

用于CEPC顶点探测器的单片式像素探测器 原型样机的研制

Ying Zhang

On behalf of the CEPC Vertex detector study team *Institute of High Energy Physics, Chinese Academy of Sciences

第四届半导体辐射探测器研讨会 2024年5月23-26日

项目背景

Physics motivation

- > Higgs precision measurement
- > $H \rightarrow bb$ (precise vertex reconstruction)
- > $H \rightarrow \mu \mu$ (precise momentum measurement)

Need tracking detector with high spatial resolution

Project MOST2 target: produce the first vertex detector prototype

- Spatial resolution 3~5 µm (pixel detector)
- Radiation hard (> 1 MRad)

CEPC Vertex detector conceptual design (2016)

Main technology

First vertex detector prototype

- > High spatial resolution technology \rightarrow design high granularity pixel chip
- Radiation resistance technology
- > Detector module prototyping and assembly technology

顶点探测器原型样机结构优化

- Based on CEPC vertex detector conceptual design → Three doublelayer barrel detector
- One example of detector geometry optimization based on simulation:
 - > Increase the length of the inner layer of the detector
 - > To improve the impact parameter resolution for forward tracks

太初芯片概述

- Motivation: a large-scale & full functionality pixel sensor for the first 6-layer vertex detector prototype
- Major challenges for design
 - > Small pixel size \rightarrow high resolution (3-5 μ m)
 - > High readout speed (dead time < 500 ns @ 40 MHz) → for CEPC Z pole
 - Radiation tolerance (per year): 1 MRad TID
- Completed 3 rounds of sensor prototyping in a 180 nm CMOS process
 - > Two MPW chips (5 mm × 5 mm)
 - TaichuPix-1: 2019; TaichuPix-2: 2020 → feasibility and functionality verification
 - > 1st engineering run
 - Full-scale chip: TaichuPix-3, received in July 2022 & March 2023

DACs

Bandgap

Pixel

config

Slow

control

CLK 40 MHz

PLL

generator

Periphery

Architecture of the full-scale TaichuPix

Serializer

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic

Column-drain readout for pixel matrix

- Priority based data-driven readout
- > Time stamp added at end of column (EOC)
- > Readout time: 50 ns for each pixel

2-level FIFO scheme

- > L1 FIFO: de-randomize the injecting charge
- L2 FIFO: match the in/out data rate between core and interface

Trigger-less & Trigger mode compatible

- > Trigger-less: 3.84 Gbps data interface
- Trigger: data coincidence by time stamp, only matched event will be readout

Features standalone operation

> On-chip bias generation, LDO, slow control, etc.

全尺寸芯片: TaichuPix-3

- 12 TaichuPix-3 wafers produced from two rounds
 - > Wafers tested on probe-station \rightarrow chip selecting & yield evaluation

8-inch wafer

Probe card for wafer test

An example of wafer test result (yield ~67%)

Wafers thinned down to 150 µm and diced

Wafer after thinning and dicing

Thickness after thinning

TaichuPix-3测试结果

- Pixel threshold and noise were measured with selected pixels
 - > S-curve method was used to test and extract the noise and the threshold
 - Average threshold ~215 e⁻, threshold dispersion ~43 e⁻, temporal noise ~12 e⁻ @ nominal bias setting

 Power dissipation of 89 ~ 164 mW/cm² tested @ 40MHz clk with different biasing condition

环境温度对芯片性能的影响

Test under a consistent configuration @ different T

- TC3 shows a normal functionality @ -20 ~ 70 °C
- Main performance (i.e. threshold, noise, fake hit rate) can satisfy the requirements @ -20 ~ 60 °C
- Threshold and noise fluctuate with T, probably attribute to the fluctuation of pixel biasing

24/5/2024, Detector prototype for CEPC VTX

TaichuPix-3 望远镜

The 6-layer of TaichuPix-3 telescope built

> Each layer consists of a TaichuPix-3 bonding board and a FPGA readout board

6-layer TaichuPix-3 telescope

Setup in the DESY testbeam

- > TaichuPix-3 telescope in the middle
- > Beam energy: 4 GeV mainly used
- Tests performed for different DUT (Detector Under Test)

Gets better when decrease the pixel threshold, due to the increased cluster size

TaichuPix-3 芯片束流测试结果

A resolution $< 5 \mu m$ achieved, best resolution is \geq 4.78 µm

Detector efficiency

Spatial resolution

Decreases with increasing the threshold, detection efficiency >99.5% at threshold with best resolution

Distribution of residual X

样机模块 (Ladder) 读出设计

- Detector module (ladder) = 10 sensors + readout board + support structure + control board
 - > Sensors are glued and wire bonded to the flexible PCB, supported by carbon fiber support
 - > Signal, clock, control, power, ground will be handled by control board through flexible PCB

Challenges

- > Long flex cable \rightarrow hard to assemble & some issue with power distribution and delay
- > Limited space for power and ground placement \rightarrow bad isolation between signals

Solutions

Read out from both ends, readout system composes of three parts, careful design on power placement and low noise

24/5/2024, Detector prototype for CEPC VTX

Ladder功能测试

Laser tests on 5 Taichupix chip on a full ladder ("CEPCV" pattern by scanning laser on different chips on ladder)

A full ladder includes two identical fundamental readout units

> Each contains 5 TaichuPix chips, a interposer board, a FPGA readout board

Functionality of a full ladder fundamental readout unit was verified

- > Configuring 5 chips in the same unit
- Scanning a laser spot on the different chips with a step of 50 µm, clear and correct letter imaging observed
- ➢ Demonstrating 5 chips working together → one ladder readout unit working

支撑结构及样机装配

- Fabricated support structure prototype of the ladder (IHEP designed)
 - > 3 layers of carbon fiber, 0.12 mm thick
- Both sides of ladder have wire-bonding on chip → Challenging
- Six double-side ladders installed on the vertex detector prototype
 - > 12 flex boards , 24 TaichuPix-3 chips installed on detector prototype

原型样机束流测试

Beam test performed at DESY to evaluate the mechanical, electrical and DAQ

> The prototype placed within a black box, with an electric fan for cooling

总结与展望

- First pixel detector prototype developed for CEPC VTX R&D
 - > Monolithic active pixel sensor prototype, TaichuPix chips, developed
 - > Detector module prototyping and assembly completed
 - > Spatial resolution better than 5 µm achieved for chip-level and detector-level

Concept (2016)

1st Vertex detector prototype (2023)

Outlook

- > Proposed to design new pixel sensor chips in a 65 nm technology
- > Proposed a new ladder design integrated with the optical link

Thank you very much for your attention !

24/5/2024, Detector prototype for CEPC VTX