

# 等离子体物理及磁约束聚变简介

### 2014年12月2日



物理学院近代物理系

























### 等离子体的定义

- 由大量的自由带电粒子组成的宏观体系
  - 电荷的自由性:异类带电粒子之间相互"自由",等离
     子体的基本粒子元是正负荷电的粒子(电子、离子),而
     不是其结合体。
  - 电荷与电磁场的不可分割性:等离子体中粒子的运动与电磁场(外场及粒子产生的自洽场)的运动紧密耦合,不可分割。
  - 集体效应起主导作用:等离子体中相互作用的电磁力是长程的,每个粒子均与周围许多粒子同时发生作用。









### 等离子体的分类















### 等离子体科学发展简史

### • 19世纪30年代起

- 放电管中电离气体,现象认识
- 建立等离子体物理基本理论框架
- 20世纪50年代起
  - 受控热核聚变
  - 空间技术
  - 等离子体物理成为独立的分支学科

### 20世纪80年代起

- 气体放电和电弧技术发展应用
- 低温等离子体物理发展

### 等离子体物理发展的里程碑(I)

- 1835年,法拉第(M. Faraday),气体放电基本现象,发现辉光 放电管中发光亮与暗的特征区域
- 1879年,克鲁克斯(W. Crookes),用"物质第四态"来描述气体放电产生的电离气体
- 1902 年, 克尼理(A. E. Kenneally) 和赫维塞德(0. Heaviside), 电离层假设, 解释短波无线电在天空反射的现象
- 1923年,德拜(P. Debye),等离子体屏蔽概念
- 1925年,阿普勒顿(E. V. Appleton),电磁波在电离层中传播 理论,并划分电离层
- 1928年, 朗缪尔(I. Langmuir), 等离子体集体振荡等重要概 
  念
- 1929年, 朗缪尔与汤克斯(L. Tonks)首次提出"Plasma"一词

### 等离子体物理发展的里程碑(II)

- 1937年,阿尔芬(H. Alfven),等离子体与磁场的相互作用 在空间和天文物理学中起重要作用
- 1946年, 朗道(L. Landau)理论预言等离子体中存在无碰撞 阻尼,即朗道阻尼
- 1952年,美国受控热核聚变的"Sherwood"计划开始,英国、法国、苏联也开展了相应的计划
- 1958年,人们发现等离子体物理是受控热核聚变研究的关键 ,开展广泛的国际合作
- 1950-1980年代,受控热核聚变研究和空间等离子体的研究使 现代等离子体物理学建立起来
- 1980年起,低温等离子体的广泛应用使等离子体物理与科学 达到新的高潮

### 等离子体物理及应用领域研究热点

- 等离子体相关的生物技术
  - 生物相容聚合物、灭菌、等离子体辅助手术
- 等离子体相关的工业技术
  - 等离子体刻蚀、表面处理、特殊材料
- 等离子体粒子加速器
  - 10GeV/10cm
- 磁约束燃烧聚变等离子体

ITER

- 磁场重联及自组织
  - 空间等离子体
- 弾丸聚变点火
  - NIF, 惯性约束聚变

. . . . . . .

### 等离子体离我们并不遥远

19 等离子体处理的保鲜 等离子体电视 制太阳崩 20 等离子体 等离子体镀涡喷扇叶 21 等离子体萤光灯 等离子体造平面LED 03 等离子体CVD类金刚石镀眼镜 等离子体离子注入人工髋骨 21 05 等离子体激光切割衣服 06 10) 9 11 15 14 13 等离子体淀积硅太阳能电池 07 等离子体HID大灯 6 08 等离子体生产氢燃料 14 等离子体加工微电子器件 15 等离子体制药过程中的灭菌 09 等离子体辅助燃烧 16 等离子体处理的聚合物 10 等离子体尾气处理器 17 等离子体处理的纺织品 11 等离子体臭氧水净化器 18 等离子体处理的心脏起搏器 12 等离子体淀积LCD显示屏

### 低温等离子体装置



### 微波ECR装置、大功率高气压脉冲直流放电装置、大气压等离子体射流





### 利用低温等离子体生长金刚石材料





应用等离子体化学气相乘积方法开展可生长金 刚石薄膜等材料。金刚石膜加工成金刚石电子 热沉片,热导率高达7.6W/(k·cm),可用于大功 率电子器件。

### 热等离子体的应用

热平衡等离子体, 电子、离子、原子同样的温度, 热量大 Ø 通常是高气压(1个大气压左右或更高的气压) K 🖉 电弧、等离子体炬

### 高温加热

- 冶金、焊接、切割
   材料合成、加工
- 陶瓷烧结、喷涂、三废处理
   光源
- 强光源(近黑体连续辐射)



### 等离子体推进技术













AVAN

Mirrors using low-density plasmas are attractive candidates for electronic steering of shipboard radar for the 21st century.

# 激光等离子体加速器



### 2004年在激光等离子体加 速方面取得重要进展



Representation of electron energy spectrum

### 激光等离子体同步辐射

### 激光脉冲加速电子的同时,可产 生高质量的同步辐射

















# 聚变是宇宙中的常见现象



宇宙中可见物质的主要能量来源是聚变。

# 人类也早已实现聚变



#### 人类已经实现聚变,却不是用于造福人类而是相互威胁与恐吓!

## 开发聚变能源的漫长道路

# Producing a self-sustaining fusionheated plasma is a grand challenge

USBPO

- 1928 Fusion reactions explain energy radiated by stars [Atkinson & Houtermans]
- 1932 Fusion reactions discovered in laboratory [Oliphant]
- 1935 Fusion reactions understood as Coulomb barrier tunneling [Gamow]
- 1939 Theory of fusion power cycle for stars [Bethe-Nobel Prize 1967]
- 1950 Use of fusion for military objective
- 1950's Invention of tokamak, helical system, mirror, etc.
  - 1958 2nd UN Atoms for Peace Conference (Geneva): magnetic fusion research was de-classified
  - 1968 Russian results on high-temperature plasmas presented at IAEA Fusion Energy Conference
- Since then: Worldwide explosion in toroidal plasma research, leading to the attainment of fusion-grade plasma parameters

### 开发聚变能源的紧迫性





### Climate Change Effects are visible now ! 1. Rhone Glacier in Switzerland

# 001 900

### .... it is melting away

### 等离子体物理是聚变的学科基础



Contemporary Physics Education Project (CPEP)

### 磁约束聚变的基本原理

No magnetic field



With magnetic field



强磁场将能够电荷的运动限制在磁场方向。

### 封闭的磁场位形可长时间约束等离子体



Inner Poloidal field coils (Primary transformer circuit)









### 仿星器磁场位形

## 托卡马克磁场位形



托卡马克的磁力线可形成磁笼结构。其中环向磁场 由外场线圈产生;极限磁场由等离子体电流产生

## 中国的主要磁约束聚变装置





### HL-2A@西南物理研究院

### EAST@等离子体物理研究所

### 国外主要磁约束聚变装置



JT-60@日本



### DIII-D@美国



JET@英国



Tore Supra@法国

# 科大环形实验装置(KTX)



| 大半径:     | 1.4 m                         |
|----------|-------------------------------|
| 小半径:     | 0.4 m                         |
| 导体壁(铜)厚: | 1.5 mm                        |
| 等离子体电流:  | 0.1~0.5 MA                    |
| 脉冲宽度:    | $10{\sim}30$ ms               |
| 环电压:     | 10~50 V                       |
| 等离子体电感:  | $\sim 4~\mu\text{H}$          |
| 极向磁通:    | 3 V•S                         |
| 电子温度:    | $_{ m eV}^{ m 600}\sim 800$   |
| 等离子体密度   | $\sim \! 10^{19} { m m}^{-3}$ |

### 国际热核反应堆(ITER)



ITER是国际最大的聚变研究计划。

主要参数  $P_{f} = 500 MW$ **Q** > 10 T = 500 sR = 6.2 mA = 2.0 m $I_p = 15 \text{ MA}$ B = 5.3 T $V = 837 \text{ m}^3$  $S = 678 m^2$  $P_{in} = 73 \text{ MW}$ 

### 简单环形磁场:不能约束等离子体





可避免带电粒子沿磁力线的 终端损失

磁场梯度和曲率漂移引起电 荷分离

$$V_{\nabla B+R_{c}} = \frac{m(V_{\parallel}^{2} + V_{\perp}^{2}/2)}{qB^{3}} (B \times \nabla B)$$
  
电漂移引起粒子横越磁场损  
失  
$$V_{D} = \frac{E \times B}{P^{2}}$$

 $B^2$ 

螺旋变换环形磁场:形成"磁笼"

• 可消除带电粒子的径向漂移损失

- 托卡马克: 环向等离子体电流产生极向磁场
- 仿星器: 外部复杂的线圈产生极向磁场



## 托卡马克磁位形



### 托卡马克

等离子体电流用于形成螺旋变换环形磁场位形
 闭合磁面与安全因子  $q(r) = rB_T/(R_0B_P)$  等离子体电流用于加热等离子体(欧姆加热)

 $P_{W} = \eta j^{2}, \quad \eta \approx 8 \times 10^{-8} Z_{eff} T_{e,keV}^{-3/2} [ohm.m]$ 



- 输运与等离子体约束 磁流体平衡与不稳定性 辅助加热与电流驱动 等离子体与器壁相互作用 快粒子物理 集成运行方案与等离子体控制



・ 横越磁场扩散系数  $D \approx v_{ei} \rho_{ce}^2$  $\chi_e \approx D$ 



# $\chi_i \approx v_{ii} \rho_{ci}^2 \approx \left( m_i / m_e \right)^{1/2} \chi_e$

- 其中 $v, \rho_c$ 分别为碰撞频率和回旋半径
- 输运步长(或退相关长度)为回旋半径
- 退相关时间为碰撞时间  $\tau = v^{-1}$

W等离子体总内能  $\frac{dW}{dW} = P - \frac{W}{dW}$  $\mathcal{T}_{F}$ P 等离子体总加热功率 dt  $W = \int \frac{3}{2} n_e (T_i + T_e) dV$  $\tau_E$ 等离子体总能量约束时间  $\tau_E = \frac{\int \frac{3}{2} n_e (T_i + T_e) dV}{P}$ (当dW/dt = 0时) 能量约束时间与扩散系数  $\tau_E = \frac{W}{P} = \frac{VnT}{S\chi n\nabla T} \sim \frac{a^2}{\chi} \propto B^2$ 

### 飞行粒子:

不被局域磁镜捕获,但磁场曲 率和梯度漂移使漂移面中心偏 离磁面中心,其距离为:

 $\Delta r_{ps} \sim q \rho_{c}$ 捕获(香蕉)粒子: 被局域磁镜捕获而形成香蕉轨 道, 其轨道宽度为:

 $\Delta r_b \sim 2q\rho_c/\sqrt{\varepsilon}, \ \varepsilon \equiv r/R$ 两种粒子的输运步长都变大了







## Bohm扩散

• 在1946年,Bohm等人在磁弧实验观察到反常扩 散现象,获得一个半经验的扩散系数公式:  $D_{R} \simeq T/16eB \sim \omega_{c}\rho_{c}^{2}$ ,  $\tau_{R} \sim a^{2}/D_{R} \propto B$ 上世纪60年代,在C型仿星器上实验发现,等 离子体约束时间遵从Bohm扩散定标律:  $\tau_{F}[ms] = 3.6 \times 10^{-1} a^{2} [cm^{2}] B_{0}[T] / T_{e}[eV]$ Bohm扩散的随机游走估计  $\frac{\Delta x}{\tau} = V_E = \frac{-\nabla \Phi}{B} \sim \frac{\Phi_{rms}}{\Delta xB}$  $= \frac{\Delta x^2}{\tau} \simeq \frac{\tilde{\Phi}_{rms}}{B} \simeq \frac{T}{16eB} , \quad \text{in } \Pi \frac{e\Phi_{rms}}{T} = \frac{1}{16} \text{ in }$ 

### 反常输运

实验测定的输运系数  $\chi_i \simeq \chi_e \simeq (1-10) m^2 s^{-1}$  $D \simeq D_{z} \simeq \chi_{e}$  $\chi_i \simeq (1 \sim 10) \chi_i^{NC}$  $\chi_e \simeq 10^2 \chi_e^{NC}$ 它比新经典理论预言

的大一到二个量级, 称为反常输运。它可 能是由等离子体湍流 驱动的。

# 新经典输运系数 $\chi_i^{NC} \approx (0.1-1)m^2 s^{-1}$ $\chi_e^{NC} \approx D^{NC} \approx \sqrt{m_e/m_i} \chi_i^{NC}$ $D_Z^{NC} \approx (10^{-2} - 10^{-1})m^2 s^{-1}$



### 磁约束聚变研究进展

# ● 聚变三乘积每1.8年增长一倍 ● 等效的D-T聚变反应功率增益因子已达1



结语

- 等离子体科学涵盖了受控热核聚变、低温等离子体物理及应用、国防和高技术应用、天体和空间等离子体物理等分支领域。
  - 等离子体科学在能源、材料、信息、环保、国 防、微电子、半导体、航空、航天、冶金、生 物医学、造纸、化工、纺织、通讯等领域有广 泛的应用。
  - 等离子体研究领域对人类面临的能源、材料、 信息、环保等许多全局性问题的解决具有重大 意义。

