

Design and Simulation of MAPSbased Inner Tracker for STCF

张睿洋 Ruiyang Zhang

University of Science and Technology of China

- Introduction to MAPS-based Inner Tracker (ITKM) for STCF
- MAPS sensor simulation and optimization
- ITKM simulation and performance
 - Introduction to OSCAR framework
 - ➤ Full simulation process
 - > Detector simulation and digitization
 - Reconstruction performance
- Summary

Super Tau-Charm Facility

- STCF: next generation e^+e^- collider in China
 - > Detailed study of τc physics
 - \succ Precise tests to the SM
 - Searching for new physics
- $\geq E_{cm} = 2 \sim 7 \text{GeV}$
- > Peaking luminosity > $0.5 \times 10^{35} cm^{-2} s^{-1}$

Unprecedented high luminosity brings challenges to all detectors, especially Inner Tracker

MAPS-based Inner Tracker

Requirements for Inner Tracker

- \geq 0.3% X_0 per layer
- $\succ \sigma_{r\varphi} < 100 \mu m$
- Tracking efficiency >90% @100MeV/c
- ➢ Hit rate ∼800kHz/cm²

Requirements for MAPS

- Power consumption < 100 mW/cm²
- Moderate position resolution
- ➢ Good timing of ∼50ns
- Detection of energy deposition

Monolithic Active Pixel Sensor

- ✓ Mature CMOS technology
- ✓ Highly integrated
- ✓ Small pixel pitch
- ✓ Low material budget
- ✓ High SNR
- ✓ …

HR-MAPS with pixel size $170\mu m \times 30\mu m$ chosen as the baseline design for ITKM

Preliminary design of ITKM

/		
	·	

	Min radius	stave no.	sector no.	Area/ <i>cm</i> ²
ITKM1	36mm	12	12	583.9
ITKM2	98mm	32	30	3892.7
ITKM3	160mm	52	48	10120.9

- Covering polar angle 20°-160°
- \succ Total area: 15000 cm²
- ➤ Pixel numbers: 270 million

talk for details

MAPS sensor simulation

- TCAD simulation in different technologies
- Pixel size: $170\mu m \times 30\mu m$
- NWELL size 2µm
- NWELL-DPWELL spacing $2\mu m$
 - ➤ TJ180nm
 - ➢ GSMC130nm
 - ➢ BCIS90nm
 - Modified-TJ180nm (N-blanket design)

spacing

NWELL size

NWELL

DPWELL

Sensor capacitance simulation

• Nwell voltage set to 0.8V, substrate voltage scanned from 0 to -6V

Techno	Capacitance @ $V_{sub} = -6V$
TJ180nm	27.0fF
GSMC130nm	27.1fF
BCIS90nm	27.0fF
Modified- TJ180nm	17.4fF

Capacitance with V_bias

Sensor signal simulation

• Ionization	6.00E-07 -			
• Ionization density $80e^{-}/\mu m$				5.00E-07 -
				4.00E-07 -
• Threshold	0 3.00E-07 -			
				<u>5</u> 2.00E-07 -
				1.00E-07 -
				0.00E+00 0.0E+00 -1.00E-07
Techno	Collected	Collection	TOA @	4.5E-16
	charge (e)	time(ns)	threshold(ns)	4E-16 - 3.5E-16 -
TJ180nm	2039.81	20.56	0.21	3E-16 -
GSMC130nm	2477.65	89.72	0.30	2.5E-16 - 20 2E-16 -
BCIS90nm	1153.17	1.28	0.16	CP 1.5E-16
Modified- TJ180nm	1969.85	1.81	0.20	5E-17 -

Introduction to OSCAR

- The Offline Software of STCF (**OSCAR**) is designed for detector design, MC data production and physics analysis at STCF
- External libraries & tools
 - ➢ Podio, G4, ROOT, DD4hep …
- Core software
 - \succ common platform for the offline software
 - ➤ underlying framework: SNiPER
- Applications
 - STCF specific application software

OSCAR is now the common platform for full simulation of all sub-detectors

ITKM geometry

- Geometry constructed by DD4hep
- Stave width 2.2cm
- > Chip size $2 \text{cm} \times 2 \text{cm}$
- > Pixel geometry: $170\mu m \times 30\mu m$ TJ180nm techno
- > Material budget $0.31\% X_0$ per layer

- **Digitization** is the bridge between simulation and reconstruction
- Its accuracy largely determines the reliability of the full simulation

Two different digitization methods implemented under OSCAR framework

In order to precisely simulate the ionization in $50\mu m$ silicon layer:

• Step limit in SV set to 10μm

Simulation settings

• Geant4 PAI model registered

All step information in SV is saved for the purpose of digitization

Digitization method 1

1. Generating e-h pairs according ➤ "Full propagation" method to deposit energy Simulation of e-h propagation, 2. Precisely simulate the signal including: generation process in MAPS Drift \succ Diffusion Recombination Trapping & Detrapping Inducing charge on electrode 3. C1(V ramping n22 0004 des C1(weight_potential_180_30_active) according to Ramo-Shockley theorem z 528+04 4378+04 249+04 249+04 1,200+04 8,780+03 collected charge electric field weight potential

Digitization method 2

➤ "Sampling" method

Electronics response

- A series of sensor signals from randomly incident particles are fed to electronics simulation
- Voltage signals after analog front end are obtained
- TOA and TOT information is recorded

- Relationship between TOA/TOT and collected charge obtained
- Given a charge value, the TOA/TOT is calculated with a Gaussian smearing

Digitization performance

Method	Full propagation	Sampling
Memory usage	1.1G	Negligible
Time cost	48ms/hit	0.5ms/hit
Average collected charge per pixel	1080 <i>e</i> ⁻	1329 <i>e</i> ⁻
Average cluster size after	1.835	1.755
reconstruction	More accurate for small signals	Faster, less memory usage

Optimization for both methods is in progress

Cluster reconstruction

- **Cluster finding**: hit pixels inside 3*5(z*rphi) range classified as one cluster
- Cluster position reconstruction: charge centering (TOT converted to charge)

Efficiency

- Simulation settings:
 - \geq 1GeV/c muon, θ range 20°-160°
 - \succ Pixel threshold: 300e

Position resolution

- Simulation settings:
 - > 1GeV/c muon, θ range 20°-160°
 - ➢ Pixel threshold: 300e

- ✓ No correlation between pixel position and position resolution
- ✓ The resolution is better than (pixel pitch)/ $\sqrt{12}$ due to the charge information

Timing performance

- Simulation settings:
 - \geq 1GeV/c muon, θ range 20°-160°
 - ➢ Pixel threshold: 300e

Method

- Pixel with **largest** charge (TOT) is chosen as "seed"
- Seed pixel's TOA **calibrated by TArelationship** gives the time stamp of this cluster
- Compared with the MC hit time to get residual

Summary

• MAPS-based inner tracker for STCF is under R&D in USTC, aiming at :

 $\succ \sigma_{r\varphi} < 100 \mu m$

 \succ material budget 0.3% X_0 per layer

- TCAD simulation conducted for 4 different technologies:
 - > TJ180nm standard, BCIS90nm, GSMC130nm, TJ180nm modified
- ITKM full simulation chain is accomplished under OSCAR framework
 - > Two different digitization methods implemented and their performance well studied
 - Cluster reconstruction of 1GeV/c muons shows good performance of ITKM:
 - ✓ Average detection efficiency 98.5%
 - ✓ Position resolution: $\sigma_z = 37.4 \mu m$, $\sigma_{rphi} = 6.4 \mu m$
 - ✓ Time resolution (sensor only) 7.4ns

In the future:

- Track reconstruction study
- MAPS sensor structure optimization
- ITKM geometry optimization

Backup

Features at Tau-Charm energy region

- Tau-Charm energy region (2-5GeV):
 - Transition region between perturbative and non-perturbative QCD
 - Rich of resonances structures
 - Threshold of pair production of hadrons and tau leptons
 - Mass location where exotic hadrons, gluonic matter and hybrid exist
- Rich physics programs in the tau-charm region to be explored

No e⁺e⁻ Collider

Opportunity

Considerations for STCF MAPS

HR-MAPS or HV-MAPS?

Low material budget

- > Power consumption $< 100 \text{ mW/cm}^2$
- > Thin silicon layer ~ 50 μ m

High hit rate

➢ Fast readout

Moderate timing of ~50ns

- ➤ Fast charge collection
- ➢ Record TOA & TOT information

$\begin{array}{l} HR-MAPS \text{ with pixel size} \\ 170 \mu m \times 30 \mu m \end{array}$

chosen as the baseline design

Moderate position resolution requirements

Enlarge pixel size if necessary (especially in z direction)

Other considerations

- Technology availability
- Cost-effective

Comparison of TCAD and Allpix² signals

- TJ180nm techno, nwell size $2\mu m$, spacing $2\mu m$
- nwell 0.8V, substrate -6V
- Ionization density $80e^{-}/\mu m$

[DepositionPointCharge] source_type = "mip" model = "spot" spot_size = 0.0354um # position = 1596um 8441.75um position = 1611.96um 8526.1675um # position = 0 0 number_of_steps = 100 number_of_charges = 80/um

Settings in Allpix²

Injection from pixel center

Injection from pixel corner

第四届半导体辐射探测器研讨会

Details of digitization

- Three digitization options available:
 - \geq 0: sampling
 - 1: Full sim based on Allpix², only electron propagation considered (default for now)
 - \geq 2: Full sim based on Allpix², both electron & hole propagation considered
- Optional physics models for different physics process

- # modility model: jacoboni/canali_fast/hamburg/hamburg_highfield/masetti/masetti_canali(default)/arora/ruch_kino/quay/levinshtein/constant
 TT(MDisi_seconds("sec
- ITKMDigi.property("mobility_model").set("masetti_canali")
- # recombination model: srh/auger/srh_auger(default)/constant/none
- ITKMDigi.property("recombination_model").set("srh_auger")
- # multiplication model: massey/massey_optimized/overstraeten/overstraeten_optimized/okuto/okuto_optimized/bologna/none(default)
- ITKMDigi.property("multiplication_model").set("none")
- # trapping model: ljubljana/kramberger/dortmund/krasel/cmstracker/mandic/constant/none(default)
- ITKMDigi.property("trapping_model").set("none")
- # detrapping model: constant/none(default)
- ITKMDigi.property("detrapping_model").set("none")

More accurate but Slower

[#] set physics models for full digitization

Clustering efficiency

- Simulation settings:
 - \geq 1GeV/c muon, θ range 20°-160°
 - ➢ Pixel threshold: 300e

Average Efficiency vs. polar & azimuthal angle

Cluster size

- Simulation settings:
 - \geq 1GeV/c muon, θ range 20°-160°
 - \succ Pixel threshold: 300e

Clustering performance in local coordinate

University of Science and Technology of China

- Simulation settings:
 - \geq 1GeV/c muon, θ range 20°-160°
 - \succ Pixel threshold: 300e

ITKM background estimation

- Background simulation carried out under OSCAR framework
- Three types backgrounds combined: **Touschek (main background), Luminosity, Beam-gas**
- Latest bkg generators and MDI design
- **Simulation + Digitization** to get the background hit rate in terms of fired pixels

		Arevage hit rate per unit	Maximum hit rate per
	Total hit rate / Hz	area / (kHz/cm^2)	unit area / (kHz/cm^2)
ITKM1	2.4E+08	411.7779	440.78
ITKM2	47691165	12.25144	14.66
ITKM3	47566214	4.699801	5.47

第四届半导体辐射探测器研讨会

- ITKM and MDC(Drift Chamber) together form the tracking system of
- Basic idea of track finding: conformal transform + Hough transform
- Track fitting uses generic track-fitting toolkit Genfit2

Preliminary results on track reconstruction

