

Test of CMOS chip using 55nm process

Zhuojun Chen¹, Dexing Miao², Yiming Li², Weiguo Lu², Yunpeng Lu², Jianchun Wang², Jianpeng Deng, <u>Zhiyu Xiang</u>², Zijun Xu², Mei Zhao², Yang Zhou², Hongbo Zhu³

1. Hunan U., 2. IHEP, 3. Zhejiang U, 第四届半导体辐射探测器研讨会 2024.05

CMOS SENSOR IN FIFTY-FIVE NM PROCESS

CEPC silicon tracker

- Large area silicon tracker planned
 - $\sim 70 140 \text{ m}^2$ depending on detector concept
- Good spatial resolution
- CMOS is a high-performant and costeffective solution
- Yet more technology options possible compared with vertex detector
 - More tolerant on power consumption
 - ~10um resolution \rightarrow increased pixel size

HVCMOS

HVCMOS is commercially available process

- Intrinsically radiation hard
- Large capacitance \rightarrow potentially more noise and power
- Hard for vertex detector but no showstopper for tracker

High Voltage CMOS

- Stable supply from the foundry should also be considered
- Efforts formed in search of HVCMOS process with 55/65 nm process provided by a domestic foundry since a couple of years ago
 - SMIC 55nm (non-HV): MPW in Oct 2022 to verify the DNW structure
 - SMIC 55nm HV: MPW in Aug 2023 with high resistivity wafer

CMOS with small electrode

MPW (CMOS SENSOR IN FIFTY-FIVE NM PROCESS)

- COFFEE1 in Oct 2022 with SMIC 55nm Low Leakage process
 - No HV application, similar DNW structure
 - Pixel: 25×150 um² ~ 50×150 um²
 - Variation of passive diode arrays
 - Simple amplifier added

- COFFEE2 in Aug 2023 with SMIC 55nm HV process
 - Validation of the sensor with high resistance wafer of $1k\Omega\cdot \mathrm{cm}$
 - Variation of diode structures
 - Analog amplifier and switch circuit
 - Test structure for small digital circuit

 $3 \times 4 \text{ mm}^2$

4

Typical IV

- IV test shows good diode result for all pixel structures
 - Clear positive conduction
 - Leakage is small ~ 10 pA for both COFFEE1 and COFFEE2
 - Reverse breakdown occurs above -70V for COFFEE2

CV results (COFFEE1)

- CV test results are comparable for different diode design:
 - Consider the offset is around 670 fF, C is proportional to parallel number
 - For single small pixel, test are compatible with predictions ~ 150-200 fF

CV results (COFFEE2)

- C variation shows good parallel ratio
- Offset around 200fF, consistent with simulation
- Single pixel ~ 40fF

CV results (COFFEE2)

- Pixel area ratio for S2(5)/S1(4)=1.35, S3(6)/S1(4)=1.75
- Subtract offset, C \propto area for Sector 1/2/3 due to p-stop

Laser test (COFFEE1)

- Signal source: 650nm red laser, penetration depth <10 um
- Low pass filter connected to source meter, large ground resistor to sample signal charge, AC readout
- Frame rate capability >10 kHz, test under 500Hz

Laser test (COFFEE1)

- Clear signal with laser emitting
- After spatial and time-delay scans, max signal in -28 ADC
 - Corresponding to 0.38 fC (2400 e) have collected from pixels

Conclusion

- HVCMOS is a promising technology for silicon tracker
 - Tested 2 MPW for different design
- Test results verified the rationality of the diode design
 - Low leakage ~ 10 pA
 - Reverse breakdown at 8V for COFFEE1 and > 70V for COFFEE2
 - CV results consistent with TCAD simulation
 - For COFFEE1 found signal with laser test
- More test ongoing
 - COFFEE2 test with radiation source, irradiation test, circuit testing