

细菌运动的物理机制

staff.ustc.edu.cn/~jhyuan 中国科学技术大学物理系

Why bacteria?

Anything found to be true of *E. coli* must also be true of elephants.

 Jacques Lucien Monod (1910–1976), 1965 Nobel Laureate

Diversity & abundance in the bacterial kingdom

10x more bacterial cells 100x more bacterial genes

(image via B. Bassler)

5×10^{30} bacteria on Earth, biomass > all plants+animals

抑制细菌感染

WHO: 每年850万人死于细菌感染

感染细菌数量

提供抗菌新思路

人工微纳机器

血管疏通

药物输运

基本物理要求: 自驱动、运动方向可控

人工:扩散

细菌

Different ways of bacterial movement

Swimming E. coli

Twitching pseudomonas

Swarming E. coli

Swimming S. volutans

http://www.rowland.harvard.edu/labs/bacteria/index_movies.html

E. Coli & Flagella-based motility

An analogy for torque-generation

鞭毛马达自组装

研究背景: 大肠杆菌趋化运动

趋化信号转导系统 (示意图)

研究背景: 大肠杆菌趋化运动

主要研究方向: 细菌运动行为的多尺度研究

科学问题

常用实验手段

宽场荧光

全内反射荧光

荧光相关光谱(FCS)

单分子荧光共振能量转移(smFRET)

GFP & mCherry FRET Cy3 & Cy5 FRET

光学荧光超分辨 (分辨率10纳米)

原子力显微镜 (分辨率1纳米)

细菌运动追踪

3-d tracking:

拥挤环境下的 追踪:

举例:发展新技术观测马达行为

目标:

- ① 观测马达在极低负载下行为。
- ② 准确观测马达动力学行为。

传统技术

传统技术的缺点:

①高负载。 ②低通滤波。

旋转粘滞阻力 ∝ 小球直径的立方

新技术观测马达行为

表面等离基元效应 ⇒ 散射光极强

PMT对金球定位

信号举例

时间分辨: 100kHz 空间分辨: 0.5nm

信号对比

相衬成像 激光暗场 新技术将信噪比提高 > 10⁴ 时间分辨: 100kHz 空间分辨: 0.5nm 使准确观测马达行为成为可能

新技术观测马达行为

以高时空分辨,准确观测马达动力学。 定子数目低 0.8 0.6 马达顺时针偏向性 0.4 0.2 马达转向偏向性 0L 0 1400 1200 200 400 600 800 1000 随时间波动。 定子数目高 0.8 定子也影响转向。 0.6 0.4 0.2 0¹ 0 200 400 600 800 1000 1200 1400 1600 1800 时间(秒)

Wang, Yuan*, Berg* PNAS 111:15752(2014)

新技术观测马达行为

我们的实验结果

Wang, Yuan*, Berg* PNAS 111:15752(2014)

实验平台

荧光共振能量转移

单分子荧光

超分辨成像

光控质子泵

科学问题

New adaptation mechanism

Cluzel et al, Science 287:1652(2000)

How is signal relayed reliably: (input & output robustly coupled) maintain [CheY-P] in the operating area? Discovery of the new adaptation mechanism will solve the prob.

Adaptation by CheR/CheB

Segall et al, PNAS 83:8987(1986)

Partial adaptation in *∆cheRcheB* cells

Unkown adaptation mech.!

Partial adaptation is independent of CheZ

No adaptation in [CheY-P] in *∆cheR cheB* cells

Bias Vs. [CheY-P] curve for the adapted motor

Motor adapts by adjusting N

Adaptation by changes in # of FliM units

Quantitative analysis

Yuan et al. Nature 484:233 (2012)Yuan et al. J. Mol. Biol. 425:1760 (2013)

new adaptation mechanism

Motor remodels to adapt to the environment:

Summary

Discovered a new level of adaptation mechanism for chemotaxis: motor level;

>proposed "adaptive remodeling" as a general working mechanism for molecular machines.

科学问题

Nonequilibrium effect in the allosteric regulation of the bacterial flagellar switch

转向调控

Allostery

Membrane Proteins: ion channels, receptors

MWC, KNF ... models Ising model

Monitoring motor switching

>Interval distributions

Motor ultrasensitivity (high cooperativity)

P. Cluzel et al. Science 287:1652.

J. Yuan et al. (2012) **Nature** 484:233 J. Yuan et al. (2013) **JMB** 425:1760

Interval distribution

Block et al. 1983, J. Bacteriol.

Two-state model

$$Bias = \frac{1}{1 + Ae^{-BY/(Y+K_D)}}$$

G,

k* •

G cw

B.E. Scharf et al. 1998, PNAS

MWC model

$$Bias = \frac{1}{1 + L(\frac{1 + Y/(KC)}{1 + Y/K})^{N}}$$

Uri Alon et al., EMBO J. 1998

Ising model for the switch

Duke, T.A.J. et al. J. Mol. Biol. 308, 541-553 (2001)

Interval distributions

Non-equilibrium effects

Yuhai Tu, PNAS 105, 11737-11741 (2008)

Filament polymorphic transitions

5, 316 (2009)

Interval distributions at medium load 0.5 μm bead on filament

F. Bai *et al*. Science (2010)

Interval distributions near zero load 100 nm gold on hook

Summary of previous results

▶ 原因:无法精确控制马达实验条件

H⁺电化学势(pmf)、马达负载(load)、马达定子数(# of stators)

Interval distributions at high load 1 μm bead on filament

Interval distributions at medium load 0.5 μm bead on hook

Interval distributions near zero load 100 nm gold on hook

Interval distributions at medium load @lower PMF

Interval distributions at high load @different # of stators

Dependence on torque

Experimental conditions		Motor torque	CW/CCW interval distribution shape
Different loads (high pmf, high stator number)	Near zero load with over expressed stator proteins	low	Exponential
	Intermediate to high loads (0.5, 0.75, 1.0 µm beads)	high	Non-exponential
Different pmfs (high load, high stator number)	Low pmf	low	Exponential
	High pmf	high	Non-exponential
Different number of stators (high load, high pmf)	Small number	low	Exponential
	Large number	high	Non-exponential

Dependence on torque

Non-equilibrium effects

Any equilibrium model:

$$(-1)^m \frac{d^m P_s(\tau)}{d\tau^m} > 0, \quad \forall \tau > 0, \quad m = 1, 2, 3, \ldots,$$

Yuhai Tu, PNAS **105**, 11737-11741 (2008)

Non-equilibrium Ising model

□ 将力矩与转向调控联系起来 🖙 马达统一模型

□ 小系统非平衡热力学的范例

Wang,...,Zhang*,Yuan* Nature Physics 13,710 (2017)

Interval distributions @ 1-10 stators

of stators: $6 \rightarrow 10$

Sensitivity increased for high load

Summary

> Previous controversies are resolved.

>Nonequilibrium effect in motor switching.

王芳彬, 何瑞, 史慧, 汪仁杰, 张榕京

Wang,...,Zhang*,Yuan* Nature Physics 13,710 (2017)

鞭毛马达力矩产生的动力学

力矩产生单元 (定子) 占空比

研究背景: 大肠杆菌鞭毛马达

(视频制作: Ishijima)

(电镜照片: D. DeRosier)
鞭毛马达的力矩产生

Chen, X. & Berg, H.C. Biophys. J. 78, 1036-1041 (2000)

马达复活试验(1)

W.S. Ryu et al. Nature 403, 444 (2000)

马达理论模型(I)

J. Xing et al. PNAS 103, 1260 (2006)

马达复活试验(11)

J. Yuan et al. PNAS 105, 1182 (2008)

马达理论模型(II)

G. Meacci & Y. Tu **PNAS** 106, 3746 (2009) F. Bai et al. **Biophys. J.** 96, 3154 (2009)

定子数目与负载相关

P. Lele et al **PNAS** 110, 11839 (2013) M.J. Tipping et al. **mBio** 4, 00551 (2013)

马达实验和模型(III)

Y. Sowa et al **PNAS** 111, 3436 (2014) J.A. Nirody et al. **Biophys. J.** 111, 557 (2016)

我们的实验设计

实验设计

零负载下速度与定子数目关系

马达定子占空比=1

□ 精确测量零负载下马达定子数目

□ 马达零负载速度 与定子数目无关 □ 二 定子占空比=1

王彬、张榕京

国家自然基金委,科技部重点研发计划

Wang, Zhang, Yuan*. PNAS 114,12478(2017)