少体原子的精密谱 H₂, He & QED

È

御学校

ホナシテ

ice and Technology of China

胡水明 smhu@ustc.edu.cn

May 22, 2018

育天下英才 嚴濟慈調題 5/22/2018

Shuiming Hu, smhu@ustc.edu.cn

Energy levels of the hydrogen atom

Energy levels of the hydrogen atom

Energy levels of the hydrogen atom

QED: "the jewel of physics" --- Richard Feynman

The Nobel Prize in Physics 1965 Sin-Itiro Tomonaga, Julian Schwinger, Richard P. Feynman

Simplest few-body systems

- Full quantum, ab initio, no tunable parameters
- Fine structure constant, $\alpha \approx 1/137$
- Electron-Proton mass ratio, $\mu = m_e/m_p \approx 1/1836$
- Rydberg constant, R_{∞}
- Nuclear charge radii, $r_{\rm p}$, $r_{\rm He}$
- Test of bound-state QED
- > Determination of R_{∞} ($r_{\rm p}$), α , $m_{\rm p}/m_{\rm e}$
- > New Physics?

Search for Physics Beyond the Standard Model in Atoms

The 5th force??

PHYSICAL REVIEW D 87, 112008 (2013)

Bounds on fifth forces from precision measurements on molecules

E. J. Salumbides,^{1,2} J. C. J. Koelemeij,¹ J. Komasa,³ K. Pachucki,⁴ K. S. E. Eikema,¹ and W. Ubachs¹

5/22/2018

¹Department of Physics and Astronomy, and LaserLaB, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands ²Department of Physics, University of San Carlos, Cebu City 6000, Philippines ³Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland ⁴Faculty of Physics, University of Warsaw, Hoża

(Received 19 April 2013; published Salumbides et al, PRD 87:112008 (2013)

检验量子电动力学(QED)理论 >测量里德堡常数 R_{∞} \succ ▶ 发展激光技术:光梳 → 光钟

5/22/2018

Simplest few-body systems

- Full quantum, ab initio, no tunable parameters
- Fine structure constant, $\alpha \approx 1/137$
- Electron-Proton mass ratio, $\mu = m_e/m_p \approx 1/1836$
- Rydberg constant, R_{∞}
- Nuclear charge radii, $r_{\rm p}$, $r_{\rm He}$
- Test of bound-state QED
- > Determination of R_{∞} ($r_{\rm p}$), α , $m_{\rm p}/m_{\rm e}$
- > New Physics?

$$E_{n\ell j} = R_{\infty} \left[-\frac{1}{n^2} + f_{n\ell j} (\alpha, \frac{m_e}{m_p}, \cdots) + \delta_{\ell 0} \frac{C_{NS}}{n^3} r_p^2 \right]$$

$$X_{20} \alpha^2 + X_{30} \alpha^3 + \cdots$$

Beyer et al., Science 2017

He

Transitions of He

⁴He $2^{3}P$ 精细结构分裂

氦原子精细结构能级

	S IS IS		
Term	$ u_{01}$	$ u_{12}$	$ u_{02}$
$m\alpha^4(+m/M)$	29563765.45	2320241.43	
$m \alpha^5 (+m/M)$	54704.04	-22545.00	
$m lpha^6$	-1607.52(2)	-6506.43	
$m \alpha^6 m/M$	-9.96	9.15	
$m \alpha^7 \log(Z \alpha)$	81.43	-5.87	
$m\alpha^7$, nlog	18.86	-14.38	
$m\alpha^8$	± 1.7	± 1.7	
Total theory	29616952.29 ± 1.7	2291178.91 ± 1.7	31908131.20 ± 1.7
Experiment	$29616951.66(70)^a$	$2291177.53(35)^d$	$31908131.25(30)^f$
	$29616952.7(10)^b$	$2291175.59(51)^a$	$31908126.78(94)^a$
	$29616950.9(9)^c$	$2291175.9(10)^e$	

 $E_{\rm fs} = E_{\rm fs}^{(4)} + E_{\rm fs}^{(5)} + E_{\rm fs}^{(6)} + E_{\rm fs}^{(7)} + O(\alpha^8)$

Krzysztof Pachucki and Vladimir A. Yerokhin Journal of Physics:Conference Series **264**(2011) 012007

4

氦-4原子 (1s2p) 2³P 精细结构能级间隔

5/22/2018

实验方法

- 光学抽运:
 制备单量子态
- 光谱探测:
 快速切换探测激光
- 拟合光谱: 中心频率间隔

系统误差检查 - 磁场

系统误差检查 - 激光功率

系统误差检查 - 其他

量子干涉效应

A. Marsman, M. Horbatsch, E. A. Hessels, Phys. Rev. A 91, 062506 (2015)

M. Horbatsch, E. A. Hessels, Phys. Rev. A 82, 052519 (2010)

测量不确定度

测量不确定度表 (kHz)

误差来源	v ₀₂	$\Delta v(1\sigma)$	v ₁₂	Δν(1σ)
统计	31 908 130.90	0.06	2 291 176.35	0.08
磁场塞曼效应		0.06		0.09
探测激光功率		0.06		0.06
一阶多普勒		0.03		0.03
杂散光影响		0.02		0.02
激光偏振		0.03		0.08
初始量子态		0.04		0.04
量子干涉效应	+0.08	0.03	+1.21	0.10
不确定度	31 908 130.98	0.13	2 291 177.56	0.19

Physical Review A **91**, 030502(R) (2015) Physical Review Letters **118**,063001 (2017)

- 检验束缚态QED: 验证 $m\alpha^7$ 阶修正
- 测定精细结构常数α: 至2 ppb (实验)

G.-P. Feng, *et al.*, PRA 2015 X. Zheng, *et al.*, PRL 2017

"质子半径之谜"

Nature **466**, 213 (2010) Science **339**, 417 (2013) Science **353**, 669 (2016) Science **358**, 79 (2017) PRL **120**, 183001 (2018)

"He同位素半径之谜"

PRL **74**, 3553 (1995) Science **333**, 196 (2011) PRL **108**, 143001 (2012)

4He原子2³S₁-2³P₁跃迁绝对频率测定方法

$$\begin{split} & \searrow \Delta_1 = f_{center} + \Delta_{ZS_I} + \Delta_{ZS_II} \\ & \searrow \Delta_2 = f_{center} - \Delta_{ZS_I} + \Delta_{ZS_II} \\ & \searrow f_{center} = (\Delta_1 + \Delta_2)/2 - \Delta_{ZS_II} \end{split}$$

一阶多普勒效应

抑制一阶多普勒效应

Phys. Rev. Lett. **92**,023001 (2004) Can. J. Phys. **83**,301 (2005) Phys. Rev. Lett. **105**,123001 (2010)

Optics Express 24,17470 (2016)

抑制一阶多普勒效应

误差来源	修正	$\Delta f(1\sigma)$
统计误差		0.45
一阶多普勒		1.1
二阶多普勒	0.70	0.15
频率校准		0.55
光谱线型		0.30
量子干涉	0.60	0.10
激光功率		0.10
塞曼效应		0.01
反冲效应	-42.20	-
PRL 17 @ Hefei	276,734,477,7 <u>03.8</u>	1.4
PRL 04@Florence	276,736,477,7 <u>52.5</u>	2.0

X. Zheng, et al., PRL 119, 263002 (2017)

"He同位素半径之谜"

- 仍需要独立的³He-跃迁频率测定
- 与CREMA μ-He+结果比较

H₂: the Most Abundant Molecule in the Universe

31

Non-relativistic Dissociation Energy of H₂

Pachucki et al., <u>JCP</u> **114**:164306 (2016); <u>PRL</u> **117**:263002 (2016); <u>PRA</u> **95**:052506 (2017)

Energy Levels of H₂

Electronic transition (VUV)

✓ Strong

□ No SF VUV laser source

Energy Levels of H₂

Electronic transition (VUV)

- ✓ Strong
- □ No SF VUV laser source

IR or VIS

✓ Best lasers available

No dipole transition

Extremely weak

quadrupole transitions

H₂ electric-quadrupole transition at 0.8um

Beer-Lambert's law: $I = I_0 \exp(-\alpha L)$

G. Herzburg, Nature 163:170, 1949 Cell length: 22 meters, 10atm H2, multi-pass:250

Quadrupole Rotation-Vibration Spectrum of the Hydrogen Molecule

considered that molecular hydrogen an infra-red rotation-vibration specr, such a spectrum may be expected ransition made possible by the change moment during the vibration¹. The sity of this spectrum is so low that a er of 10 km. at atmospheric pressure btain it in absorption^{1,2}.

H₂: 80% of the atmosphere of Jupiter SCIENCE

Tobias Owen

27 March 1970, Volume 167, Number 3926

The Atmosphere of Jupiter

This giant planet appears to represent an early stage in the history of the solar system.

Rutherfurd (1). In 1863 he wrote that, in addition to the customary Fraunhofer lines present in the reflected solar radiation, the spectrum of Jupiter contained "two bands in the red and orange, between C and D, which are not found in the solar spectrum" (Fig. 1). He suggested that these might be caused by a Jovian atmosphere. Some 70 years later these absorptions were identified by Wildt, who showed that they are produced by methane and ammonia (2).

Many other absorption bands of

Cavity ring-down spectroscopy (CRDS)

 $S_3(1)$ (v=3 \leftarrow 0, J=3 \leftarrow 1) line of H₂ @ 815nm

Hu et al. *Astrophys J* **749**:76, 2012

Line position of $S_3(3)$ (V=3 \leftarrow 0, J=5 \leftarrow 3) of H_2

30 GHZ 1cm⁻¹

Line position of H₂, S₃(3) (V=3 \leftarrow 0, J=5 \leftarrow 3)

40

Precision spectroscopy of molecular hydrogen

Comb-Locked CRDS

© Precision <0.1kHz © Scan range >10GHz © Sensitive $L_{eff} \sim 10^2$ km © Power enhancement: 10⁴

Comb-Locked CRDS

Cavity Mode Width: 1.7 kHz, Intra-cavity Laser Power: 200 W;

Finesse: 120 000 Beam Radius: 0.5 mm

Broad Scan: tuning f_{eom} with a step of FSR

Fine Scan: tuning $f_{\rm B}$

CO: V=3-0, R(10), f = 191 440 612 662.2(5) kHz

 $\Delta f/f = 3E-12$

王进

HD, v=2-0, R(1) line @ 1.38 um, Doppler Limited

HD, v=2-0, R(1), Lamb Dip

Saturation spectroscopy of extremely weak transition: A=2E-5/s

HD, v=2-0, R(1), Lamb Dip

→ 1 MHz, transit-time broadening

HD, v=2-0, R(1), Lamb Dip

HD, v=2-0, R(1): *f* = 217 105 182.79 (9) MHz

HD transition frequency

 $E = E^{(2)} + E^{(4)} + E^{(5)} + E^{(6)} + E^{(7)} + E_{\rm FS}$

Calculation by Pachucki & Komasa

	$D_0, (0,0), \mathrm{cm}^{-1}$	2-0, $R(1)$, cm^{-1}
$E^{(2)}$	36406.510839(1)	7241.846169(1)
$E^{(4)}$	$-0.531325(1)(425)^a$	$0.040719(0)(32)^a$
$E^{(5)}$	$-0.1964(2)(2)^a$	$-0.03743(4)(3)^a$
$E^{(6)}$	-0.002080(6)	-0.000339
$E^{(7)}$	0.00012(6)	0.000021
E^b_{FS}	-0.000117	-0.000021
Total	36405.7810(5)	7241.84912(6)
Expt.	$36405.78366(36)^c$	7241.849386(3)
Diff.	0.0026	0.00027

➤ Calc 2010:	$0.001 \text{ cm}^{-1} (30 \text{ MHz})$
➢ Exp 2012:	0.001 cm ⁻¹ (30 MHz)

- ➤ Calc *this*: 0.000 06 cm⁻¹ (2 MHz)
 ➤ Exp *this*: 0.000 003 cm⁻¹ (0.1 MHz)
- \succ Exp.-Calc.: 0.000 27cm⁻¹ (8 MHz)

Tao et al., PRL 120:153001, 2018

Sensitivity to the Constants

$\frac{d\nu}{\nu} = \mu$	$\beta_{R_y} \frac{dR_y}{R_y} +$	$\beta_{\alpha} \frac{d\alpha}{\alpha} + \beta_{\mu}$	$p^{p} \frac{d\mu_{p}}{\mu_{p}} + \beta_{\mu_{d}}$	$\frac{d\mu_d}{\mu_d} + \beta_{r^2}$	$\frac{dr^2}{r^2}$
	Constant	$\delta C/C$ codata	ß	$\beta \times \delta C/C$	
	Ry	5.9E-12	1	6E-12	
(α	2.3E-10	-4.3E-6	-1E-15	
1	$\mu_{\rm p} = m_{\rm p}/m_{\rm e}$	9.5E-11	-0.31	-3E-11	
1	$\mu_{\rm d} = m_{\rm d}/m_{\rm e}$	3.5E-11	-0.060	-2E-12	
i	$r^2 = r_{\rm d}^2 + r_{\rm p}^2$	0.004	-2.9E-9	-1E-11	

 $\delta v/v \sim (0.4 \text{ ppb})_{exp} (8 \text{ppb})_{calc}$ $\Rightarrow \delta \mu_p / \mu_p \sim (1.3 \text{ppb})_{exp} (30 \text{ppb})_{calc}$

Calculation by Pachucki & Komasa

Ro-vibrational Energies of Molecular Hydrogen

NTSC, CAS (Xi'an, CN) H.-F. Jiang

NIM (Beijing, CN) F. Meng, Z.-J. Fang

VU (Amsterdam, NL) W. Ubachs, E. Salumbides VRIJE UNIVERSITEIT

AMSTERDAM

K. Pachucki UW (Warsaw, PL)

LIPHY (U. Grenoble, FR)

A. Campargue, S. Kassi **GRENOBLE**

LISA (UPEC, FR)

NICOLAUS COPERNICUS **UNIVERSITY** P. Wcislo IN TORUŃ UMK (Toren, PL)

Shuiming Hu, smhu@ustc.edu.cn

激光痕量探测与精密测量实验室 http://atta.ustc.edu.cn

Thank you for your attention!