, von Hrn. D. Bose erdachten Betrachtungs-
weise, auf welche dieser Autor eine hochst beachtenswerte Ableitung der
Pranckschen Strahlungsformel gegriindet hat’.

“One can assign a scalar wave field to such a gas... It looks like there would be
an undulatory field associated with each phenomenon of motion, just like the
optical undulatory field is associated with the motion of light quanta.”

v' Einstein's classical-field idea for quantum gas was forgotten for tens
of years, probably due to the advent of rigorous quantum mechanics



Back to Einstein at 1924-1925
2001 Nobel Prize in Physics

| =
00N £

E.. Coel ( W. Ketterle C.E. ieman 87Rb

“for the achievement of Bose-Einstein condensation in dilute gases of
alkali atoms, and for early fundamental studies of the properties of the
condensates”

v BEC cartoon




What is Superfludity?

Relation of superfluidity to BEC

— 1938, London argues that Einstein’s condensation does exist and suggests
that the lambda-transition is related to BEC.

— 1938, Tisza introduces the two-fluid concept, with the conjecture that the
superfluid component is nothing but BEC.

— 1955, Penrose introduces the concept of “of f-diagonal long-range order”

plrr) = (V') () = ¥i(e) v, at Jr-r]—> o

“Paradox” for 2D finite-temperature system,

v' Mermin-Wegner theorem states that
no long-range order occurs

v’ Experiments show no doubt for the
existence of superfluidity

BEC is a sufficient but not a necessary condition for superfluidity



What is Superfludity?

Relation of superfluidity to elementary excitation spectrum
— 1941, Landau’s critical velocity
dispersion &(q):

q 7 q
e=q /2m £=cq
free particle in phonon in ph04non/ roton in
ideal BEC dilute quantum gas He liquid

— not sufficient: finite-T superfluidity
— not necessary: SHe-A, “supersolidity”

Landau's criterion for superfluidity is instructive, however, it is heither a sufficient
nor a necessary condition



What is Superfludity?

Superfluidity: emergent topological order

C_fyﬁs-di:ygﬁdlq-V(D =27y X integer
C

C

v BKT phase transition in 2D
(Berezinskii 1971, Kosterlitz-Thouless 1972, Nelson Kosterlitz 1976)

v' direct experimental evidence of topological order in 2D
(Telschow and Hallock, 1976)

The value of the persistent current in an annulus is changed
by many orders of magnitude—by changing the thickness
of the superfluid 4He film (as a response to the chemical
potential shared by the film with the vapor in the bulk).

In contrast to a dramatic change in the value of the net
persistent current, the velocity of the superflow stays intact.



What is Superfludity?

Thermomechanical effect of superfluidity

Basic equation

\%

S

v

Super-heat-conductivity
Fountain effect

Escaping from a Dewar

The superfluid component is of
Zero entropy

Heat 1s transported mechanically
by flow of normal component

=Vi  (,=0) A=p/m

AN e
Js

Counterflow: T T, u(T){

= ==

Fountain effect: 7T, w(T)



Nobel Prizes in Physics related to Superfluidity

Heike

for his investigations on the

r——— properties of matter at low
1913 Kamerlingh — temperatures which led, inter alia,
Onnes to the production of liquid helium.
Netherlands
for his services to Theoretical
- Physics, and especially for his
1921 Albert Einstein discovery of the law of the
photoelectric effect
Germany
oy . for his pioneering theories for
1962 Lev Davidovich condensed matter, especially

Landau

Soviet Union

liquid helium




Nobel Prizes in Physics related to Superfluidity

1972

John Bardeen

USA

Leon N. Cooper

USA

J. Robert
Schrieffer

USA

for their jointly
developed theory of
superconductivity,
usually called the
BCS-theory




Nobel Prizes in Physics related to Superfluidity

1973

Leo Esaki

Ivar Giaever

for their experimental
discoveries regarding
tunneling phenomena in
semiconductors and
superconductors, respectively

Norway, USA
for his theoretical predictions
of the properties of a
Brian David supercurrent tl}rough a tunnel
N L7 barrier, in particular those
Josephson — :

2 S phenomena which are

generally known as the
UK Josephson effects




Nobel Prizes in Physics related to Superfluidity

for his basic

Pyotr inventions and
1978 Leonidovich discoveries in the
Kapitsa area of low-
Soviet Union | temperature physics
J. Georg -
Bednorz for their important
Germany b?eak-through in the
1987 discovery of

K. Alexander
Muller

Switzerland

superconductivity in
ceramic materials




Nobel Prizes in Physics related to Superfluidity

1996

David M. Lee
USA
Douglas D.
Osheroff
USA
Robert C.
Richardson =

USA

for their discovery
of superfluidity in
helium-3




Nobel Prizes in Physics related to Superfluidity

Alexei A. B =
Abrikosov
Russia, USA
for pioneering
: . contributions to
2003 V¥taly L the theory of
Ginsburg
superconductors
Soviet Union | and superfluids
v Anthony J. %
UK




Nobel Prizes in Physics related to Superfluidity

2016

David J. %
Thouless 2 S
UK
F. Duncan M.
Haldane
USA
J. Michael
Kosterlitz

USA

for theoretical
discoveries of
topological phase
transitions and
topological phases
of matter




Summary

Take-home message

® Superfluid is the property of a complex-valued matter field,
which 1s inherited by quantum bosonic systems

® BKT phase transition is driven by topological defects—vortices

Lecture note 1s prepared together with

Ran Zhao

Chun-Jiong Huang GRXAR)

(GBS




Thank You



Results of 2D and 3D XY model

dM(T)

Magnetic susceptibility y(r)= -

h=0

P
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