Exploring Nuclear Structure at the Ultra-Relativistic Heavy-Ion Collisions

Study of Quark-Gluon Plasma in the Little Bang

State-of-the-art: Viscosities of QGP

State-of-the-art: Viscosities of QGP

Extracted viscosities of QGP

- shear viscosity η/s
- bulk viscosity ζ/s

Duke:Nature Phys. 15 (2019) 11, 1113Jyväskylä:Phys. Rev. C 104, 054904 (2021)Trajectum:Phys. Rev. Lett. 126, 202301 (2021)JETSCAPE:Phys. Rev. Lett. 126, 242301 (2021)IP-Glasma:Phys. Rev. Lett. 128, 042301 (2022)

State-of-the-art: Viscosities of QGP

Extracted viscosities of QGP

- shear viscosity η/s
- bulk viscosity ζ/s

UNIVERSITY OF

COPENHAGEN

Duke:Nature Phys. 15 (2019) 11, 1113Jyväskylä:Phys. Rev. C 104, 054904 (2021)Trajectum:Phys. Rev. Lett. 126, 202301 (2021)JETSCAPE:Phys. Rev. Lett. 126, 242301 (2021)IP-Glasma:Phys. Rev. Lett. 128, 042301 (2022)

Huge uncertainties of the extracted QGP properties, due to poorly known initial conditions

IC:What is our current understanding?

IC: What is our current understanding?

Trajectum

IC:What is our current understanding?

Trajectum

IC:What is our current understanding?

From eccentricity to elliptic flow

- Spatial anisotropy in the initial state converted to momentum anisotropic particle distributions
 - known as elliptic flow
 - reflect initial eccentricity and transport properties of QGP

From initial anisotropy to anisotropic flow

UNIVERSITY OF COPENHAGEN

Probe QGP properties with Flow

Flow measurements at the top LHC energies agree with hydrodynamic predictions

- The Quark-Gluon Plasma behaves like a perfect fluid
- Constrain initial state models

UNIVERSITY

COPENHAGEN

• EKRT 🔽, TRENTo 🟹, IP-Glasma 🔽, MC-KLN 🗙, MC-Glauber 🗙

You Zhou (NBI) @ 见微学术沙龙, USTC, China

How does v_n fluctuate

v_n{**m**}

$$v_n\{6\} = \sqrt[6]{\langle v_n^6 \rangle - 9 \langle v_n^2 \rangle \langle v_n^4 \rangle + 12 \langle v_n^2 \rangle^3},$$

$$v_n\{8\} = \sqrt[8]{\langle v_n^8 \rangle - 16\langle v_n^2 \rangle \langle v_n^6 \rangle - 18\langle v_n^4 \rangle^2 + 144\langle v_n^2 \rangle^2 \langle v_n^4 \rangle - 144\langle v_n^2 \rangle^4}$$

How does v_n fluctuate

How does v_n fluctuate

You Zhou (NBI) @ 见微学术沙龙, USTC, China

UNIVERSITY OF

COPENHAGEN

How does v_n fluctuate

UNIVERSITY OF

COPENHAGEN

$P(v_n) \rightarrow P(\varepsilon_n)$

How does v_n fluctuate

$v_n \propto \varepsilon_n$ $P(v_n / \langle v_n \rangle) \approx P(\varepsilon_n / \langle \varepsilon_n \rangle)$

Final state $P(v_2/\langle v_2 \rangle)$

* Despite the precision of experimental data (ALICE, ATLAS, CMS), the differences of $P(\varepsilon_n)$ from various initial state models are minor

* Despite the precision of experimental data (ALICE, ATLAS, CMS), the differences of $P(\varepsilon_n)$ from various initial state models are minor

UNIVERSITY OF COPENHAGEN YOU Z

Ψ_n - Ψ_m correlations

How do ψ_n and ψ_m correlate

UNIVERSITY OF

COPENHAGEN

Initial conditions (size) through [pT]

Shape of the fireball: Anisotropic flow

[H. Niemi et al., PRC 87 (2013) 5, 054901

Initial conditions (size) through [pT]

Shape of the fireball: Anisotropic flow

Size of the fireball: radial flow, $[p_T]$

[G. Giacalone et al., PRC103 (2021) 2, 024909]

UNIVERSITY OF

Initial conditions (size) through [pT]

ALICE, PRC88 (2013) 044910, PRL111 (2013) 222301

✤ Multi-particle [p_T] correlations:

$$\langle p_{\mathrm{T}} \rangle = \frac{\sum_{i=1}^{N_{\mathrm{ch}}} p_{\mathrm{T},i}}{N_{\mathrm{ch}}} \\ \langle \Delta p_{\mathrm{T},i} \Delta p_{\mathrm{T},j} \rangle = \left\langle \frac{\sum_{i,j}^{N_{\mathrm{ch}}} (p_{\mathrm{T},i} - \langle \langle p_{\mathrm{T}} \rangle \rangle) (p_{\mathrm{T},j} - \langle \langle p_{\mathrm{T}} \rangle \rangle)}{N_{\mathrm{ch}} (N_{\mathrm{ch}} - 1)} \right\rangle_{\mathrm{ev}} \\ \langle \Delta p_{\mathrm{T},i} \Delta p_{\mathrm{T},j} \Delta p_{\mathrm{T},k} \rangle = \left\langle \frac{\sum_{i,j,k}^{N_{\mathrm{ch}}} (p_{\mathrm{T},i} - \langle \langle p_{\mathrm{T}} \rangle \rangle) (p_{\mathrm{T},j} - \langle \langle p_{\mathrm{T}} \rangle \rangle) (p_{\mathrm{T},k} - \langle \langle p_{\mathrm{T}} \rangle \rangle)}{N_{\mathrm{ch}} (N_{\mathrm{ch}} - 1) (N_{\mathrm{ch}} - 2)} \right\rangle_{\mathrm{ev}}$$

Size of the fireball: radial flow, $[p_T]$

UNIVERSITY OF COPENHAGEN

[p_T] fluctuations

 [P_T] and its event-by-event fluctuations measured in heavy-ion collisions at the LHC -> probe initial size and size fluctuations

J.E. Bernhard etc, Nature Physics, 15, 1113 (2019)

J.E. Bernhard etc, Nature Physics, 15, 1113 (2019)

J.E. Bernhard etc, Nature Physics, 15, 1113 (2019)

JETSCAPE, Phys. Rev. Lett. 126, 242301 (2021)

`**₹"**₽⊒ `````

UNIVERSITY OF

COPENHAGEN

You Zhou (NBI) @ 见微学术沙龙, USTC, China

UNIVERSITY OF

COPENHAGEN

v_n-[p_T] correlations

Shape of the fireball: Anisotropic flow

Size of the fireball: radial flow, $[p_T]$

\clubsuit Final state: correlation between v_n and p_T

$$\rho(v_n^2, [p_{\mathrm{T}}]) = \frac{cov(v_n^2, [p_{\mathrm{T}}])}{\sqrt{var(v_n^2)}\sqrt{var([p_{\mathrm{T}}])}}$$

P. Bozek etc, PRC96 (2017) 014904

Considering
$$\mathbf{v}_n \propto \mathbf{\varepsilon}_n$$
, $[\mathbf{p}_T] \propto \mathbf{E}_0$
 $\rho(v_n^2, [p_T]) = \rho(\varepsilon_n^2, [E_0])$

final-state model calculation

Initial-state model estimation

• One can compare $\rho(v_n^2, [p_T])$ measurements to $\rho(\varepsilon_n^2, [E_0])$ calculations, to constrain the initial state model

$\rho(v_n^2, [p_T])$ in Pb-Pb

- IP-Glasma+MUSIC+UrQMD shows a weak centrality dependence and describe the data fairly well
- State-of-the-art Bayesian results (Trajectum, JETSCAPE) with TRENTo initial conditions all show strong centrality dependence, negative values for centrality >40%

UNIVERSITY OF

COPENHAGEN

Constraining nucleon width

Sensitive to the nucleon width parameter (size of nucleon)

- IP-Glasma ~ 0.4 fm; v-USPhydro ~ 0.5 fm; Trajectum~0.7 fm; JETSCAPE (T_RENTo) ~ 1.1 fm
- w(IP-Glasma) < w(v-USPhydro) < w(Trajectum) < w(JETSCAPE)
- New constraints on the nucleon size

w ~ 0.4

UNIVERSITY OF

COPENHAGEN

ALICE, Physics Letters B 850, 138477 (2024) ALICE, JHEP 05 (2023) 243 ALICE, Phys. Rev. C Letters, 107 (2023) 051901 ALICE, Physics Letters B 834, 137393 (2022) ALICE, Physics Letters B 818, 136354 (2021) ALICE, Phys. Rev. C 104, 024903 (2021) ALICE, Phys. Rev. C 103, 024913 (2021) ALICE, Phys. Rev. C 103, 024913 (2021) ALICE, ALICE-PUBLIC-2021-004 (2021) ALICE, JHEP 06, 147 (2020) ALICE, JHEP 05, 085 (2020) ALICE, Eur. Phys. J. C 80, 846 (2020) ALICE, Physics Letters B784 (2018) 82 ALICE, Phys. Rev. C 97, 024906 (2018) ALICE, JHEP07 (2018) 103

UNIVERSITY OF COPENHAGEN

Nuclear structure at low energies

Nuclear structure at low energies

Energy density function method : accurate description of masses and radii

Nuclear structure at low energies

Nuclear Structure of ¹²⁹Xe

Nobelprisen i fysik

1975

Aage Niels Bohr (NBI)

Ben Mottelson (NBI)

Nuclear structure at high energies

COPENHAGEN

Probe nuclear structure of ^{129}Xe with v_n

Significant v₂ enhancements in central Xe-Xe collisions

* LHC data clearly suggests a non-zero β_2 (deformation of ¹²⁹Xe)

Differential flow vs p_T and η

Differential flow vs p_T and η

 0.9^{L}_{0}

2

6

4

centrality (%)

8

10

Differential flow vs p_T and η

UNIVERSITY OF

COPENHAGEN

ψ_n - ψ_m correlations

How do ψ_n and ψ_m correlate

ψ_n - ψ_m correlations

How do ψ_n and ψ_m correlate

ψ_n - ψ_m correlations

How do ψ_n and ψ_m correlate

A **stronger** correlation is observed in the Xe-Xe collisions.

UNIVERSITY OF COPENHAGEN

Nuclear structure with Standard flow studies

- Promising sensitivities to the nuclear deformation β_2 in central Xe-Xe collisions
- Insensitive to triaxial structure

UNIVERSITY OF

COPENHAGEN

Probe NS with two-particle [pT] correlations

Eur. Phys. J. A (2024) 60:38 https://doi.org/10.1140/epja/s10050-024-01266-x The European Physical Journal A

Regular Article - Theoretical Physics

Generic multi-particle transverse momentum correlations as a new tool for studying nuclear structure at the energy frontier

Emil Gorm Dahlbæk Nielsen, Frederik K. Rømer, Kristjan Gulbrandsen, You Zhou^a Niels Bohr Institute, University of Copenhagen, 2200 Copenhagen, Denmark

Table 2 The cumulants of d_{\perp} up to eighth order in a liquid-drop model potential averaged over random orientations. The first three entries are given in [29]

Final state Cumulant	Initial state Cumulant	Liquid-drop Model
к2	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$\frac{1}{32\pi}\langle \beta_2^2\rangle$
к3	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$\frac{\sqrt{5}}{896\pi^{3/2}}\langle\cos(3\gamma)\beta_2^3\rangle$
К4	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle - 3 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-\tfrac{3}{14336\pi^2}(7\langle\beta_2^2\rangle^2-5\langle\beta_2^4\rangle)$
к5	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle - 10 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\tfrac{5\sqrt{5}}{315392\pi^{5/2}}(11\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^2\rangle-5\langle\beta_2^5\rangle)$
к	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle - 15 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{4} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{918412504\pi^3}(42042\langle\beta_2^2\rangle^3-5720\langle\cos(3\gamma)\beta_2^3\rangle^2$
	$+30 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^3 - 10 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2$	$-45045 \langle \beta_2^2 \rangle \langle \beta_2^4 \rangle + 8575 \langle \beta_2^6 \rangle + 700 \langle \cos(6\gamma) \beta_2^6 \rangle)$
к	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^7 \right\rangle - 21 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\frac{15\sqrt{5}}{524812288}(2002\langle\beta_2^2\rangle^2\langle\cos(3\gamma)\beta_2^3\rangle$
	$+210 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^2$	$+715\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^4\rangle$
	$-35 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right)$	$+910\langle\cos(3\gamma)\beta_2^5\rangle\langle\beta_2^2\rangle-175\cos(3\gamma)\beta_2^7\rangle)$
к	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{8} \right\rangle - 28 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{142748942336\pi^4}(2144142\langle\beta_2^2\rangle^4 - 3063060\langle\beta_2^2\rangle^2\langle\beta_2^4\rangle$
	$+420 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-340\langle\beta_2^2\rangle\bigg(2288\langle\cos(3\gamma)\beta_2^3\rangle^2-35\bigl(49\langle\beta_2^6\rangle$
	$-35\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4\right)^2 - 630 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2\right)^4$	$+4\langle\cos(6\gamma)\beta_2^6\rangle\Big)\Big)+25\bigg(21879\langle\beta_2^4\rangle^2$
	$+560 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)$	+14144 $\langle \cos(3\gamma)\beta_2^3\rangle\langle \cos(3\gamma)\beta_2^5\rangle$
	$-56 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^5 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)$	$-35(79\langle\beta_2^8\rangle+16\langle\cos(6\gamma)\beta_2^8\rangle)\bigg)$

Probe NS with two-particle [pT] correlations

Eur. Phys. J. A (2024) 60:38 https://doi.org/10.1140/epja/s10050-024-01266-x The European Physical Journal A

Regular Article - Theoretical Physics

Generic multi-particle transverse momentum correlations as a new tool for studying nuclear structure at the energy frontier

Emil Gorm Dahlbæk Nielsen, Frederik K. Rømer, Kristjan Gulbrandsen, You Zhou^a Niels Bohr Institute, University of Copenhagen, 2200 Copenhagen, Denmark

Table 2 The cumulants of d_{\perp} up to eighth order in a liquid-drop model potential averaged over random orientations. The first three entries are given in [29]

Final state Cumulant	Initial state Cumulant	Liquid-drop Model
к2	$\left< \left(\left(\frac{\delta d_\perp}{d_\perp} \right)^2 \right>$	$\frac{1}{32\pi}\langle eta_2^2 \rangle$
к3	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$\frac{\sqrt{5}}{896\pi^{3/2}}\langle\cos(3\gamma)\beta_2^3\rangle$
<i>К</i> 4	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle - 3 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-\tfrac{3}{14336\pi^2}(7\langle\beta_2^2\rangle^2-5\langle\beta_2^4\rangle)$
к5	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{5} \right\rangle - 10 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{3} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$-\tfrac{5\sqrt{5}}{315392\pi^{5/2}}(11\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^2\rangle-5\langle\beta_2^5\rangle)$
к	$\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6}\right) - 15 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{4}\right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2}\right)$	$\frac{5}{918412504\pi^3}(42042\langle\beta_2^2\rangle^3-5720\langle\cos(3\gamma)\beta_2^3\rangle^2$
	$+30 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^3 - 10 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2$	$-45045 \langle \beta_2^2 \rangle \langle \beta_2^4 \rangle + 8575 \langle \beta_2^6 \rangle + 700 \langle \cos(6\gamma) \beta_2^6 \rangle)$
<i>к</i> 7	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^7 \right\rangle - 21 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\frac{15\sqrt{5}}{524812288}(2002\langle\beta_{2}^{2}\rangle^{2}\langle\cos(3\gamma)\beta_{2}^{3}\rangle$
	$+210 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^2$	$+715\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^4\rangle$
	$-35 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right)$	$+910\langle\cos(3\gamma)\beta_2^5\rangle\langle\beta_2^2\rangle-175\cos(3\gamma)\beta_2^7\rangle)$
ĸ ₈	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{8}\right\rangle - 28 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6}\right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2}\right\rangle$	$\tfrac{5}{142748942336\pi^4}(2144142\langle\beta_2^2\rangle^4-3063060\langle\beta_2^2\rangle^2\langle\beta_2^4\rangle$
	$+420 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right) \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^2$	$-340\langle\beta_2^2\rangle\bigg(2288\langle\cos(3\gamma)\beta_2^3\rangle^2-35\bigl(49\langle\beta_2^6\rangle$
	$-35\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4\right)^2-630\cdot\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2\right)^4$	$+4\langle\cos(6\gamma)\beta_2^6\rangle\Big)\Big)+25\Big(21879\langle\beta_2^4\rangle^2$
	$+560 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)$	$+14144\langle\cos(3\gamma)\beta_2^3\rangle\langle\cos(3\gamma)\beta_2^5\rangle$
	$-56 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^5 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)$	$-35\big(79\langle\beta_2^8\rangle+16\langle\cos(6\gamma)\beta_2^8\rangle\big)\bigg)$

These two-particle pT correlations provide a new way to probe deformation structures of ¹²⁹Xe.

Probe NS with two-particle [pT] correlations

Eur. Phys. J. A (2024) 60:38 https://doi.org/10.1140/epja/s10050-024-01266-x The European Physical Journal A

Regular Article - Theoretical Physics

Generic multi-particle transverse momentum correlations as a new tool for studying nuclear structure at the energy frontier

Emil Gorm Dahlbæk Nielsen, Frederik K. Rømer, Kristjan Gulbrandsen, You Zhou^a Niels Bohr Institute, University of Copenhagen, 2200 Copenhagen, Denmark

Table 2 The cumulants of d_{\perp} up to eighth order in a liquid-drop model potential averaged over random orientations. The first three entries are given in [29]

Final state Cumulant	Initial state Cumulant	Liquid-drop Model
к2	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$\frac{1}{32\pi}\langle eta_2^2 \rangle$
кз	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$\frac{\sqrt{5}}{896\pi^{3/2}}\langle\cos(3\gamma)\beta_2^3\rangle$
К4	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle - 3 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-\tfrac{3}{14336\pi^2}(7\langle\beta_2^2\rangle^2-5\langle\beta_2^4\rangle)$
к5	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle - 10 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\tfrac{5\sqrt{5}}{315392\pi^{5/2}}(11\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^2\rangle-5\langle\beta_2^5\rangle)$
к	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle - 15 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{4} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{918412504\pi^3}(42042\langle\beta_2^2\rangle^3-5720\langle\cos(3\gamma)\beta_2^3\rangle^2$
	$+30 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^3 - 10 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2$	$-45045 \langle \beta_2^2 \rangle \langle \beta_2^4 \rangle + 8575 \langle \beta_2^6 \rangle + 700 \langle \cos(6\gamma) \beta_2^6 \rangle)$
К7	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^7 \right\rangle - 21 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\frac{15\sqrt{5}}{524812288}(2002\langle\beta_{2}^{2}\rangle^{2}\langle\cos(3\gamma)\beta_{2}^{3}\rangle$
	$+210 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^2$	$+715\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^4\rangle$
	$-35 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right)$	$+910\langle\cos(3\gamma)\beta_2^5\rangle\langle\beta_2^2\rangle-175\cos(3\gamma)\beta_2^7\rangle)$
к	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{8} \right\rangle - 28 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\tfrac{5}{142748942336\pi^4}(2144142\langle\beta_2^2\rangle^4-3063060\langle\beta_2^2\rangle^2\langle\beta_2^4\rangle$
	$+420 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-340\langle \beta_2^2\rangle \bigg(2288\langle \cos(3\gamma)\beta_2^3\rangle^2 - 35(49\langle \beta_2^6\rangle$
	$-35\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4\right)^2 - 630 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2\right)^4$	$+4\langle\cos(6\gamma)\beta_2^6\rangle\Big)\Big)+25\Big(21879\langle\beta_2^4\rangle^2$
	$+560 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)$	$+14144\langle\cos(3\gamma)\beta_2^3\rangle\langle\cos(3\gamma)\beta_2^5\rangle$
	$-56 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^5 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)$	$-35(79\langle\beta_2^8\rangle+16\langle\cos(6\gamma)\beta_2^8\rangle)\bigg)$

These two-particle pT correlations provide a new way to probe deformation structures of ¹²⁹Xe.

Probe NS with multi-particle [pT] correlations

Eur. Phys. J. A (2024) 60:38 https://doi.org/10.1140/epja/s10050-024-01266-x The European Physical Journal A

Regular Article - Theoretical Physics

Generic multi-particle transverse momentum correlations as a new tool for studying nuclear structure at the energy frontier

Emil Gorm Dahlbæk Nielsen, Frederik K. Rømer, Kristjan Gulbrandsen, You Zhou^a Niels Bohr Institute, University of Copenhagen, 2200 Copenhagen, Denmark

Table 2 The cumulants of d_{\perp} up to eighth order in a liquid-drop model potential averaged over random orientations. The first three entries are given in [29]

Final state Cumulant	Initial state Cumulant	Liquid-drop Model
κ2	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$\frac{1}{32\pi}\langle \beta_2^2\rangle$
ĸ ₃	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$\frac{\sqrt{5}}{896\pi^{3/2}}\langle\cos(3\gamma)\beta_2^3\rangle$
к4	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle - 3 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-\tfrac{3}{14336\pi^2}(7\langle\beta_2^2\rangle^2-5\langle\beta_2^4\rangle)$
к5	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle - 10 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\tfrac{5\sqrt{5}}{315392\pi^{5/2}}(11\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^2\rangle-5\langle\beta_2^5\rangle)$
к6	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle - 15 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{4} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{918412504\pi^3}(42042\langle\beta_2^2\rangle^3-5720\langle\cos(3\gamma)\beta_2^3\rangle^2$
	$+30 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^3 - 10 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2$	$-45045 \langle \beta_2^2 \rangle \langle \beta_2^4 \rangle + 8575 \langle \beta_2^6 \rangle + 700 \langle \cos(6\gamma) \beta_2^6 \rangle)$
к7	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{7} \right\rangle - 21 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{5} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$-\frac{15\sqrt{5}}{524812288}(2002\langle\beta_{2}^{2}\rangle^{2}\langle\cos(3\gamma)\beta_{2}^{3}\rangle$
	$+210 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^2$	$+715\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^4\rangle$
	$-35 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right)$	$+910\langle\cos(3\gamma)\beta_2^5\rangle\langle\beta_2^2\rangle-175\cos(3\gamma)\beta_2^7\rangle)$
ĸ ₈	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{8} \right\rangle - 28 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\tfrac{5}{142748942336\pi^4}(2144142\langle\beta_2^2\rangle^4-3063060\langle\beta_2^2\rangle^2\langle\beta_2^4\rangle$
	$+420 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right) \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right\rangle^2$	$-340\langle\beta_2^2\rangle\bigg(2288\langle\cos(3\gamma)\beta_2^3\rangle^2-35\bigl(49\langle\beta_2^6\rangle$
	$-35\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4\right)^2 - 630 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2\right)^4$	$+4(\cos(6\gamma)\beta_2^6)) + 25(21879\langle\beta_2^4\rangle^2)$
	$+560 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)$	$+14144\langle\cos(3\gamma)\beta_2^3\rangle\langle\cos(3\gamma)\beta_2^5\rangle$
	$-56 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$-35\big(79\langle\beta_2^8\rangle+16\langle\cos(6\gamma)\beta_2^8\rangle\big)\bigg)$

Probe NS with multi-particle [pT] correlations

Eur. Phys. J. A (2024) 60:38 https://doi.org/10.1140/epja/s10050-024-01266-x The European Physical Journal A

Regular Article - Theoretical Physics

UNIVERSITY OF

COPENHAGEN

Generic multi-particle transverse momentum correlations as a new tool for studying nuclear structure at the energy frontier

Emil Gorm Dahlbæk Nielsen, Frederik K. Rømer, Kristjan Gulbrandsen, You Zhou^a Niels Bohr Institute, University of Copenhagen, 2200 Copenhagen, Denmark

Table 2 The cumulants of d_{\perp} up to eighth order in a liquid-drop model potential averaged over random orientations. The first three entries are given in [29]

Final state Cumulant	Initial state Cumulant	Liquid-drop Model
к2	$\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2\right)$	$rac{1}{32\pi}\langleeta_2^2 angle$
кз	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$\frac{\sqrt{5}}{896\pi^{3/2}}\langle\cos(3\gamma)\beta_2^3\rangle$
К4	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle - 3 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-\tfrac{3}{14336\pi^2}(7\langle\beta_2^2\rangle^2-5\langle\beta_2^4\rangle)$
к5	$\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{5}\right) - 10 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{3}\right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2}\right)$	$-\frac{5\sqrt{5}}{315392\pi^{5/2}}(11\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^2\rangle-5\langle\beta_2^5\rangle)$
ĸ ₆	$\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6}\right) - 15 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{4}\right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2}\right)$	$\frac{5}{918412504\pi^3} (42042 \langle \beta_2^2 \rangle^3 - 5720 \langle \cos(3\gamma) \beta_2^3 \rangle^2$
	$+30 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^3 - 10 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2$	$-45045 \langle \beta_2^2 \rangle \langle \beta_2^4 \rangle + 8575 \langle \beta_2^6 \rangle + 700 \langle \cos(6\gamma) \beta_2^6 \rangle)$
к7	$\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{7}\right) - 21 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{5}\right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2}\right)$	$-\tfrac{15\sqrt{5}}{524812288}(2002\langle\beta_2^2\rangle^2\langle\cos(3\gamma)\beta_2^3\rangle$
	$+210 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^2$	$+715\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^4\rangle$
	$-35 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right)$	$+910\langle\cos(3\gamma)\beta_2^5\rangle\langle\beta_2^2\rangle-175\cos(3\gamma)\beta_2^7\rangle)$
ĸ ₈	$\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{8}\right) - 28 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6}\right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2}\right)$	$\frac{5}{142748942336\pi^4}(2144142\langle\beta_2^2\rangle^4-3063060\langle\beta_2^2\rangle^2\langle\beta_2^4\rangle$
	$+420 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right) \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right\rangle^2$	$-340\langle\beta_2^2\rangle\bigg(2288\langle\cos(3\gamma)\beta_2^3\rangle^2-35\bigl(49\langle\beta_2^6\rangle$
	$-35\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4\right)^2 - 630 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2\right)^4$	$+4\langle\cos(6\gamma)\beta_2^6\rangle\Big)\Big)+25\Big(21879\langle\beta_2^4\rangle^2$
	$+560 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^2$	+14144 $\langle \cos(3\gamma)\beta_2^3\rangle\langle \cos(3\gamma)\beta_2^5\rangle$
	$-56 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^5 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)$	$-35\big(79\langle\beta_2^8\rangle+16\langle\cos(6\gamma)\beta_2^8\rangle\big)\bigg)$

Probe NS with multi-particle [pT] correlations

Eur. Phys. J. A (2024) 60:38 https://doi.org/10.1140/epja/s10050-024-01266-x The European Physical Journal A

Regular Article - Theoretical Physics

Generic multi-particle transverse momentum correlations as a new tool for studying nuclear structure at the energy frontier

Emil Gorm Dahlbæk Nielsen, Frederik K. Rømer, Kristjan Gulbrandsen, You Zhou^a Niels Bohr Institute, University of Copenhagen, 2200 Copenhagen, Denmark

Table 2 The cumulants of d_{\perp} up to eighth order in a liquid-drop model potential averaged over random orientations. The first three entries are given in [29]

Final state Cumulant	Initial state Cumulant	Liquid-drop Model
κ2	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$rac{1}{32\pi}\langleeta_2^2 angle$
Кз	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$\frac{\sqrt{5}}{896\pi^{3/2}}\langle\cos(3\gamma)\beta_2^3\rangle$
к4	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle - 3 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-\tfrac{3}{14336\pi^2}(7\langle\beta_2^2\rangle^2-5\langle\beta_2^4\rangle)$
к5	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle - 10 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\tfrac{5\sqrt{5}}{315392\pi^{5/2}}(11\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^2\rangle-5\langle\beta_2^5\rangle)$
ĸ ₆	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle - 15 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{4} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{918412504\pi^3}(42042\langle\beta_2^2\rangle^3-5720\langle\cos(3\gamma)\beta_2^3\rangle^2$
	$+30 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^3 - 10 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2$	$-45045 \langle \beta_2^2 \rangle \langle \beta_2^4 \rangle + 8575 \langle \beta_2^6 \rangle + 700 \langle \cos(6\gamma) \beta_2^6 \rangle)$
к7	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^7 \right\rangle - 21 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\frac{15\sqrt{5}}{524812288}(2002\langle\beta_{2}^{2}\rangle^{2}\langle\cos(3\gamma)\beta_{2}^{3}\rangle$
	$+210 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right) \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)^2$	$+715\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^4\rangle$
	$-35 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle$	$+910\langle\cos(3\gamma)\beta_2^5\rangle\langle\beta_2^2\rangle-175\cos(3\gamma)\beta_2^7\rangle)$
K8	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{8} \right\rangle - 28 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{142748942336\pi^4}(2144142\langle\beta_2^2\rangle^4 - 3063060\langle\beta_2^2\rangle^2\langle\beta_2^4\rangle$
	$+420 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^4 \right) \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right\rangle^2$	$-340\langle\beta_2^2\rangle\bigg(2288\langle\cos(3\gamma)\beta_2^3\rangle^2-35\bigl(49\langle\beta_2^6\rangle$
	$-35\left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4\right)^2 - 630 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2\right)^4$	$+4\langle\cos(6\gamma)\beta_2^6\rangle\Big)+25\bigg(21879\langle\beta_2^4\rangle^2$
	$+560 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^3 \right)^2 \cdot \left(\left(\frac{\delta d_{\perp}}{d_{\perp}} \right)^2 \right)$	+14144 $\langle \cos(3\gamma)\beta_2^3\rangle\langle \cos(3\gamma)\beta_2^5\rangle$
	$-56 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$-35(79\langle\beta_2^8\rangle+16\langle\cos(6\gamma)\beta_2^8\rangle)\bigg)$

 Multi-particle [pT] correlation reflects the initial size fluctuations, also bring new information on the **triaxial** structure.

Probe triaxial structure of ¹²⁹Xe

Probe triaxial structure of ¹²⁹Xe

Probe triaxial structure of ¹²⁹Xe

* Better agreement between LHC data and calculations with $\gamma = 26.93^{\circ}$

- First study of triaxial structure of ¹²⁹Xe at high energy collisions at the LHC
- Similar results confirmed by ATLAS

UNIVERSITY OF

COPENHAGEN

• Evidence of triaxial structure of ¹²⁹Xe? B. Bally etc, PRL128 (2022) 8, 082301

You Zhou (NBI) @ 见微学术沙龙, USTC, China

Probe γ-soft structure of ¹²⁹Xe

arXiv:2403.07441, submitted to PRL

Nuclear Theory

[Submitted on 12 Mar 2024]

Exploring the Nuclear Shape Phase Transition in Ultra-Relativistic 129 Xe $+^{129}$ Xe Collisions at the LHC

Shujun Zhao, Hao-jie Xu, You Zhou, Yu-Xin Liu, Huichao Song

The shape phase transition for certain isotope or isotone chains, associated with the quantum phase transition of finite nuclei, is an intriguing phenomenon in nuclear physics. A notable case is the Xe isotope chain, where the structure transits from a γ -soft rotor to a spherical vibrator, with the second-order shape phase transition occurring in the vicinity of $^{128-130}$ Xe. In this letter, we focus on investigating the γ -soft deformation of 129 Xe associated with the second-order shape phase transition by constructing novel correlators for ultra-relativistic 129 Xe $^{+129}$ Xe collisions. In particular, our iEBE-VISHNU model calculations show that the $v_2^2 - [p_T]$ correlation ρ_2 and the mean transverse momentum fluctuation Γ_{p_T} , which were previously interpreted as the evidence for the rigid triaxial deformation of 129 Xe, can also be well explained by the γ -soft deformation of 129 Xe. We also propose two novel correlators $\rho_{4,2}$ and $\rho_{2,4}$, which carry non-trivial higher-order correlations and show unique capabilities to distinguish between the γ -soft and the rigid triaxial deformation of 129 Xe in 129 Xe in 129 Xe collisions at the LHC. The present study also provides a novel way to explore the second-order shape phase transition of finite nuclei with ultra-relativistic heavy ion collisions.

UNIVERSITY OF

COPENHAGEN

As soon as the $\langle \cos(3\gamma) \rangle$ is the same, the ρ_2 and Γ_{pt} are identical

 One can **NOT** distinguish triaxial (fixed γ = 30°) and γ-soft (fluctuating γ) structures with existing 3-particle correlations

Simple logic

Simple logic

***** To probe the relation of r_1 , r_2 and r_3 , we need 3-particle correlations

Simple logic

- ***** To probe the relation of r_1 , r_2 and r_3 , we need 3-particle correlations
- \clubsuit To probe the γ fluctuations, we need 6-particle correlations

New probe for the γ -soft structure

New proposals:

Expectations:

COPENHAGEN

$$\begin{split} \rho_{4,2} &\equiv \left(\frac{\langle \varepsilon_{2}^{4} \delta d_{\perp}^{2} \rangle}{\langle \varepsilon_{2}^{4} \rangle \langle d_{\perp} \rangle^{2}}\right)_{c} \equiv \frac{1}{\langle \varepsilon_{2}^{4} \rangle \langle d_{\perp} \rangle^{2}} \left[\langle \varepsilon_{2}^{4} \delta d_{\perp}^{2} \rangle + 4 \langle \varepsilon_{2}^{2} \rangle^{2} \langle \delta d_{\perp}^{2} \rangle - \langle \varepsilon_{2}^{4} \rangle \langle \delta d_{\perp}^{2} \rangle - 4 \langle \varepsilon_{2}^{2} \rangle \langle \varepsilon_{2}^{2} \delta d_{\perp}^{2} \rangle - 4 \langle \varepsilon_{2}^{2} \delta d_{\perp} \rangle^{2} \right] \\ \rho_{2,4} &\equiv \left(\frac{\langle \varepsilon_{2}^{2} \delta d_{\perp}^{4} \rangle}{\langle \varepsilon_{2}^{2} \rangle \langle d_{\perp} \rangle^{4}} \right)_{c} \equiv \frac{1}{\langle \varepsilon_{2}^{2} \rangle \langle d_{\perp} \rangle^{4}} \left[\langle \varepsilon_{2}^{2} \delta d_{\perp}^{4} \rangle - 6 \langle \varepsilon_{2}^{2} \delta d_{\perp}^{2} \rangle \langle \delta d_{\perp}^{2} \rangle - 4 \langle \varepsilon_{2}^{2} \delta d_{\perp} \rangle \langle \delta d_{\perp}^{3} \rangle - \langle \varepsilon_{2}^{2} \rangle \langle \delta d_{\perp}^{4} \rangle + 6 \langle \varepsilon_{2}^{2} \rangle \left(\langle \delta d_{\perp}^{2} \rangle \right) \right] \end{split}$$

 $\langle \varepsilon_{2}^{4} \rangle \rho_{4,2} = A\beta_{2}^{6}(53 + 16\langle \cos(6\gamma) \rangle) + f_{4,2}(\beta_{2}^{6}, \langle \cos(3\gamma) \rangle) \\ \langle \varepsilon_{2}^{2} \rangle \rho_{2,4} = \frac{A}{16}\beta_{2}^{6}(43 - 14\langle \cos(6\gamma) \rangle) + f_{2,4}(\beta_{2}^{6}, \langle \cos(3\gamma) \rangle)$

- The six-particle correlations allow to differentiate triaxial (fixed γ = 30°) and γ-soft (fluctuating γ) structures.
- Difference in ρ_{4,2} can reach 50% in the ultra-central collisions.

*Opening a new pathway to probe nuclear shape phase transition at the ultrarelativistic energies.

Massive Pb-Pb data

Run 2 2017 (pilot)

8 hours data taken

Massive Pb-Pb data

8 hours data taken

4-6 weeks each period

Neutron skin study at High Energy

UNIVERSITY OF COPENHAGEN

Extracting neutron skin of ²⁰⁸Pb

CERN

Thick-skinned: Using heavy-ion collisions at the LHC, scientists determine the thickness of neutron "skin" in lead-208 nuclei

This is the first measurement of the neutron skin of lead-208 using exchanges predominantly involving gluons and it can provide insight into the structure of nuclei and neutron stars

15 NOVEMBER, 2023 | By Naomi Dinmore

Connecting to astrophysics

neutron skin

Symmetry energy EoS of Nuclear Matter

Critical size & mass of neutron stars

Heavy-ion collisions

Neutron stars

And more

✤ More than just flow and [p_T]

O-O collisions at the LHC in 2025

arXiv: 2402.05995

The unexpected uses of a bowling pin: exploiting ²⁰Ne isotopes for precision characterizations of collectivity in small systems

Giuliano Giacalone,^{1, *} Benjamin Bally,² Govert Nijs,³ Shihang Shen,⁴ Thomas Duguet,^{5, 6} Jean-Paul Ebran,^{7, 8} Serdar Elhatisari,^{9, 10} Mikael Frosini,¹¹ Timo A. Lähde,^{12, 13} Dean Lee,¹⁴ Bing-Nan Lu,¹⁵ Yuan-Zhuo Ma,¹⁴ Ulf-G. Meißner,^{10, 16, 17} Jacquelyn Noronha-Hostler,¹⁸ Christopher Plumberg,¹⁹ Tomás R. Rodríguez,²⁰ Robert Roth,^{21, 22} Wilke van der Schee,^{3, 23, 24} and Vittorio Somà⁵

arXiv: 2404.08385

Ab-initio nucleon-nucleon correlations and their impact on high energy ${}^{16}O+{}^{16}O$ collisions

 Chunjian Zhang,^{1, 2, 3, *} Jinhui Chen,^{1, 2, †} Giuliano Giacalone,^{4, ‡} Shengli Huang,^{3, §} Jiangyong Jia,^{3, 5, ¶} and Yu-Gang Ma^{1, 2, **}
 ¹Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), and Institute of Modern Physics, Fudan University, Shanghai 200433, China
 ²Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University, Shanghai 200438, China
 ³Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
 ⁴Institut für Theoretische Physik, Universität Heidelberg, Philosophenueg 16, 69120 Heidelberg, Germany
 ⁵Physics Department, Brookhaven National Laboratory, Upton, NY 11976, USA

Investigating nucleon-nucleon correlations inherent to the strong nuclear force is one of the core goals in nuclear physics research. We showcase the unique opportunities offered by collisions of ¹⁶O nuclei at high-energy facilities to reveal detailed many-body properties of the nuclear ground state. We interface existing knowledge about the geometry of ¹⁶O coming from *ab-initio* calculations of nuclear structure with transport simulations of high-energy ¹⁶O+¹⁶O collisions. Bulk observables in these processes, such as the elliptic flow or the fluctuations of the mean transverse momentum, are found to depend significantly on the input nuclear model and to be sensitive to realistic clustering and short-range repulsive correlations, effectively opening a new avenue to probe these features experimentally. This finding demonstrates collisions of oxygen nuclei as a tool to elucidate initial conditions of small collision systems while fostering connections with effective field theories of nuclei rooted in quantum chromodynamics (QCD).

arXiv:2404.09780

Nuclear cluster structure effect in ${}^{16}O+{}^{16}O$ collisions at the top RHIC energy

Xin-Li Zhao,^{1, 2, 3} Guo-Liang Ma,^{2, 3, *} You Zhou,^{4, †} Zi-Wei Lin,⁵ and Chao Zhang⁶

¹College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China ²Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China ³Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University, Shanghai 200438, China ⁴Niels Bohr Institute, Jagtvej 155A, 2200 Copenhagen, Denmark ⁵Department of Physics, East Carolina University, Greenville, NC 27858, USA ⁶School of Science, Wuhan University of Technology, Wuhan, 430070, China

The impact of nuclear structure has garnered considerable attention in the high-energy nuclear physics community in recent years. This work focuses on studying the potential nuclear cluster structure in ¹⁶O nuclei using anisotropic flow observables in O+O collisions at 200 GeV. Employing an improved AMPT model with various cluster structure configurations, we find that an extended effective parton formation time is necessary to align with the recent STAR experimental data. In addition, we reveal that the presented flow observables serve as sensitive probes for differentiating configurations of α -clustering of ¹⁶O nuclei. The systematic AMPT calculations presented in this paper, along with comprehensive comparisons to forthcoming experimental measurements at RHIC and the LHC, pave the way for a novel approach to investigate the α -clustering structure of ¹⁶O nuclei using O + O collisions at the ultra-relativistic energies.

Future possibilities

CERN (11.2024)

ERN

TH Institute Light lons at the LHC

- ☆ organised by CERN-TH,YZ (NBI), Qipeng Hu (USTC) etc.
- st a dedicated workshop to discuss the new colliding light ions
- ✤ Neutron skin ⁴⁰Ca and ⁴⁸Ca

Future possibilities

CERN (11.2024)

ERN

TH Institute Light Ions at the LHC

- ☆ organised by CERN-TH,YZ (NBI), Qipeng Hu (USTC) etc.
- \Rightarrow a dedicated workshop to discuss the new colliding light ions
- ✤ Neutron skin ⁴⁰Ca and ⁴⁸Ca
- * Further understanding on the α -clustering structure with ²⁰Ne

Future possibilities

CERN (11.2024)

ERN

TH Institute Light lons at the LHC

- ☆ organised by CERN-TH,YZ (NBI), Qipeng Hu (USTC) etc.
- \Rightarrow a dedicated workshop to discuss the new colliding light ions
- ✤ Neutron skin ⁴⁰Ca and ⁴⁸Ca
- \clubsuit Further understanding on the α -clustering structure with ^{20}Ne
- New isobar runs ⁴⁰Ca vs ⁴⁰Ar (well within the capability of nuclear EFT calculations)

Possible open questions

Are the existing NS study at high energies model independent?

Possible open questions

Are the existing NS study at high energies model independent?

Q: Will the same NS input gives the same Initial Conditions?

• Will TRENTo gives the same $\epsilon_2\{4\}/\epsilon_2\{2\}$ as IP-Glasma or AMPT?

Possible open questions

Are the existing NS study at high energies model independent?

Q: Will the same NS input gives the same Initial Conditions?
Will TRENTO gives the same ε₂{4}/ε₂{2} as IP-Glasma or AMPT?

Q: Any difference by using hydrodynamics and parton transport (AMPT)?

Possible open questions

Are the existing NS study at high energies model independent?

Q: Will the same NS input gives the same Initial Conditions?
Will TRENTO gives the same ε₂{4}/ε₂{2} as IP-Glasma or AMPT?

Q: Any difference by using hydrodynamics and parton transport (AMPT)?

Q: Will the choices of hadronic rescattering models (SMASH, UrQMD, ART) matter for the NS study?

Conclusion Remarks

The nuclear structure studies at the high energies (i.e., RHIC & LHC) can not replace the efforts of NS at low energies, OBVIOUSLY.

☆ They complement each other

- × NS@LE covers much wider range in the nuclide chart
- NS@HE enables novel opportunity to resolve some challenging questions (many-body, shape etc) with a few selected nuclei

☆ The interactions between two communities are crucial

Can we have a unified description of nuclear structure through the entire energy scale from MeV to TeV

Thanks !

INDEPENDENT RESEARCH FUND DENMARK

*** 2 Postdoc (1 Flow, 1 FoCal)**

- starting Early 2025
- 600,000 RMB/year

* 1 PhD (Flow)

erc

- Open call in spring 2025
- 450,000 RMB/year

We're hirinal

* Contact You Zhou: You.Zhou AT cern.ch

Bakcup

Recent Activities @ High Energies

Physics Opportunities from the RHIC Isobar Run

RIKEN BNL Research Center

BNL (01.2022)

GSI (05.2022)

CEA, Saclay (09.2022)

INT (02.2023)

Activities in 2024 and beyond

PKU (04.2024) Beijing

(Program + workshop for two communities)

RHIC (0.2 TeV):

- U-U vs Au-Au
- Zr-Zr vs Ru-Ru
- 0-0

LHC (~ 5 TeV):

- Xe-Xe vs Pb-Pb
- 0-0

Exploring nuclear physics across energy scales 2024: intersection between nuclear structure and high energy nuclear collisions

15–26 Apr 2024 Asia/Shanghai timezone

Overview

Participant List

Meeting and Hotel

Committees

Information

About Beijing

Visa to China

Transportation

huichaosong@pku.edu.cn

Contact

Introduction: Recently, it has been realized that relativistic heavy ion collisions could provide new approaches to study some fundamental properties of atomic nuclei. It is therefore timely to gather scientists from both the low-energy and high-energy nuclear physics communities to discuss the recent progress and future perspective in this research direction. The two-week program+workshop on "Exploring Nuclear Physics across Energy Scales" emphasizes the intersection between nuclear

Q

Enter your search term

structure and high-energy nuclear collisions, with a focus on the following questions: How does the lowenergy structure of nuclei manifest in high-energy collisions? How do the observations made at colliders complement our knowledge of nuclear structure? During the program days (<u>April 15-18, April 23-26</u>) the two invited speakers each day are expected to give a one-hour seminar with sufficient time for discussions. The embedded workshop (<u>20-22 April</u>) will be 3 days with 25-30 invited talks and 3 short discussion sections.

The scientific program includes the following topics, which emphasises the intersections between nuclear structure and high-energy collisions.

- Manifestation of nuclear deformations across energy scales
- Neutron skin determinations and applications
- Many-body correlations and clustering in light nuclei
- Bayesian analysis for high-energy collisions and nuclear structure
- Role of nuclear structure in low- and intermediate-energy collisions
- Connection to Ultra-peripheral Collisions (UPCs) and the future Electron-Ion Collider (EIC)
- Opportunities with colliding new species at future high-energy experiments

(Normalized) Symmetric Cumulant

How do v_n and v_m correlate

- $\boldsymbol{\diamondsuit}$ The very first direct measurement of correlations between v_n and v_m
 - NSC(3,2) is insensitive to η/s

UNIVERSITY OF

COPENHAGEN

- NSC(3,2) measurements provide a direct access into the initial conditions (despite details of systems evolution)
- Can we use NSC to explore the nuclear structure?

Probe IC with NSC(3,2)

How do v_n and v_m correlate

 $NSC^{v}(3,2) = NSC^{\varepsilon}(3,2)$

ALICE, PLB818 (2021) 136354 iEBE-VISHNU, M. Li, YZ etc, PRC104, 024903 (2021)

UNIVERSITY OF

COPENHAGEN

- Precision NSC(3,2) data provides tight constraints on the initial state models
- what is the general correlation between any order of vnk and vmp and the correlations among multiple flow coefficients

How do v_n and v_m correlate

A reminder

J. Jia, JPG41 (2014) 124003

	pdfs	cumulants
Flow- amplitudes	$p(v_n)$	$v_n\{2k\}, k = 1, 2, \dots$
	$p(v_n, v_m)$	$ \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle, n \neq m $
	$p(v_n, v_m, v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $
		$n \neq m \neq l$
		Obtained recursively as above
EP- correlation	$p(\Phi_n, \Phi_m,)$	$ \langle v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle $ $ \sum_k k c_k = 0 $
Mixed- correlation	$p(v_l, \Phi_n, \Phi_m,)$	$ \begin{cases} \langle v_l^2 v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0, \ n \neq m \neq l \dots \end{cases} $

- One algorithm for any particle cumulant
 - Multi-particle mixed harmonic cumulants
 - correlation between v_m^k , v_n^l and v_p^q
 - correlation between v_m^k and v_n^l
 - No need of any package !

PHYSICAL REVIEW C 103, 024913 (2021)

Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions

```
Zuzana Moravcova<sup>®</sup>, Kristjan Gulbrandsen<sup>®</sup>,<sup>*</sup> and You Zhou<sup>®</sup><sup>†</sup>
Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark
```

```
complex Cumulant(int* harmonic, int n, bool remove_zeros=true, int negsplit=-1,
                                           int mult = 1, int skip = 0)
                                           bool remove term = false:
                                           if (remove_zeros)
                                            int har_sum = 0;
                                           for (int i = 0; i<mult; ++i) har_sum += harmonic[n-1+i];</pre>
                                            if (har_sum != 0) remove_term = true;
                                           complex c = 0;
                                           if (!remove_term)
 m-particle cumulant
                                            c = Corr(harmonic+(n-1), mult);
                                            if (n == 1) return c:
                                            c *= negsplit*Cumulant(harmonic, n-1, remove_zeros, negsplit-1);
                                           7
                                           int h_hold = harmonic[n-2];
                                           for (int counter = 0; counter <= n-2-skip; ++counter)
                                            harmonic[n-2] = harmonic[counter];
                                            harmonic[counter] = h_hold;
                                            c += Cumulant(harmonic, n-1, remove_zeros, negsplit, mult+1, n-2-counter);
                                            harmonic[counter] = harmonic[n-2];
                                           harmonic[n-2] = h_hold;
                                           return c;
                                       complex Correlator(int* harmonic, int n, int mult = 1, int skip = 0)
                                         ſ
                                          int har_sum = 0;
                                          for (int i = 0; i<mult; ++i) har_sum += harmonic[n-1+i];</pre>
                                           complex c(Q(har_sum, mult));
                                           if (n == 1) return c;
                                           c *= Correlator(harmonic, n-1);
                                           if (n == 1 + skip) return c;
m-particle correlation
                                           complex c2 = 0;
                                           int h_hold = harmonic[n-2];
                                           for (int counter = 0; counter <= n-2-skip; ++counter)
                                           ſ
                                           harmonic[n-2] = harmonic[counter];
                                           harmonic[counter] = h_hold;
                                           c2 += Correlator(harmonic, n-1, mult+1, n-2-counter);
                                           harmonic[counter] = harmonic[n-2];
                                           7
                                           harmonic[n-2] = h_hold;
                                          return c-mult*c2;
```

You Zhou (NBI) @ 见微学术沙龙, USTC, China

}

Mixed harmonic cumulants

• First measurement of correlations between higher order moments of v_2 and v_3

Final state results quantitatively reproduced by the initial state correlations

COPENHAGEN

 Experimental data provides direct constraints on the correlations of higher order moments of eccentricity coefficients from initial state models

You Zhou (NBI) @ 见微学术沙龙, USTC, China

T_RENTo IC

Fully parametrised initial conditions

$$P_{\text{wounded}} = 1 - \exp\left(-\sigma_{gg} \int d\mathbf{x} \rho_A(\mathbf{x}) \rho_B(\mathbf{x})\right), \qquad \rho_{A/B} \propto \exp\left(\frac{-|\mathbf{x} - \mathbf{x}_{A/B}|^2}{2w^2}\right)$$

Deposit energy into each nucleus' thickness function

$$T_{A/B} = \sum_{i \in \text{wounded } A/B} \gamma \exp(-|x - x_i|^2 / 2w^2)$$

- Modify to include quark constituents $\rho_A = \frac{1}{n_c} \sum_{i=1^{n_c}} \rho_c (\mathbf{x} \mathbf{x}_i)$
- Generalised mean of thickness functions

$$\frac{dS}{d^2 x_{\perp} d\eta} \bigg|_{\eta=0} \propto \left(\frac{(T_A + T_B)^p}{2}\right)^{1/p} \xrightarrow{dS} \frac{dS}{d\eta} \bigg|_{\eta=0} \propto \begin{cases} \max(T_A, T_B) & p \to +\infty \\ (T_A + T_B)/2 & p = +1 \text{ (arithmetic)} \\ \sqrt{T_A T_B} & p = 0 \text{ (geometric)} \\ 2T_A T_B/(T_A + T_B) & p \to -\infty \end{cases}$$

You Zhou (NBI) @ 见微学术沙龙, USTC, China

(

Pictures at low energy and high energy

Even with the fixed parameters (nuclear structure), the nucleon distributions are not fixed (not identical but vary from one event to the other)

COPENH

Initial geometry correlations

UNIVERSITY OF COPENHAGEN

Probe Nuclear structure with NSC(3,2)

Normalised Symmetric cumulants:

Or: $NSC^{v}(3,2) = NSC^{\varepsilon}(3,2)$

Z. Lu, M.Zhao, J. Jia, YZ, Eur. Phys. J. A (2023) 59, 279

Different results due to nuclear deformation observed in NSC(3,2)

 \clubsuit New measurements should allow the constrain the β_2 but not γ

UNIVERSITY OF COPENHAGEN

PHYSICAL REVIEW C 103, 024910 (2021)

PHYSICAL REVIEW C 105, 024904 (2022)

Skewness of mean transverse momentum fluctuations in heavy-ion collisions

Giuliano Giacalone ^(a),^{1,2} Fernando G. Gardim,³ Jacquelyn Noronha-Hostler,⁴ and Jean-Yves Ollitrault ^(a)
 ¹Université Paris Saclay, CNRS, CEA, Institut de physique théorique, 91191 Gif-sur-Yvette, France
 ²Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
 ³Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
 ⁴Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

UNIVERSITY OF

COPENHAGEN

Higher-order transverse momentum fluctuations in heavy-ion collisions

Somadutta Bhatta¹, Chunjian Zhang¹, and Jiangyong Jia^{1,2,*} ¹Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA ²Physics Department, Brookhaven National Laboratory, Upton, New York 11976, USA

$$k_{2} = \frac{\langle c_{2} \rangle}{\langle \langle p_{T} \rangle \rangle^{2}}, \quad k_{3} = \frac{\langle c_{3} \rangle}{\langle \langle p_{T} \rangle \rangle^{3}},$$

$$k_{4} = \frac{\langle c_{4} \rangle - 3 \langle c_{2} \rangle^{2}}{\langle \langle p_{T} \rangle \rangle^{4}}, \quad k_{2,2\text{sub}} = \frac{\langle c_{2,2\text{sub}} \rangle}{\langle \langle p_{T} \rangle \rangle_{a} \langle \langle p_{T} \rangle \rangle_{c}}$$

$$\frac{\delta d_{\perp}}{d_{\perp}} = \sqrt{\frac{5}{16\pi}} \beta_2 \left(\cos(\gamma) D_{0,0}^2(\Omega) + \frac{\sin(\gamma)}{\sqrt{2}} [D_{0,2}^2(\Omega) + D_{0,-2}^2(\Omega)] \right)$$

 $d_\perp = \sqrt{N_{\rm part}/\langle r_\perp^2\rangle}$

`**₹¶**"}‡

UNIVERSITY OF

COPENHAGEN

Final state cumulant	Initial state cumulant	Liquid-drop model
κ_2	$\left< \left(rac{\delta d_\perp}{d_\perp} ight)^2 \right>$	$\frac{1}{32\pi}\langle eta_2^2 angle$
κ_3	$\left< \left(rac{\delta d_\perp}{d_\perp} ight)^3 \right>$	$\frac{\sqrt{5}}{896\pi^{3/2}}\langle\cos(3\gamma)\beta_2^3\rangle$
κ_4	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle - 3 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-\frac{3}{14336\pi^2}(7\langle\beta_2^2\rangle-5\langle\beta_2^4\rangle)$
κ_5	$\left\langle \left(rac{\delta d_{\perp}}{d_{\perp}} ight)^5 ight angle - 10 \cdot \left\langle \left(rac{\delta d_{\perp}}{d_{\perp}} ight)^3 ight angle \cdot \left\langle \left(rac{\delta d_{\perp}}{d_{\perp}} ight)^2 ight angle$	$-\frac{5\sqrt{5}}{315392\pi^{5/2}}(11\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^2\rangle-5\langle\beta_2^5\rangle)$
κ_6	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle - 15 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{4} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{918412504\pi^3} (42042\langle\beta_2^2\rangle^3 - 5720\langle\cos(3\gamma)\beta_2^3\rangle^2$
	$+30 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^3 - 10 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle^2$	$-45045\langle\beta_2^2\rangle\langle\beta_2^4\rangle+8575\langle\beta_2^6\rangle+700\langle\cos(6\gamma)\beta_2^6\rangle)$
κ_7	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^7 \right\rangle - 21 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$-\frac{15\sqrt{5}}{524812288}(2002\langle\beta_2^2\rangle^2\langle\cos(3\gamma)\beta_2^3\rangle$
	$+210 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$+715\langle\cos(3\gamma)\beta_2^3\rangle\langle\beta_2^4\rangle$
	$-35 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle$	$+910\langle\cos(3\gamma)\beta_2^5\rangle\langle\beta_2^2\rangle-175\cos(3\gamma)\beta_2^7\rangle)$
κ_8	$\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{8} \right\rangle - 28 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{6} \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^{2} \right\rangle$	$\frac{5}{142748942336\pi^4} (2144142\langle\beta_2^2\rangle^4 - 3063060\langle\beta_2^2\rangle^2\langle\beta_2^4\rangle$
	$+420 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^2$	$-340\langle\beta_2^2\rangle \Big(2288\langle\cos(3\gamma)\beta_2^3\rangle^2 - 35(49\langle\beta_2^6\rangle$
	$-35\left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^4 \right\rangle^2 - 630 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle^4$	$+4\langle\cos(6\gamma)\beta_2^6\rangle)\Big)+25\Big(21879\langle\beta_2^4\rangle^2$
	$+560 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle^2 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^2 \right\rangle$	$+14144\langle\cos(3\gamma)\beta_2^3\rangle\langle\cos(3\gamma)\beta_2^5\rangle$
	$-56 \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^5 \right\rangle \cdot \left\langle \left(\frac{\delta d_{\perp}}{d_{\perp}}\right)^3 \right\rangle$	$-35(79\langle\beta_2^8\rangle+16\langle\cos(6\gamma)\beta_2^8\rangle))$

Multi-particle pT correlations

PHYSICAL REVIEW C 103, 024910 (2021)

Skewness of mean transverse momentum fluctuations in heavy-ion collisions

Giuliano Giacalone ⁽⁰⁾,^{1,2} Fernando G. Gardim,³ Jacquelyn Noronha-Hostler,⁴ and Jean-Yves Ollitrault ⁽⁰⁾
 ¹Université Paris Saclay, CNRS, CEA, Institut de physique théorique, 91191 Gif-sur-Yvette, France
 ²Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
 ³Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
 ⁴Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

UNIVERSITY OF

COPENHAGEN

PHYSICAL REVIEW C 105, 024904 (2022)

Higher-order transverse momentum fluctuations in heavy-ion collisions

Somadutta Bhatta[®],¹ Chunjian Zhang[®],¹ and Jiangyong Jia[®],²,* ¹Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA ²Physics Department, Brookhaven National Laboratory, Upton, New York 11976, USA

 [P_T] and its event-by-event fluctuations measured in heavy-ion collisions at the LHC -> probe initial size and size fluctuations

Enhanced ψ_n correlations in models

A stronger correlation is well explained by the transport model using deformed ¹²⁹Xe nuclei using transport model

COPENHAGEN

[pT] - Vn correlations

Shape of the fireball: Anisotropic flow

Size of the fireball: radial flow [pt]

\clubsuit Final state: correlation between v_n and p_T

$$\rho(v_n^2, [p_{\mathrm{T}}]) = \frac{cov(v_n^2, [p_{\mathrm{T}}])}{\sqrt{var(v_n^2)}\sqrt{var([p_{\mathrm{T}}])}}$$

P. Bozek etc, PRC96 (2017) 014904

 $\textbf{\& Assuming } \mathbf{v}_{n} \propto \mathbf{\mathcal{E}}_{n} \text{, [pt] } \propto \mathbf{E}_{0} \\ \rho(v_{n}^{2}, [p_{T}]) = \rho(\varepsilon_{n}^{2}, [E_{0}])$

final-state model calculation

Initial-state model estimation

• One can compare $\rho(v_n^2, [p_T])$ measurements to $\rho(\varepsilon_n^2, [E_0])$ calculations, to constrain the initial state model

O-O collisions at RHIC and the LHC

